Contents

Summary

Chapter 1 Purpose and Need .. 1
 Purpose and Scope of Study .. 1
 Description of the Area .. 1
 History ... 2
 Salinity Concentration Problems 3
 Water Level Problems .. 4
 Authority ... 5
 Participants .. 6
 Relationship to Other Projects 7

Chapter 2 Alternative Development Process 9
 Public Involvement .. 10
 Development Process .. 10
 Target Salinity: 40 ppt 11
 Target Water Surface Elevation: - 232 feet m.s.l 11
 Proven Technology ... 12
 Salinity Model ... 13
 Evaporation Rates ... 13
 Precipitation Rate .. 14
 Drainage to the Sea ... 14
 Salinity and Sea Elevation Goals 15
 Model Behavior .. 15
 Cross-Reference Table to 1997 Report 16

Chapter 3 Costs of the Alternatives .. 19

Chapter 4 Diked Impoundment Alternatives 25
 Description of the Concept 25
 Background .. 26
 Diked Impoundment Alternatives 27
 Static Dike Design .. 31
 Seismic Dike Design ... 34
 Earthfill Material Sources 38
 Dike Construction Schedule 38

Chapter 5 Pump-Out / Pump-In Alternatives 39
 Salinity and Water Surface Level Interaction 39
 Design Considerations ... 40
 Pump-Out / Pump-In Water Conveyance Functions 41
 Water Import Assumptions 41
 Power Recovery Potential 42
Contents (cont.)

Chapter 5 Pump-Out / Pump-In Alternatives (continued)

Design Considerations (continued)
- Saline Water Concerns .. 43
- Pipelines Only Design 43
- Type of Pipe .. 44
- Discarded Components 44
 - Evaporation Lakes and Ponds 44
 - Groundwater for Salton Sea Restoration 45
- Pipeline Routes .. 48
- Pump-In Sources .. 49
- Pump-Out Locations ... 51
- Evaporation Ponds at Palen Dry Lake 52
- Complete Designs ... 52
- Similar Designs .. 56

Chapter 6 Water Treatment Alternatives .. 57
- Reverse Osmosis Desalting Plant With Pump-Out / Pump-In ... 57
 - Analyses .. 58
 - Pilot Plant .. 59
 - Salinity and Elevation of the Sea 60
 - Conclusion .. 61
- Solar Salt Gradient Pond / MED Desalting Plant
 - With Pump-In / Pump-Out 61
 - Proposal Description 61
 - Analyses .. 63
 - Pilot Plant .. 64
 - Salinity and Elevation of the Sea 65
 - Conclusion .. 65

Chapter 7 New Combination Alternatives 67
- Solar Pond / Shipping Channel / Canals / Desalting Facility . 67
- Gulf of California Pump-In / Pump-Out / Diking / Treating
 - Inflows ... 68
- Phased Approach—Phase One: Salt Stabilized,
 Phase Two: Pump-In Later 68
- Salt Concentrating Ponds 69
- South End Off-Shore Dike 70

Chapter 8 Alternatives Considered for Elimination 71
- Original 54 Alternatives 71
- New Alternatives ... 87

Chapter 9 Analysis of Effectiveness ... 95
- Pump-Out / Pump-In Alternatives—Salinity Model Results 95
- Diked Impoundment Alternatives—Salinity Model Results 98

Bibliography .. 103
Tables

1 List of alternatives and cross-reference location 17
2 Preappraisal costs for the Salton Sea restoration 20
3 Basins capable of supplying 30,000 acre-feet annually for 20 years .. 46
4 Pipeline length and maximum elevation achieved, with discharge and pipe size 53
5 Pump-out / pump-in alternatives simulation results 97
6 Diked impoundment alternatives simulation results 99

Figures

1 Historical salinity and elevation through time 5
2 Pipeline field costs as a function of discharge flowing in one direction .. 21
3 Construction field costs are displayed on the horizontal axis and the annual costs of operation, maintenance, repair, and energy on the vertical axis. ... 22
4 The same field costs and operation, maintenance, replacement, and energy costs as in figure 3 are displayed on the horizontal and vertical axis, but only for the lower cost alternatives—a small portion of those in figure 3. ... 23
5 The construction field cost decreases as the target salinity increases ... 24
6 Location of 30-, 40-, and 50-square-mile impoundments 28
7 Location of 47- and 127-square-mile and phased impoundments ... 29
8 Cross sections show different foundation elevations in Sea bottom .. 33
9 Salton Sea area with recorded seismic events follows 34
10 Map of earthquakes in southern California with a magnitude 4.5 and greater follows 34
11 Cross section showing earthquake design 36
12 Sketch shows plan earthquake design 37
13 Pipeline routes to and from Salton Sea follows 48
14 Sea salinity at various pump-out rates in various years in the future ... 55
15 Reverse osmosis desalting plant with pump-in / pump-out 57
Figures (cont.)

16 Salinity model results of reverse osmosis desalting plant with 170,000-acre-foot pump-out and 60,000-acre-foot pump-in at 0.45 ppt with 1.346-million-acre-foot drainage inflow at 2.8 ppt 60
17 Solar salt gradient pond / MED desalting plant with pump-in/pump-out 62
18 Salinity model results of solar salt gradient pond / MED desalting plant with 58,600-acre-foot desalted replacement water at 20 ppm with 1.346-million-acre-foot drainage inflow at 2.8 ppt 65

Alternatives mentioned in figure 19 and later are the alternative numbers shown on table 2; all graphs follow page 101

19 Baseline conditions, no pump-out or pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
20 Alternative 1 water exchange from Camp Pendleton 700,00-acre-foot pump-out with 600,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
21 Alternative 4 water exchange from Point Loma at 1.75 ppt—250,000-acre-foot pump-out with 153,000-acre-foot replacement with 1.346-million-acre-foot drainage inflow at 2.8 ppt
22 Alternative 5 water exchange from Hyperion at 0.925 ppt—250,000-acre-foot pump-out with 153,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
23 Alternative 6 water exchange from Yuma at 4 ppt—250,000-acre-foot pump-out with 153,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
24 Alternative 11 water exchange at Camp Pendleton at 35 ppt—400,000-acre-foot pump-out with 303,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
25 Alternative 14 water exchange at Point Loma at 1.75 ppt—170,000-acre-foot pump-out with 73,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
26 Alternative 15 water exchange at Hyperion at 0.925 ppt—170,000-acre-foot pump-out with 73,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt
Figures (cont.)

27 Alternative 16 water exchange at Yuma at 4 ppt—170,000-acre-foot pump-out with 73,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt

28 Alternative 21 water exchange with pump-out only—100,000-acre-foot pump-out with 1.346-million-acre-foot drainage inflow at 2.8 ppt

29 Conservation baseline 1.0-million-acre-foot drainage inflow at 3.5 ppt

30 Alternative 23 water exchange with conservation—205,000-acre-foot pump-out with 405,000-acre-foot pump-in at 4 ppt with 1.0-million-acre-foot drainage inflow at 3.5 ppt

31 Variable impoundment at 7.83-percent surface area or 30 square miles with 1.346-million-acre-foot drainage inflow at 2.8 ppt

32 48-square-mile impoundment; pump-back activated to maintain Sea at 35 ppt with 1.346-million-acre-foot drainage inflow at 2.8 ppt

33 142-square-mile impoundment; pump-back activated to maintain Sea at 35 ppt with 1.346-million-acre-foot drainage inflow at 2.8 ppt

34 Variable impoundment at 7.83-percent surface area or 30 square miles with 1.0-million-acre-foot drainage inflow at 3.5 ppt

35 48-square-mile impoundment with water conservation with 1.0-million-acre-foot drainage inflow at 3.5 ppt

36 142-square-mile impoundment; pump-back to maintain Sea at 35 ppt with 1.0-million-acre-foot drainage inflow at 3.5 ppt