NOTICE OF PREPARATION

To: Agencies and Interested Parties
From: City of San Bernardino Municipal Water Department
Date: November 5, 2014
Subject: Announcement of:

1) Notice of Preparation of an Environmental Impact Statement/Environmental Impact Report for the Clean Water Factory Project
2) Public Scoping Meeting to be held on November 19, 2014; and
3) NOP Scoping Comments due by December 8, 2014.

The Bureau of Reclamation (Reclamation) and the San Bernardino Municipal Water Department (SBMWD) will prepare a joint Environmental Impact Statement (EIS)/Environmental Impact Report (EIR) for the Clean Water Factory Project (proposed Project for CEQA purposes) in San Bernardino County, California. The EIS/EIR will be prepared pursuant to the National Environmental Policy Act (NEPA) (42 United States Code [USC] Section 4321 et seq.) and the California Environmental Quality Act (CEQA) (California Public Resources Code [PRC], Section 21000 et seq.; see also 14 California Code of Regulations [CCR] Sections 15220, 15222 [State CEQA Guidelines]). Reclamation will be the Federal lead agency for purposes of complying with NEPA, and SBMWD will be the local lead agency for compliance with CEQA.

PURPOSE OF THE NOTICE OF PREPARATION: The purpose of a Notice of Preparation (NOP) is to notify responsible and trustee agencies, Federal agencies involved in approving or funding a project, and interested parties that an EIS/EIR will be prepared. The NOP should provide sufficient information about the proposed project and its potential environmental impacts to allow recipients the opportunity to provide a meaningful response related to the scope and content of the EIS/EIR, including the potentially significant and significant environmental issues, reasonable alternatives, and mitigation measures that the responsible or trustee agency will need to have explored in the EIS/EIR (State CEQA Guidelines CCR Section 15082[a][1]).

The Project location, description, and probable environmental impacts of the proposed Project are presented below. An initial study has not been prepared because the EIS/EIR will address all issue areas and it is already known that the proposed Project could have a significant effect on the environment. The EIS/EIR will also include feasible mitigation measures and evaluate a reasonable range of alternatives to avoid or substantially reduce the proposed Project's significant adverse environmental impacts.

The purposes of this NOP are to:

1. Notify the appropriate parties that an EIS/EIR will be prepared for the proposed Project;
2. Briefly describe the proposed Project and the anticipated content of the EIS/EIR;
3. Announce the public scoping meeting to facilitate public input; and
4. Solicit input by from Federal, State, regional, and local agencies, and from interested organizations and individuals, regarding the content and scope of the EIS/EIR, including the alternatives to be addressed and the potentially significant environmental impacts.
1.0 Project Background and Purpose and Need

The SBMWD provides water supply and reclamation, and geothermal heating supply services to its service area, which primarily overlays the Bunker Hill Groundwater Basin (Bunker Hill Basin), particularly the Bunker Hill Basin A Management Zone. SBMWD relies wholly on groundwater from the Bunker Hill Basin to meet its customers’ water demand. Exhibit 1, **SBMWD Service Area and Groundwater Basins**, shows the extent of these features. With over 55 production wells, four (4) water treatment plants for groundwater treatment, and over 700 miles of water supply pipelines, SBMWD has invested significantly in the Bunker Hill Basin, and has a vested interest in maintaining and improving this water supply.

Due to the extended drought in California, limitations on State Water Project (SWP) supplies, the current groundwater depletion of the Bunker Hill Basin, and compliance with SBX-7, the SBMWD faces the challenge of satisfying its anticipated water demands through innovative solutions, independent of traditional imported water supplies. To meet this challenge, SBMWD commissioned a Recycled Water Planning Investigation Report (PIR) to assess the feasibility of using recycled water to augment its water supply.

SBMWD owns and operates the San Bernardino Water Reclamation Plant (SBWRP). The SBMWD and the City of Colton are members of a Joint Powers Agency that own and operate the Rapid Infiltration and Extraction (RIX) Facility. Currently, the SBWRP treats approximately 22 million gallons per day (mgd) of raw wastewater from the City of San Bernardino, the City of Loma Linda, and the East Valley Water District to secondary standards. The SBWRP conveys this secondary-treated effluent to the RIX facility for tertiary treatment and then discharges it to the Santa Ana River (SAR). The City of Colton conveys an

1 The Bunker Hill Basin is divided into water quality management zones and the Waterman Basins and East Twin Creek Spreading Grounds are located in Bunker Hill Basin A Management Zone. Identification of this Management Zone is provided to show future water quality comparisons with objectives established by the Regional Water Quality Control Board (RWQCB).

2 SBX-7 requires urban water retailers to reduce per capita water demands by 10 percent by 2015 and by 20 percent by 2020, with that reduction measured against a specified per capita baseline.

3 California Code of Regulation (CCR), Title 22, Division 4, Chapter 3 has two classifications of secondary treated recycled water: disinfected secondary-2.2 and disinfected secondary-23. Section 60301.220 of the CCR defines disinfected secondary-2.2 recycled water as “...recycled water that has been oxidized and disinfected so that the median concentration of total coliform bacteria in the disinfected effluent does not exceed a most probable number (MPN) of 2.2 per 100 milliliters utilizing the bacteriological results of the last seven days for which analyses have been completed, and the number of total coliform bacteria does not exceed an MPN of 23 per 100 milliliters in more than one sample in any 30 day period.” Section 60301.220 of the CCR defines disinfected secondary-23 recycled water as “[...]recycled water that has been oxidized and disinfected so that the median concentration of total coliform bacteria in the disinfected effluent does not exceed a most probable number (MPN) of 23 per 100 milliliters utilizing the bacteriological results of the last seven days for which analyses have been completed, and the number of total coliform bacteria does not exceed an MPN of 240 per 100 milliliters in more than one sample in any 30 day period.”

4 CCR, Title 22, Division 4, Chapter 3, Section 60301.230 defines disinfected tertiary treated recycled water as follows: “[...]a filtered and subsequently disinfected wastewater that meets the following criteria:

(a) The filtered wastewater has been disinfected by either:

 (1) A chlorine disinfection process following filtration that provides a CT (the product of total chlorine residual and modal contact time measured at the same point) value of not less than 450 milligram-minutes per liter at all times with a modal contact time of at least 90 minutes, based on peak dry weather design flow; or

 (2) A disinfection process that, when combined with the filtration process, has been demonstrated to inactivate and/or remove 99.999 percent of the plaque forming units of F-specific bacteriophage MS2, or polio virus in the wastewater. A virus that is at least as resistant to disinfection as polio virus may be used for purposes of the demonstration.

(b) The median concentration of total coliform bacteria measured in the disinfected effluent does not exceed an MPN of 2.2 per 100 milliliters utilizing the bacteriological results of the last seven days for which analyses have been completed and the number of total coliform bacteria does not exceed an MPN of 23 per 100 milliliters in more than one sample in any 30 day period. No sample shall exceed an MPN of 240 total coliform bacteria per 100 milliliters.”
additional 5.3 mgd of secondary-treated effluent to the RIX facility for tertiary treatment and discharge to the river. RIX currently discharges approximately 31.3 mgd to the SAR.

In the PIR referenced above, a range of recycled water reuse alternatives were developed. These alternatives included a menu of various treatment technologies, conveyance schemes, and reuse. The feasibility of a bounded group of treatment and reuse alternatives was then explored. This investigation led to the selection of a set of options that will be discussed and evaluated in the Draft EIS/EIR. In order to ensure that the potential environmental impacts of all the options are considered, a comprehensive “worst case” approach will be taken in the EIR/EIS to ensure that all areas that could potentially be disturbed by any of the options evaluated would be taken into account.

SBMWD filed a “Petition for Change for Owners of Waste Water Treatment Plants” with the State Water Resources Control Board (SWRCB) on April 22, 2010 (Petition revised June 7, 2010), pursuant to Water Code Section 1211 (and in accordance with Water Code Sections 461, 13500 et seq. and 13575 et seq.) to decrease current tertiary-treated discharge from the RIX facility to the SAR from approximately 35.7 mgd (40,000 acre-feet per year) to approximately 11.9 mgd (13,300 acre-feet per year). The Petition for Change proposes the “reuse of recycled water in [SBWMD’s] service area and the marketing of surplus recycled water to water agencies outside the SBMWD service area.” The “change” that would result from approval of this Petition includes the “place of use” and the “purpose of use” of SBMWD’s existing and future effluent.

Purpose and Need

Southern California is facing an unprecedented water crisis. This crisis stems from the effects of climate change, continuing population growth, severe drought on the Colorado River Basin and the threat of failing levees and endangered species issues in the Bay Delta. These conditions are severely testing the region’s ability to provide clean water, both now and in the future. In its recent Recycled Water Policy statement, the SWRCB encouraged local and regional water agencies to move toward local water sustainability by emphasizing water recycling, water conservation, improved maintenance of supply infrastructure and the capture and use of stormwater and dry-weather urban runoff.

Currently, SBMWD relies completely on groundwater from the Bunker Hill Groundwater Basin to meet the water supply needs of its service area. However, the Bunker Hill Basin is presently in a condition of groundwater depletion and future demand is expected to increase over time.

The proposed Project is designed to reduce SBMWD’s dependence on imported water and establish a reliable, sustainable source of clean water. To implement the proposed Project, SBMWD must meet a number of political, technical, regulatory, and other challenges. By meeting these challenges, SBMWD will be positioned to move aggressively towards a more reliable water future.

The identified purpose and need of the Project are as follows:

- **Need** – Increase SBMWD’s water supply reliability and sustainability to meet future projected water demands, in a manner that provides SBMWD and its customers with a safe, reliable, cost-effective water supply, that minimizes existing and potential future supply reliability and system operational risk associated with imported water, regulatory requirements and other factors;

• **Purpose** – Modify the existing wastewater management system to meet this need.

2.0 Project Description

Project Location

The Project is located within the City of San Bernardino approximately 60 miles east of the City of Los Angeles in the upper SAR Valley Watershed (refer to Exhibit 2, *Regional Location Map*, and Exhibit 3, *Project Vicinity Map*). The proposed facilities would be constructed within the SBMWD service area and would lie above the San Bernardino Basin Area or, more specifically, the Bunker Hill Basin.

The Project area includes the plant boundary of the City’s existing San Bernardino Water Reclamation Plant (SBWRP) located just north of the confluence of the East Twin Creeks and the SAR at 399 Chandler Place, San Bernardino, California. It also includes the alignments of proposed distribution pipelines which would extend from the SBWRP along existing street and/or flood control channel rights-of-way (ROWS) within the City. These pipelines extend to the Waterman Basin and East Twin Creek Spreading Ground at the foothills of the San Bernardino Mountains. Refer to Exhibit 4, *Recycled Water System Conveyance System Alternatives (Southerly Portion)*, and Exhibit 5, *Recycled Water System Conveyance System Alternatives (Northerly Portion)*.

Project Study Area

The study area for this environmental analysis includes areas that may be affected directly, indirectly or cumulatively by implementing the Project. The study area has been broadly defined to ensure evaluation of the potential effects within all areas that would be affected by, and benefit from, implementation of the Project. The scope of the study area varies depending on the impact topic discussed. For example, a discussion of hydrologic impacts may cover impacts that would occur to the Bunker Hill Basin, while noise impacts may be more localized to a particular construction site and its surrounding uses.

Operational impacts and benefits, however, would tend to occur in all geographic subareas under all alternatives. Construction-related impacts related to installation of the approximately 100,000 linear-foot pipeline conveyance system would occur throughout the City of San Bernardino under all Project alternatives, since all four of the proposed pipeline alignment route options are within the City’s boundaries (refer to Exhibits 4 and 5).

Note that conveyance alignments, recharge basins and potential recycled water end users are all conceptual, and may be modified through the EIS/EIR process and/or during final design and construction.

Existing Facilities

The existing facilities that are components of the Project are the San Bernardino Water Reclamation Plant (SBWRP), the Waterman Basins, the East Twin Creek Spreading Grounds, as well as existing inter-basin facilities that could be used to deliver product water to the Chino Basin (see “Consideration of Project Alternatives” discussion, below). The Rapid Infiltration and Extraction (RIX) tertiary treatment facility is located approximately four miles southwest of the SBWRP along the Santa River. The SBMWD and City of Colton are members of a Joint Powers Agency that owns and operates the RIX facility. Descriptions of these facilities and their respective recharge capabilities will be provided in the EIS/EIR.
Project Description

SBMWD is proposing the Project to reduce its dependence on imported water and to establish a reliable, sustainable source of clean water. The proposed Project will treat effluent from the San Bernardino Water Reclamation Plant (SBWRP) to a quality approved for recharge as set by the California Department of Public Health (CDPH) and the Santa Ana Regional Water Quality Control Board (RWQCB). The treated effluent will be conveyed to the Waterman Basins and the East Twin Creek Spreading Grounds. Recycled water spread at these facilities will artificially recharge the Bunker Hill Groundwater Basin (Bunker Hill Basin) and, more specifically, the Bunker Hill A Management Zone, as described in the Water Quality Control Plan for the SAR Watershed (Basin Plan). The Project will also treat a side stream of SBWRP effluent to a quality approved for direct use and convey the tertiary treated recycled water to customers that can benefit from a non-potable water supply.

Project Elements

The proposed Project consists of the following key elements (subject to modification through the EIS/EIR and final design process):

- Treatment improvements to the existing SBWRP, which has an annual capacity to produce up to 36,967 acre-feet of secondary effluent;
- Addition of up to 5 mgd of tertiary filtration/disinfection facilities to the SBWRP to provide a source of Title 22 water to parks, golf course and other irrigation users within the SBMWD service area;
- Addition of up to 15 mgd of advanced wastewater treatment to the SBWRP to provide a source of clean water for groundwater replenishment; these treatment units may be phased in 5 mgd increments and could consist of a 5 mgd membrane bioreactor (MBR) expansion, a tertiary filtration process, a nano/reverse osmosis (RO) membrane treatment system and disinfection process using UV/advanced oxidation process (AOP) with post-treatment stabilization;
- A system to convey the recycled water to the Waterman Basins and the East Twin Creek Spreading Grounds for surface spreading, and to “target opportunity” customers for direct use applications near, or adjacent to, the conveyance alignment;
- Reduction of up to approximately 22 mgd of treated wastewater discharges into the SAR via the Rapid Infiltration and Extraction (RIX) facility, to be beneficially used for groundwater recharge/direct reuse; and
- Future connection of the RIX facility to the Chino Groundwater Basin and the Inland Empire Utility Agency’s (IEUA) non-potable system. Recycled water in excess of SBMWD needs can then be conveyed to the IEUA service area to be used to meet non-potable direct uses and for groundwater recharge in the Chino Basins. Refer to Exhibit 6, Inter-Agency Conveyance Facilities.

Specific Project Components

Several different improvement options are identified with respect to water treatment, conveyance systems and pipeline alignments. The option that is ultimately used would be identified as part of final facilities design, after the EIS/EIR is certified and/or approved. In order to ensure that the potential environmental impacts of all the options listed below are considered, a comprehensive “worst case” approach will be taken in the EIS/EIR to ensure that all areas that could potentially be disturbed by any of the options considered below would be taken into account. The specific facilities improvements that would be necessary to implement the Project will be analyzed in the EIS/EIR, including the following:
• Improvement to the San Bernardino Water Reclamation Plant;
• Alternative conveyance pipeline alignments;
• Reservoir and pump stations associated with the pipeline conveyance system;
• Recharge site improvements; and
• Direct use site improvements, distribution and customers.

Table 1 below provides a brief summary of the estimated length, width and area, and brief description for each alternative alignment. The proposed alignment routes for the conveyance pipelines are illustrated in Exhibit 4, Recycled Water System Conveyance System Alternatives (Southerly Portion), and Exhibit 5, Recycled Water System Conveyance System Alternatives (Northerly Portion). Precise alignments are subject to modification through the EIS/EIR process and final design.

Table 1: Alternative Alignments

<table>
<thead>
<tr>
<th>Alternative Alignment 1</th>
<th>Segment Number</th>
<th>Length (ft)</th>
<th>Width (ft)</th>
<th>Estimated Area (sq ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1,400</td>
<td>35</td>
<td>49,000</td>
<td>Twin Creek Channel</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6,220</td>
<td>34</td>
<td>211,480</td>
<td>Twin Creek Channel, Crossing Streets, Railroad Crossing</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11,320</td>
<td>34</td>
<td>384,880</td>
<td>Twin Creek Channel, Street Crossing</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5,600</td>
<td>25</td>
<td>140,000</td>
<td>Twin Creek Channel, Street Crossings, Perris Hill Park</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>10,660</td>
<td>41</td>
<td>437,060</td>
<td>Twin Creek Channel, Street Crossings, Highway SR-210 Crossing, East Twin Creek Spreading Grounds</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3,260</td>
<td>--</td>
<td>0</td>
<td>Waterman Basins</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>38,460</td>
<td>--</td>
<td>1,222,420</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative Alignment 2</th>
<th>Segment Number</th>
<th>Length (ft)</th>
<th>Width (ft)</th>
<th>Estimated Area (sq ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1,400</td>
<td>35</td>
<td>49,000</td>
<td>Twin Creek Channel</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>900</td>
<td>40</td>
<td>36,000</td>
<td>West Orange Show Road</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7,710</td>
<td>30</td>
<td>231,300</td>
<td>Arrowhead Avenue, Railroad Crossing</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1,370</td>
<td>65</td>
<td>89,050</td>
<td>West Rialto Avenue</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7,460</td>
<td>28</td>
<td>208,880</td>
<td>Sierra Way</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1,930</td>
<td>70</td>
<td>135,100</td>
<td>East Baseline Street</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1,590</td>
<td>70</td>
<td>111,300</td>
<td>East Baseline Street</td>
</tr>
<tr>
<td></td>
<td>17A</td>
<td>4,660</td>
<td>35</td>
<td>163,100</td>
<td>Crestview Avenue</td>
</tr>
<tr>
<td></td>
<td>17B</td>
<td>1,100</td>
<td>35</td>
<td>38,500</td>
<td>East 21st Street and Valencia Avenue</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>10,580</td>
<td>44</td>
<td>465,520</td>
<td>Valencia Avenue, Bridge over Highway 210</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>890</td>
<td>60</td>
<td>53,400</td>
<td>East 40th Street</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3,260</td>
<td>--</td>
<td>0</td>
<td>Waterman Basins</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>42,850</td>
<td>--</td>
<td>1,581,150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative Alignment 3</th>
<th>Segment Number</th>
<th>Length (ft)</th>
<th>Width (ft)</th>
<th>Estimated Area (sq ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1,400</td>
<td>35</td>
<td>49,000</td>
<td>Twin Creek Channel</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>950</td>
<td>40</td>
<td>36,000</td>
<td>West Orange Show Road</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7,710</td>
<td>30</td>
<td>231,000</td>
<td>Arrowhead Avenue, Railroad Crossing</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1,370</td>
<td>65</td>
<td>45,500</td>
<td>West Rialto Avenue</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7,460</td>
<td>28</td>
<td>212,750</td>
<td>Sierra Way</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1,930</td>
<td>70</td>
<td>66,500</td>
<td>East Baseline Street</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5,310</td>
<td>16</td>
<td>84,000</td>
<td>Waterman Avenue</td>
</tr>
</tbody>
</table>
Project Operations

Use of the Waterman Basins and East Twin Creek Spreading Grounds

The following parameters were evaluated for both recharge facilities to determine the maximum recharge potential: effective area, infiltration rate, and maintenance requirements. The total area of the recharge facility, or gross area, is the surface area of the parcels. The effective area is the surface area of the recharge facility available for storing and infiltrating water. The infiltration rate, expressed as feet per day (ft/day) is the spatially averaged rate at which surface water infiltrates on the wetted area of the recharge basins. The long-term infiltration rate was estimated to be 1.5 ft/day. While initial infiltration rates may be significantly higher at startup and for the first few months, the infiltration rate would decrease over time due to the deposition of fine-grained materials at the bottom of the basins. It is assumed that each facility would be offline for two months per year for maintenance activities (maintenance activities for the spreading grounds and the conveyance facilities will be specified and discussed in further detail in the EIS/EIR). Table 2 shows the estimated maximum recharge capacity for each basin.

Table 2: Estimated Recharge Capacity at the Waterman Basins and East Twin Creek Spreading Grounds

<table>
<thead>
<tr>
<th>Recharge Site</th>
<th>Site Area (acres)</th>
<th>Effective Area (acres)</th>
<th>Infiltration Rate 1 (ft/day)</th>
<th>Storage Capacity 2 (acre-ft)</th>
<th>Maximum Recharge Capacity 3 (acre-ft/day)</th>
<th>Maximum Recharge Capacity 3 (acre-ft/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterman Basins</td>
<td>230</td>
<td>70</td>
<td>1.5</td>
<td>105</td>
<td>105</td>
<td>32,000</td>
</tr>
<tr>
<td>East Twin Creek Spreading Grounds</td>
<td>170</td>
<td>93</td>
<td>1.5</td>
<td>180</td>
<td>139</td>
<td>42,100</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>163</td>
<td>--</td>
<td>285</td>
<td>244</td>
<td>74,100</td>
</tr>
</tbody>
</table>

1. This is the estimated average infiltration rate, expressed in feet per day, at which water will infiltrate to the subsurface.
2. For the Waterman Basins and East Twin Creek Spreading Grounds, storage capacity is the volume of water that can be stored at an elevation of 3 feet above bottom of basin.
3. This calculation is based on all recharge basins within the spreading facility being online about 300 days or 10 months per year. Annual maintenance of the recharge facility would occur during a 2-month period.

Source:

The proposed recycled water would discharge into these basins when storage capacity is available and not needed for flood control purposes. An agreement between the SBCFCD and the SBMWD that defines the operational requirements as described in the Draft EIS/EIR will have to be developed and executed.
A similar agreement was approved for the *Chino Basin Recharge Master Plan*. This agreement was established between the San Bernardino County Flood Control District, Inland Empire Utilities Agency, Chino Basin Water Conservation District, and Chino Basin Watermaster to govern the operation and maintenance of the Chino Recharge Basin facilities. The agreement states that the priority of use of capacity is first for flood control, second for recharge of native water, and third for recharge of supplemental water (i.e., imported water and recycled water). Each of the Parties of this agreement are given the sole authority to determine when their respective facilities are available for recharge of supplemental water and to release water or to order the cessation of the delivery of supplemental water to maintain the full flood control capacity of their facilities. It requires the preparation of a Conservation Plan with a schedule of “conservation pool elevations, or criteria that defines when water can be stored for conservation and when water in conservation must be released to restore the full flood protection capabilities of the basins or allow for facility maintenance and repair, etc.”\(^7\) This agreement, therefore, defines the parameters of the facilities’ operations. It is anticipated that a similar agreement would be required for the proposed Project.

The EIS/EIR will examine historical data showing the quantity of stormwater that has been captured in the Waterman Basins and East Twin Creek Spreading Grounds. In addition, the EIS/EIR will compare this information with a month-by-month breakdown of the potential recycled water recharge to show that the two purposes will not conflict.

Underground Retention Time

The recycled water would be retained underground in the aquifer for a minimum six-month period before it is extracted as a drinking water supply. Within three months of commencing operations, the Project would be required to demonstrate that the minimum two-month underground retention time to the closest downgradient drinking water well has been met. Evidence of the Project compliance with this requirement would be based on sample results at a monitoring well located or constructed along the flow path at a distance equal to at least three months underground travel time from the nearest downgradient drinking water well. The EIS/EIR will examine the methods that could be employed to evaluate the Project compliance, such as an examination of water quality changes, groundwater tracer studies, modeling, etc.

Diverting Discharge from the Santa Ana River

Currently the SBWRP treats approximately 22 mgd of wastewater to a secondary treatment standard. The plant provides treatment for effluent from the Cities of San Bernardino and Loma Linda, and the East Valley Water District. Secondary-treated effluent is conveyed offsite to the RIX Facility, where it is treated to tertiary standards and discharged to the SAR.

Project Phasing

There are two primary components of phasing with respect to project implementation. The first aspect is the reduction in the amount of water that would be discharged from the RIX facility to the SAR, in million gallons per day (mgd) by phase, through the year 2035, as shown in Table 3 below. The following phasing is conceptual, and may be modified through the EIS/EIR process and consultation with regulatory agencies and other stakeholders. As discussed below under Probable Environmental Impacts, SBWMD proposes an Adaptive Management Plan as part of the required Biological Assessment and

\(^7\) County of San Bernardino, Department of Public Works – Flood Control. (January 14, 2003). “Agreement for operation and maintenance of Facilities to Implement the Chino Recharge Basin Master Plan”. (Agreement No. 03-0083). Pg. 1, 3, and Attachment No. 1., Pg. 1-2.
regulatory permitting for the Project, to ensure that Project operations avoid or minimize potential impacts to the SAR and associated sensitive habitat and species.

The reduction in discharge is anticipated to occur over five phases, based on the expected need for this water to be recharged over time. The reduction in discharge also has implications for the potential impacts to the Federally-endangered Santa Ana Sucker (SASU), due to changes in the depth and flow characteristics of the SAR resulting from reduced discharge.

<table>
<thead>
<tr>
<th>Discharge Scenarios</th>
<th>Year</th>
<th>RIX Discharge (MGD)</th>
<th>RIX Discharge (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline<sup>1</sup></td>
<td>2012</td>
<td>34.3</td>
<td>53.0</td>
</tr>
<tr>
<td>Phase 1</td>
<td>2015</td>
<td>29.0</td>
<td>44.9</td>
</tr>
<tr>
<td>Phase 2</td>
<td>2020</td>
<td>24.8</td>
<td>38.4</td>
</tr>
<tr>
<td>Phase 3</td>
<td>2025</td>
<td>20.8</td>
<td>32.2</td>
</tr>
<tr>
<td>Phase 4</td>
<td>2030</td>
<td>17.0</td>
<td>26.3</td>
</tr>
<tr>
<td>Phase 5</td>
<td>2035</td>
<td>13.4</td>
<td>20.8</td>
</tr>
<tr>
<td>Zero<sup>2</sup></td>
<td>2012</td>
<td>6.1</td>
<td>9.5<sup>2</sup></td>
</tr>
</tbody>
</table>

Source: City of San Bernardino Municipal Water Department

Notes:¹ For the model, baseline discharge was based on average RIX discharge measured on October 18-19, 2012. Average discharge was approximately 53 cfs. MGD=million gallons per day; CFS=cubic feet per second. Annual RIX discharge has varied from 36 MGD in 2010 to 31.3 MGD in 2013.

² Provided for illustrative purposes. Zero discharge is based on zero discharge from RIX, but it is assumed the City of Rialto wastewater treatment plant will continue to discharge approximately 10 cfs to the Santa Ana River, resulting in an existing baseline of approximately 63 cfs for Santa Ana River discharge.

The second component of project phasing relates to the actual facilities improvements that would be needed to accommodate the recharge of the water diverted from the RIX facility into the Bunker Hill Basin. These improvements would include the following: increased water treatment capabilities; the pipes, pumps and reservoirs needed for the conveyance system that would transport water from the SBWRP to the Waterman Basins and the East Twin Creek Spreading Grounds; pipelines and associated improvements needed to distribute recycled water to direct use customers; and improvements at the Waterman Basins and East Twin Creek Spreading Grounds.

Improvements to increase water treatment capabilities would generally occur within the boundaries of the existing SBWRP plant site. Improvements for the conveyance system that would connect the SBWRP to the recharge facilities would largely need to be constructed in conjunction with the first phase, although development of some individual facilities (such as the installation of individual water pumps or storage reservoirs located at the north end of the system) may be provided in later phases when required to accommodate the increased conveyance volumes that would occur in the later phases of the Project. Improvements to the recycled water distribution system, all of which are expected to occur either within existing roadways or on the sites of direct use customers, would be provided incrementally over time as the need to serve individual customers arises. The identified improvements to the recharge basins would occur in the first phase. Potential improvements for inter-basin conveyance would be constructed depending on the timing for this product water delivery option.

Construction Activities

Project components would be designed and constructed in accordance with applicable provisions of the American Water Works Association (AWWA) Standards, California State Building Code (CBC), and the
Uniform Building Code (UBC). Components of the proposed Project would require general construction activities including grading, excavating, trenching, pipe installation, placement of backfill, and asphalt patching and the construction of reservoirs, pump stations, and other limited structural improvements. Nearly all of the construction would occur within existing public rights-of-way or easements within roadways or other developed areas. Depending on the conveyance system option selected, there would be some construction that would occur along East Twin Creek (within maintenance access areas) and along the east and northeast edges of the Waterman Basin.

Staging Areas

Construction would require, but is not limited to, the following equipment: crane, excavator, backhoe, front-end loaders, dump trucks, diesel generator, water trucks, flat-bed truck, compactors, double transfer trucks for soil hauling, concrete trucks, paving equipment (as needed).

Equipment and vehicle staging would be accommodated either at each construction site, or at a centralized staging area (such as the SBWRP, Waterman Basins or the East Twin Creek Spreading Grounds). Staging would be avoided within sensitive areas such as riparian or other habitats.

Construction hours and activities will be consistent with City of San Bernardino regulations and requirements as defined in their Municipal Code (Chapter 8.54, "Noise Control"), except for well drilling (monitoring) which may temporarily exceed allowable construction noise levels. In residential zones, construction would occur between the hours of 8:00 a.m. and 8:00 p.m., and in all other zones between the hours of 7:00 a.m. and 8:00 p.m.

Consideration of Project Alternatives

The SBMWD currently relies completely on groundwater from the Bunker Hill Groundwater Basin to meet the water supply needs of its service area. In the past, this approach has worked well and has allowed the SBMWD to have a very high level of control over its water resources with respect to reliability, cost certainty and water quality (since the entire water source is under the SBMWD’s control). However, this approach cannot be sustained, as the Bunker Hill Basin is presently in a condition of groundwater depletion and future demand is expected to increase over time. Approximately 5,000 acre-feet per year of the groundwater pumped by SBMWD must be offset by recharging State Water Project (SWP) water, and the amount of this recharge will increase in the future as the groundwater pumping by the SBMWD and other water purveyors increases. The supplemental water recharge required for SBMWD to meet future water demands could reach 15,000 to 20,000 acre-feet per year by 2025.

Alternatives to be evaluated in the EIS/EIR will focus on methods to meet future water demands in a manner consistent with the stated Purpose and Need. These alternatives are anticipated to include, but not be limited to:

1) **No Project Alternative (Conservation Only).** This Alternative will evaluate the impacts and water supply implications should SBMWD not proceed with this Project, including consideration of other available water supply options, and increased reliance upon water conservation;

2) **Reduced Scale Alternative (reduced diversion from SAR).** This Alternative will evaluate potential environmental impacts and water supply implications associated with a reduced scale project, such as a configuration delivering the equivalent of Phases 1-3 of the proposed Project;

3) Alternative Site(s) for recharge and conveyance facilities. This Alternative will evaluate potential alternative sites for water reclamation, potential alternative conveyance alignments, and potential alternative recharge basins;

4) In Lieu Alternative. This Alternative, described further below, evaluates the potential environmental impacts and water supply implications of meeting SBWMD’s increased water supply needs by reducing the proposed RIX diversion (thereby allowing increased discharge into the SAR), in exchange for a downstream agency or agencies transferring a corresponding amount of SWP water to SBMWD. This Alternative would have the net effect of reducing RIX diversion (increased discharge to SAR) in exchange for increased imported water. A “Hybrid Alternative” variation of this could include In Lieu along with a Reduced Scale Alternative.

5) Environmentally Superior Alternative

In Lieu Alternatives

Although there are myriad different methods that could be utilized to provide water “In-Lieu” of water under the SBMWD control, all such methods involve the transport and use of water from outside of the SBMWD service area. The Draft EIS/EIR will consider such “In-Lieu” approaches in the evaluation of alternatives to the proposed Project, including an alternative that would utilize a mix of CWF recharged/recycled water and In-Lieu imported water. In fact, one of the components of the base Project identified in the 2010 Petition for Change, the future connection of the RIX facility to the Chino Groundwater Basin, would support the conveyance of excess water that would otherwise be discharged to the SAR. Such water could then be exchanged for In-Lieu water from other sources.

In-Lieu alternatives to be considered may, at a minimum, include the following improvements:

- Improvements to the WRP that will maintain capacity, ensure compliance with regulations, and reduce operating costs;
- Improvements at the Waterman Basins and East Twin Creek Spreading Grounds to accommodate additional recharge flows; and
- Modifications to SWP turnout facilities to convey in-lieu water.

The evaluation of any Project Alternative would also need to consider the degree to which such alternative(s) would address the following key factors in a manner consistent with Purpose and Need defined above:

- **Source Reliability** - This is an especially critical factor given ongoing drought conditions, the conditions in the Sacramento and San Joaquin River Delta, and the future reliability of SWP supplies. A viable In-Lieu alternative would need to be as reliable as the proposed Project, including under dry year conditions. Appropriate arrangements with respect to water banking to provide balance between wet years and dry years may also be needed to ensure reliability. Another element of source reliability is potential vulnerability to regional conveyance infrastructure in the event of a major seismic event.

- **Cost Certainty** - Workable In-Lieu alternatives would be designed to secure fair and predictable water prices. Approaches that are not safeguarded against potential high cost increase in the future, such as those potentially due to energy costs, conveyance charges, and/or treatment requirements, would hinder the SBMWD’s ability to adequately serve its customers.

- **Water Quality** - If imported SWP water (which is relatively high in total dissolved solids) is utilized, potential disadvantages as compared to CWF water with respect to regulatory and/or treatment requirements would need to be offset. Reliance upon imported water also exposes
SBWMD and its customers to potential future adverse water quality conditions, dependent on source water quality and in-system water quality degradation throughout the conveyance system.

- **Regulatory Risk From Increased Discharge into the Santa Ana River** – The In-Lieu alternative would likely result in an SBMWD commitment to increased discharge from the RIX Facility into SAR. One of the benefits of the proposed Project is that by reducing the RIX discharge into the Santa Ana River, the SBMWD reduces its liability from future regulations that could result in more strict discharge requirements or limits. In-Lieu alternatives would need to include provisions that would offset such potential liability.

3.0 Probable Environmental Impacts

The EIS/EIR will describe the direct and indirect potentially significant environmental impacts of the proposed Project. The EIS/EIR will also evaluate the cumulative impacts of the Project when considered in conjunction with other related past, present, and reasonably foreseeable future projects. The probable environmental impacts of the proposed Project are as follows (for each potentially significant impact, the EIS/EIR will identify Project Design Features, existing regulations, mitigation measures and/or Project alternatives that could avoid, reduce or offset potential impacts):

- **Aesthetics:** Temporary construction-related impacts and long-term operational changes in scenic views or visual character of the Project area may occur. The EIS/EIR will address construction-related and operational impacts of SBWRP site improvements, conveyance facilities, and recharge basins, including light/glare effects at construction sites and above-ground facility security lighting. In addition, potential indirect effects will be discussed with respect to RIX discharge changes and effects upon downstream vegetation.

- **Agricultural and Forestry Resources:** The potential for the Project to: convert farmland to non-agricultural uses; conflict with land under Williamson Act Land Conservation Contracts or agricultural zoning, as well as the potential loss or conversion of forestland or timberland will be addressed in the EIS/EIR.

- **Air Quality:** Temporary and short-term increases in pollutant emissions and objectionable odors associated with construction activities, and long-term increases in pollutant emissions during project operation (including stationary and mobile-source emissions) may occur. The Project facilities would be located near multiple sensitive receptor sites, including school sites and residential communities, and development of the proposed Project could result in pollutant emissions from short-term construction activities. The EIS/EIR will quantify potential air quality impacts and identify appropriate mitigation measures to reduce exposure of sensitive receptors to below substantial pollutant concentrations. In addition, a localized analysis will be performed in accordance with SCAQMD Localized Significance Thresholds (LST) methodology for construction and operations (stationary sources) for carbon monoxide (CO), nitrous oxides (NOx), particulate matter less than 10 microns in aerodynamic diameter (PM10), and particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5).

- **Biological Resources:** Long-term operational impacts to the Federally-listed Santa Ana sucker (SASU) may result from the phased flow reduction within the Santa Ana River (SAR) that would occur as part of the Project. As such, a Low Flow Study is being prepared to evaluate these potential impacts and provide mitigation. An Adaptive Management Plan is also being prepared pursuant to the findings of the Low Flow Study. In addition, areas downstream of the RIX Facility are within Critical Habitat for the Santa Ana sucker (SASU), least Bell’s vireo
(LBV), and southwestern willow flycatcher (SWWF), as identified through USFWS Critical Habitat Mapper. The EIS/EIR will include a Biological Assessment (BA) with appropriate habitat assessments and sensitive species surveys, as well as consultation and coordination with regulatory agencies and other stakeholders, including Section 7 consultation with the U.S. Fish and Wildlife Service and pre-application permit coordination with California Department of Fish and Wildlife and the Regional Water Quality Control Board. The BA will also address potential impacts to sensitive habitat and species associated with SBWRT site improvements, conveyance facilities, and recharge basins.

- **Cultural Resources**: Project construction could impact portions of historic properties which are adjacent to the existing roadways. In addition, potentially significant archaeological and/or paleontological resources could be inadvertently unearthed or discovered during construction. SBMWD, through Reclamation, will initiate Section 106 consultation with the State Historic Preservation Officer as part of the federal consultation process. As such, the proposed Project’s potential impacts on archaeological, paleontological, and historic resources will be analyzed in the EIS/EIR.

- **Geology and Soils**: Multiple geological conditions exist within the Project area that warrant thorough geological and soils analysis. The Waterman Basins and the East Twin Creek Spreading Grounds are located within an Alquist-Priolo Earthquake Fault Zone (San Andreas and San Jacinto Faults), as are the far northerly portions of each of the Alternative Alignments of the conveyance pipelines. As such, it is anticipated that the proposed Project could potentially expose people (i.e., workers) or structures to geologic hazards. The Alquist-Priolo Earthquake Fault Zone triggers the requirement for geologic analysis prior to development to determine the potential for damage from earthquake faults to occur, to ensure that structures are not built upon active faults and/or that structures are engineered to appropriate seismic building standards.

In addition, the potential for liquefaction and landslide is considered “high” at each of the Project component locations or at some point along their alignments. Also, the Project site, particularly the Waterman Basins and East Twin Creek Spreading Grounds, is located in an area that is generally subject to erosion, runoff, and sedimentation due to topography, hydrologic, and geological conditions.

Due to the critical nature of the proposed facilities, impacts related to liquefaction and landslide, erosion, and earthquake hazards (fault rupture, displacement, and strong seismic ground shaking) along the San Andreas Fault will be further analyzed in the EIS/EIR.

Potential soil erosion or loss of topsoil during construction and potential loss of mineral resources will be evaluated in the EIS/EIR.

- **Greenhouse Gas Emissions**: Temporary construction activities associated with the proposed Project could result in emissions of greenhouse gasses including CO₂, N₂O, and CH₄ emissions. Water treatment processes, including Reverse Osmosis, utilize substantial energy, although only slightly greater than that of imported water. However, due to the existing high energy demands from the UV disinfection process at the RIX facility, operation of the proposed Project would result in decreased energy demands at RIX since it would reduce the quantity of

water being disinfected through the UV process. The EIS/EIR will quantify potential greenhouse gas emissions from construction and operational activities, evaluate potential impacts, and identify appropriate mitigation measures, where necessary, to avoid and/or minimize pollutant emissions.

- **Hazards and Hazardous Materials**: Potential spills of, and exposure to, hazardous materials during construction may occur with Project implementation, due to the use of various products that could contain materials classified as hazardous (including solvents, adhesives, cements, paints, cleaning agents, and degreasers), as well as fuels such as gasoline and diesel used in heavy equipment and other construction vehicles. Operation of the proposed SBWRP improvements and recycled water recharge facilities includes the use of hazardous chemicals. In addition, based on CalEPA data sources, there are multiple hazardous materials sites immediately adjacent to the Project area, particularly along the proposed alignments of the conveyance pipelines. Therefore, additional analysis of the anticipated materials sites to hazardous waste and materials will be provided in the EIS/EIR. The Project’s potential to impair implementation of an adopted emergency response plan or emergency evacuation plan will also be evaluated in the EIS/EIR.

- **Hydrology and Water Quality**: Long-term hydrology and water quality impacts may result with Project implementation, as discussed below:

 Water Quality: During operation, the Project will generate a brine waste stream (i.e., salts). The disposal route anticipated for SBWRP brine would be the Inland Empire Brine Line, which has an existing connection point at the SBWRP. While SBWMD in 1993 purchased 2.5 mgd of capacity in the Inland Empire Brine Line and had the pipeline extended to the SBWRP, it is anticipated that the SBMWD’s Inland Empire Brine Line capacity may be a constraint on the advanced treatment capacity at the SBWRP. As such, the EIS/EIR will evaluate the Project’s capacity requirements and determine mitigation to reduce potentially significant impacts related to the potential exceedance of SBMWD’s Inland Empire Brine Line capacity.

 Water recycling criteria provided in the California Code of Regulations (CCR) Title 22 establish standards for the water quality of, or levels of constituents in, recycled water and provide criteria for treatment processes, distribution, and use areas to ensure the use of recycled water is safe in terms of public health. The EIS/EIR will describe the recycling criteria expressed in the CCR and the Basin Plan (as well as proposed CDPH groundwater recharge regulations) and their relevance to the Project, and will include contingency planning, sampling and monitoring, water quality, and retention time requirements, in addition to the anticipated geohydrology that would result from operation of the groundwater recharge.

 The EIS/EIR will also address water quality criteria established through the 1969 Western Judgment. The Riverside Narrows and Prado Dam, which are located downstream of the RIX Facility where the proposed reduction would occur, are locations with surface water flow and surface water quality requirements stipulated by the Judgment. The water quality objectives are set forth by the Santa Ana Watershed Water Quality Control Plan (i.e., Basin Plan). The EIS/EIR will describe these objectives and their relevance to the proposed Project. The EIS/EIR will also evaluate the Project’s potential to impact groundwater quality. Until such analysis is provided in the EIS/EIR, impacts to water quality standards and waste discharge requirements are considered potentially significant.
Groundwater supplies: The Project’s effect on surface water availability in the SAR and groundwater pumping rights in the upper SAR Watershed will be analyzed in the EIS/EIR, including an analysis of any related mitigation measures, if necessary. In addition, the potential cumulative effect of recharge of recycled water in these basins in combination with imported water recharge and stormwater capture will be evaluated in the EIS/EIR.

Drainage patterns: The Project proposes to use the existing Waterman Basins (an existing off-creek conservation facility connected to the Waterman Canyon Creek) and East Twin Creek Spreading Grounds (a flow-through facility on East Twin Creek) for recharge of recycled water. Discharging recycled water would alter the quantity and flow of water in these facilities. As such, site improvements will be needed at their various outlet structures. The EIS/EIR will determine if impacts associated with an increase in erosion or siltation would occur, and will also analyze the amount and timing of supplemental water that could be recharged without interference with flood control functions. Further analysis of hydrological impacts will be conducted in the EIS/EIR.

100-year flood hazard: The Project site (i.e., the improvements within the Waterman Basins and East Twin Creek Spreading Grounds) is partially located within a 100-year flood hazard area, as delineated by the Federal Emergency Management Agency (FEMA). While it is anticipated that the proposed improvements would accommodate the 100-year flood flows, potentially significant impacts are assumed until additional analysis of impacts associated with redirection of flows within the 100-year floodplain is provided in the EIS/EIR.

Inundation by mudflow: A large swath of the northern portion of the City is designated as a Very High Fire Hazard Severity Zone (VHFHSZ), which lends itself to an increased potential for sediment/debris concentrations following storm events. Following a mudflow event, the basins/spreading grounds may be compromised until they are cleared, and recycled water would need either to be conveyed to direct users or discharged to the RIX Facility. The EIS/EIR will more closely examine past occurrences of mudflows along the Waterman Canyon Creek and East Twin Creek, and will discuss the potential for hyper-concentrated sediment flows to occur.

- Land Use and Planning: Portions of the SAR downstream of the RIX Facility, where a reduction in discharges is proposed, are either covered by the Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) or the Santa Ana Sucker (SASU) Conservation Program for the SAR. The Santa Ana Sucker Conservation Program has been in effect since 2000 and was developed by the Santa Ana Watershed Project Authority (SAWPA) in cooperation with the U.S. Fish and Wildlife Service (USFWS). It is being implemented by SAWPA and eight other participants, including SBMWD. The RIX Facility falls within the boundaries of the Santa Ana Sucker Conservation Program. SBMWD, as a participant in this program, is well aware of the presence of essential habitat for SASU downstream of the RIX Facility. As such, the Project has the potential to result in a significant impact to the existing conservation program. The EIS/EIR will address other related land use and planning programs, including consistency with adopted water supply plans, and land use/planning implications of proposed improvements at the SBWRP, recharge basins and related facilities.

- Noise: Noise associated with Project construction would occur over the short term. Construction noise for the proposed facilities would be generated by construction equipment, including trucks, backhoes, excavators, and other associated equipment, and may impact nearby sensitive receptors (such as schools and residences). Construction of the conveyance...
pipeline would involve minor construction (trenching in paved and unpaved areas) that would be very limited in duration. Operation of the proposed SBWRP improvements would result in noise from the new pump stations. Noise from the conveyance pipelines, and recharge sites would be nearly non-existent. The EIS/EIR would include an evaluation of potential noise impacts, focusing on short-term construction noise (including truck hauling) and groundborne vibration, and long-term operations related to noise from the pump stations, and would specifically address impacts associated with the Project on noise-sensitive land uses both within the Project site and along existing offsite roadways where traffic would be generated.

- **Public Services (Including Parks):** The Project proposes treatment improvements to the existing SBWRP and a conveyance system to the Waterman Basins, East Twin Creek Spreading Grounds, and customers for direct use applications. It does not include housing and therefore, would not increase the demand for parks. Direct use sites, including parks which presently operate independent of recycled water supplies, would need to implement site improvements to comply with reuse regulations. Park sites using recycled water would be required to install dual plumbing and may need to control recycled water onsite through drainage improvements. These improvements would require construction activities which may generate potentially significant environmental impacts. Because these improvements are included in the Project Description, their impacts will be evaluated further in the EIS/EIR. In addition, potential project impacts with respect to fire and police protection, schools and other public facilities would also be evaluated in the EIS/EIR.

- **Socioeconomics (Including Population, Employment and Housing):** Temporary and permanent increase in local/regional employment, increased need for housing or potential displacement of housing or persons, and inducement of substantial population growth associated with project implementation will be evaluated in the EIS/EIR.

- **Transportation/Traffic:** The Project is not considered a trip-generating project; however, temporary construction-related traffic impacts relative to levels of service standards and inadequate emergency access may occur. Therefore, further analysis will be conducted in the EIS/EIR.

- **Utilities and Service Systems:** The proposed Project would not “require” or “result” in the construction of new water or wastewater treatment facilities or expansion of existing facilities. Rather, the Project, itself, proposes various improvements to treat, convey and recharge recycled water, and would help offset future expansion needs of the RIX tertiary treatment facility. The Project would include proposed stormwater drainage facility improvements including rehabilitating or replacing the outlet valves from each cell (i.e., sub-basin) within the Waterman Basins, repairing the internal berms between cells within the East Twin Creek Spreading Grounds, adding level transmitters to each cell and telemetry, performing weed abatement, and adding erosion control near the outlet of the recharge distribution pipeline. In addition, park sites using recycled water would need to control recycled water onsite through drainage improvements. The EIS/EIR will include a comprehensive review of existing conditions, potential impacts related to these drainage facilities, and would recommend mitigation measures to reduce the level of significance, as necessary.

With regard to wastewater treatment requirements, SBMWD will require multiple permits from the Santa Ana RWQCB to implement the proposed Project. Permits will include requirements from the California Department of Public Health and compliance with the Santa
Ana Watershed Water Quality Control Plan (Basin Plan). RWQCB issues two main types of permits to agencies to operate wastewater treatment plants: Waste Discharge Requirements (WDR) and/or Water Recycling Requirements (WRR). WDRs are issued to regulate the discharge of wastes to waters of the State. WRRs regulate reuse and its potential impact to regional water quality that affect the underlying groundwater aquifer. Another type of recycling permit issued by the RWQCBs is a Master Recycling Requirements (MRR) permit. MRR permits allow agencies to distribute recycled water to various users without separate user recycling requirements from the RWQCB. If the RWQCB determines that a proposed recycled water reuse project has the potential to impact public health, safety, or welfare, it will consult with the CDPH and consider its recommendations when issuing WRRs and MRRs. It is anticipated that the proposed Project would obtain such permits to meet the RWQCB’s regulatory requirements and would comply with the future criteria and guidelines established by the RWQCB and CDPH through the permitting process. Further details regarding permit requirements for wastewater treatment will be analyzed in the EIS/EIR.

In addition, potential project impacts associated with landfill capacity and compliance with federal, state and local statutes and regulations related to solid waste will also be addressed in the EIS/EIR.

- **Environmental Justice:** Due to the presence of minority and low-income populations in the Project area (according to the U.S. Census Bureau 2010 Census\(^\text{10}\)), disproportionately high and adverse effects on minority or low-income populations may occur with Project implementation, the analysis of which is required by NEPA. The EIS/EIR will conduct a demographic analysis of these populations both within proximity to the proposed Project and living in other areas that would be serviced by the Project, provide graphical representations of their locations, and evaluate and provide mitigation for any potential disproportionately high and adverse impacts to minority and low-income populations.

- **Growth Inducement:** Potential growth-inducing impacts may result from project construction, including substantial new temporary employment opportunities.

These issue areas will be discussed further in the EIS/EIR, and mitigation measures will be recommended wherever reasonable and feasible to reduce potentially significant impacts.

4.0 Scoping Meeting

A public scoping meeting will be held on **November 19, 2014**, at two different times for the convenience of interested parties - one from **2 to 4 PM** and one from **6 to 8 PM** (it is only necessary to attend one of the scoping meetings, as they will have the same information and purpose).

<table>
<thead>
<tr>
<th>Scoping Meeting Information</th>
<th>San Bernardino Valley Municipal Water District</th>
</tr>
</thead>
</table>
| Wednesday, November 19th, 2014 2-4 PM and 6-8 PM | 380 East Vanderbilt Way
San Bernardino, CA 92408
Phone: (909) 387-9200
www.sbvmwd.com |

The scoping meeting will include a brief presentation regarding the proposed Project, followed by an open house format workshop with information stations addressing various aspects of the Project, Environmental Issues, and the Process. Attendees will be provided an informational packet, will have the opportunity to ask questions at each workshop station, and will be provided with a comment card to submit to SBMWD prior to the close of the public review period.

If special assistance is required to participate in the public scoping meetings, please contact us as far in advance as possible to enable SBMWD to secure the needed services (contact information is provided below). If a request cannot be honored, the requestor will be notified. A telephone device for the hearing impaired (TDD) is available at 916-989-7285.

5.0 Comments

This NOP is being circulated for a 30-day public comment period, beginning on November 6, 2014, and ending on December 8, 2014. Written or oral comments on the proposed content and scope of the EIS/EIR can be provided at the public scoping meeting, or written comments may be provided directly to Reclamation or SBMWD. Comments must be received no later than 5:00 p.m. on December 6, 2014. Agencies that will need to use the EIS/EIR when considering permits or other approvals for the proposed Project should provide the name of a contact person, as well as any specific requirements or recommended mitigation measures or alternatives necessary to satisfy the agency’s respective permit/approval process. Comments provided by e-mail should include the name and address of the sender. Please send all written and/or e-mail comments to one of the following:

John A. Claus
Director of Water Reclamation
City of San Bernardino Municipal Water Department
399 Chandler Place
San Bernardino, CA 92408
909-384-5108
John.Claus@sbmwd.org

Before including your name, address, telephone number, e-mail address, or other personal identifying information in your comment, please be aware that your entire comment, including your personal identifying information, may be made publicly available at any time. While you can request in your comment that your personal identifying information be withheld from public review, Reclamation and SBMWD cannot guarantee that this will be possible.

All comments received during the public comment period will be considered and addressed in the EIS/EIR, which is anticipated to be available for public review in mid 2015.
CLEAN WATER FACTORY PROJECT
SBMWD Service Area and Groundwater Basins

Exhibit 1

Source: ESIR Base Map Imagery, Recycled Water Planning Investigation Report, Wildermuth 2010, SAWPA
This page intentionally left blank.
This page intentionally left blank.