Appendix A

CRSS Model Documentation

This appendix describes the reservoir operating rules and related data used in Reclamation's Colorado River Simulation System (CRSS), as implemented in the RiverWareTM modeling system.

Table of Contents

A.1	Backgro	ound A	1		
A.2	Description of the Model A-2				
A.3	Initial Reservoir Conditions				
A.4	Reservo	oirs Upstream of Lake PowellA	3		
A.5	Lake Po	owell OperationA	5		
А	.5.1 Lal	ke Powell Inflow ForecastA	5		
А	.5.2 Jan	uary through July OperationA	6		
Α	.5.3 Au	gust through December OperationA	7		
А	.5.4 602	2(a) Storage Requirement A	-8		
А	.5.5 Pre	edicting End-of-Water Year Volumes of Lake Powell and Lake Mead A-	10		
A	.5.6 Be	ach/Habitat-Building FlowsA-	10		
А	.5.7 Mi	nimum Objective ReleaseA-	11		
A	.5.8 Eq	ualization of Lake Powell and Lake MeadA-	12		
A	.5.9 Wa	ater Year Releases When Equalization Does Not ApplyA-	15		
A.6	Lake M	ead OperationA-	19		
А	.6.1 Lal	ke Mead/Hoover Dam Flood Control A-2	20		
Α	.6.2 Lo	wer Basin Surplus Strategies	23		
Α	.6.3 Lo	wer Basin Shortage Strategies A-2	25		
А	.6.4 Lal	ke Mead Storage and Delivery of Conserved System and/or			
	No	on-system WaterA-2	30		
A.7	Summar	ry Comparison of Lake Powell and Lake Mead OperationsA-	30		
A.8	Lake M	ohave and Lake Havasu OperationsA-2	30		
A.9	Energy	Generation	30		
Α	.9.1 Gle	en Canyon DamA-2	30		
Α	.9.2 Ho	over DamA-2	31		
А	.9.3 Da	vis DamA-:	32		
А	.9.4 Pai	rker DamA-:	32		
A.10	Reservo	oir EvaporationA-:	32		
A.11	Model I	nput and SimulationA-2	33		
A.12	Model U	Uncertainty	34		
A.13	Referen	cesA-:	34		

List of Tables

Table A-1	Initial Reservoir Conditions (End-of-Calendar Year 2007 Forecast)
Table A-2	Release Constraints for Reservoirs Upstream of Lake Powell A-4
Table A-3	Weights for Inflow Forecast for Reservoirs Upstream of Lake Powell
Table A-4	Average Natural Inflows for Reservoirs Upstream of Lake Powell (kaf) A-4
Table A-5	Lake Powell Inflow Forecast Regression Equation Coefficients A-6
Table A-6	Lake Powell January through July Operation Weights and Resulting Fractions
Table A-7	Lake Powell August through December Operation Weights and Resulting Fractions
Table A-8	Lake Powell Release Pattern and Resulting Fractions No Action AlternativeA-12
Table A-9	Lake Powell Equalization Elevation Basin States Alternative
Table A-10	Lake Powell Release Patterns and Resulting Fractions Basin States Alternative
Table A-11	Lake Powell Release Patterns and Resulting Fractions Water Supply Alternative
Table A-12	Lake Powell Release Patterns and Resulting Fractions Reservoir Storage Alternative
Table A-13	Lake Mead January through July Forecast Error
Table A-14	Lake Mead Flood Control Release Levels
Table A-15	Lake Mead Flood Control Required Storage Space
Table A-16	Lake Mead Flood Control Maximum Creditable Storage Space A-22
Table A-17	Level 1 Shortage Trigger Elevations
Table A-18	Modeling Assumptions for Distribution of Stage 1 Shortages A-27
Table A-19	Modeling Assumptions for Distribution of Stage 2 Shortages No Action Alternative
Table A-20	Monthly Evaporation Coefficients for Lake Powell and Lake Mead A-33
Table Att. A-1	Comparison of Alternatives – Lake Powell Att. A-1
Table Att. A-2	Comparison of Alternatives – Lake Mead Att. A-2
Table Att. B-1	Lake Powell Elevation to Storage Volume and Surface Area Relationships Att. B-1
Table Att. B-2	Lake Mead Elevation to Storage Volume and Surface Area Relationships Att. B-6

List of Attachments

Attachment A:	Summary Comparison of Lake Powell and Lake Mead Operations Under the No Action and the Action Alternatives Att. A-1
Attachment B:	Elevation, Capacity and Surface Area Relationships for Lake Powell and Lake Mead Att. B-1

This page intentionally left blank.

A.1 Background

Long-term policy and planning studies on the Colorado River have typically used computer modeling results from Bureau of Reclamation's (Reclamation) Colorado River Simulation System (CRSS). Developed in the 1980's as a Fortran-based modeling system, CRSS originally ran on a Cyber mainframe computer. CRSS modeled twelve major reservoirs and approximately 115 diversion points throughout the Colorado River Upper Basin and Lower Basin on a monthly time step. A major drawback of the Fortran-based CRSS was that the operating policies or rules were hardwired into the modeling code, making modification of those policies difficult.

Based on the need to initiate surplus and shortage studies for the Lower Basin in the early 1990s, Reclamation developed an annual time step model, CRSSez, implemented in Visual Basic (Bureau of Reclamation 1998). CRSSez primarily modeled the operation of Lake Powell and Lake Mead, representing the reservoirs upstream of Lake Powell as one aggregate reservoir, and the effect of reservoirs downstream of Lake Mead as part of the water demand from Lake Mead. CRSSez was used in the Interim Surplus Criteria Environmental Impact Statement (EIS) process to develop a model, and evaluate a range of alternatives.

In 1994, Reclamation began a collaborative research and development program with the University of Colorado and the Tennessee Valley Authority with the goal of developing a general-purpose modeling tool that could be used for both operations and planning on any river basin. This modeling tool, known as RiverWareTM, is now being used by Reclamation's Upper and Lower Colorado Regions for both planning and operations (Fulp 1999). A major advantage of RiverWareTM is that the operational policies or rules are no longer hardwired into the modeling code (Zagona et al. 2001). The user expresses and prioritizes the rules through the RiverWareTM graphical user interface, and RiverWareTM then interprets the rules when a simulation is performed. Multiple rule sets can be used to perform different simulations using the same model and this provides the capability for efficient "what-if" analysis with respect to different policies.

Reclamation replaced the original CRSS model with a new model implemented in RiverWareTM in 1996. The new model has the same spatial and temporal resolution, uses the same basic input data (hydrology and consumptive use schedules), and uses the same physical process algorithms as the original CRSS. A rule set was also developed to mimic the policies contained in the original model. Comparison simulations were made between the original CRSS and the new model and rule set, with typical differences of less than 0.5 percent (Reclamation 1996).

Since 1996, enhancements to CRSS have consisted of developing new rule sets to reflect current operational policy as well as investigating and improving, where necessary, the physical process methodologies. A team of Reclamation engineers from the Upper and Lower Colorado Regions has been established for these purposes and continues to assess the need to further enhance CRSS to reflect new operational policies.

In 2005 a policy-screening model, CRSS-Lite was developed to replace CRSSez (Reclamation 2005). CRSS-Lite was developed in RiverWare[™] and preserves the complexity and accuracy of CRSS with a significantly shorter model execution time, an advantage over CRSSez. CRSS-Lite was used extensively to evaluate and compare a multitude of operational strategies and alternatives in this EIS.

A.2 Description of the Model

In summary, twelve Upper Basin and Lower Basin reservoirs are modeled: Fontenelle, Flaming Gorge, Starvation, Taylor Park, Blue Mesa, Morrow Point, Crystal, Navajo, Powell, Mead, Mohave, and Havasu in CRSS. Critical to this EIS was the allocation of shortages, which required breaking out several of the approximately 115 modeled diversions (demands and return flows) throughout the basin that had been aggregated in the original CRSS. The hydrologic "natural" inflows (flows corrected for upstream regulation and consumptive uses and losses) at 29 inflow points throughout the basin were also used from the standard CRSS hydrology data set covering the period 1906–2005.

A.3 Initial Reservoir Conditions

The first year considered for the interim period of the proposed federal action is 2008. Since the initial modeling was performed in 2006, some projection of Colorado River system conditions was need. In order to establish the reservoir starting conditions for CRSS modeling, Reclamation's 24-Month Study model is used to project the reservoir storage conditions as of end-of-calendar year 2007. This process inputs the storage conditions at the time the modeling is performed and adds to that several assumptions including estimates of snow pack and run-off for the intervening period (the period between when the model is run and December 31, 2007).

The hydrologic modeling that was performed and used in the analyses for the Draft EIS was undertaken in the fall of 2006 and used the August 2006 24-Month Study. For the Final EIS, more current estimates of inflow to Lake Powell in 2007 were available and these differed somewhat from the original assumptions that were used in the modeling for the Draft EIS. The lower inflow projections reflected the effects of the continued drought in the Colorado River Basin (which began in 2000). In order to provide the most current information available for the Final EIS, the alternatives were remodeled using the latest available inflow projections. Using this latest inflow forecast in the June 2007 24-Month Study provides different starting conditions for Lake Powell and Lake Mead from those used in the Draft EIS and shows that the projected Lake Powell and Lake Mead elevations for January 1, 2008 would be approximately 20 feet and one foot lower, respectively, than the starting elevations that were used in the Draft EIS.

Table A-1 provides the initial conditions for the Upper Basin and Lower Basin reservoirs that were used in the CRSS simulations for the Draft EIS and the Final EIS. Since the simulation begins in January 2008, these values reflect the end-of-calendar year 2007 reservoir elevations, as projected by the August 2006 24-Month Study and June 2007 24-Month Study, respectively.

	Initial Reservoir Conditions (End-of-Calendar Year 2007 Forecast)					
	Draft EIS Init	ial Conditions ¹	Final EIS Initial Conditions ²			
Reservoir	Elevation (feet msl)	Storage (af)	Elevation (feet msl)	Storage (af)		
Fontenelle	6,486.29	203,787	6,481.89	177,000		
Flaming Gorge	6,029.67	3,336,300	6,023.89	3,119,000		
Starvation	5,734.92	255,000	5,734.92	255,000		
Taylor Park	9,308.32	67,260	9,306.45	64,000		
Blue Mesa	7,489.99	581,270	7,490.00	581,000		
Morrow Point	7,153.73	112,000	7,153.73	112,000		
Crystal	6,753.04	16,970	6,753.04	17,000		
Navajo	6,080.33	1,629,760	6,070.99	1,494,000		
Powell	3,614.80	13,219,550	3,596.77	11,445,000		
Mead	1,116.53	13,023,940	1,114.85	12,864,000		
Mohave	638.71	1,582,960	638.71	1,583,000		
Havasu	445.80	539,520	445.80	539,000		
Total Storage Volume	NA	34,568,317	NA	32,250,000		

Table A-1

1 Projected initial conditions based on August 2006 24-Month Study. 2 Projected initial conditions based on June 2007 24-Month Study. msl: mean sea level af: acre-foot

Reservoirs Upstream of Lake Powell A.4

The reservoirs upstream of Lake Powell are operated to meet monthly storage targets (or "rule curves") and downstream demands. The basic procedure is that given the inflow for the current month, the release will be either the release necessary to meet the target storage, or the release necessary to meet demands downstream of the reservoir, whichever is greater. The rule curves are input for each reservoir, but are modified during the simulation for Flaming Gorge, Blue Mesa, and Navajo to simulate operations based on the imperfect inflow forecasts that are encountered in actual reservoir operations. Furthermore, each reservoir is constrained to operate within user-supplied minimum and maximum releases (mean monthly release in cubic feet per second [cfs]) as specified in Table A-2.

Table A-2 Release Constraints for Reservoirs Upstream of Lake Powell				
Reservoir	Minimum Release (cfs)	Maximum Release (cfs)		
Fontenelle	500	18,700		
Flaming Gorge	800	4,900		
Starvation	100	5,000		
Taylor Park	50	5,000		
Blue Mesa	270	5,000		
Morrow Point	300	5,000		
Crystal	300	4,200		
Navajo	300	5,900		

For Flaming Gorge, Blue Mesa, and Navajo, the target storage is computed by using an inflow forecast for the period January through July, again to mimic the imperfect forecasts seen in actual operations. The inflow forecast (for the current month through July) is computed as a weighted average of the long-term average natural inflow and the natural inflow assumed for the year being modeled. The weights used are listed in Table A-3.

Table A-3 Weights for Inflow Forecast for Reservoirs Upstream of Lake Powell					
Month	Natural Inflow Weight	Average Natural Inflow Weight			
January	0.3	0.7			
February	0.4	0.6			
March	0.5	0.5			
April	0.7	0.3			
May	0.7	0.3			
June	0.7	0.3			
July	0.6	0.4			

The long-term, average natural inflows into the Flaming Gorge, Blue Mesa and Navajo reservoirs are listed in Table A-4 (in thousand acre-feet [kaf]).

Table A-4 Average Natural Inflows for Reservoirs Upstream of Lake Powell (kaf)							
Reservoir	Jan	Feb	Mar	Apr	Мау	Jun	Jul
Flaming Gorge	23.3	20.9	33.8	87.9	250.4	327.8	157.5
Blue Mesa	34.0	39.5	94.6	176.0	339.8	561.6	346.8
Navajo	18.8	24.6	69.3	176.9	297.3	284.7	120.1

Based on the inflow forecast, the rule computes the volume necessary to release from the current month through July, assuming the reservoir will fill in July:

Release needed for the current month = (current contents - live capacity + predicted remaining inflow) divided by the number of months remaining until the end of July

The target storage for the current month is then computed, adjusting the storage at the end of the previous month for any gains or losses upstream of the reservoir:

Target storage = previous storage - release needed + gains - losses

A.5 Lake Powell Operation

The operation of Lake Powell depends on a rule curve consisting of a forecast-driven operation from January through July that attempts to fill the reservoir to July target storage, and an operation from August through December that attempts to draw down the reservoir to December target storage. The July and December targets are 23.822 million acre-feet (maf) (500,000 af of space) and 21.900 maf (2.422 kaf of space), respectively. Another rule simulates the occurrence of Beach/Habitat-Building Flows (BHBFs or spike flows). Two other higher priority rules ensure that the minimum objective release of 8.23 million acre-feet per year (mafy) is met and that equalization of Lake Powell and Lake Mead is accomplished when necessary. Release constraints that reflect the 1996 Record of Decision on the Operation of Glen Canyon Dam are also part of the Lake Powell rule set.

Sections A.5.1 through A.5.6 that follow describe modeling assumptions for Lake Powell operation that are common to all six alternatives. A summary comparison of the Lake Powell operational strategy for each alternative is provided in Attachment A to this Appendix (Table Att. A-1).

A.5.1 Lake Powell Inflow Forecast

The unregulated Lake Powell inflow forecast from the current month through July is computed as

unregulated Lake Powell inflow = natural flow into Lake Powell - estimated Upper Basin depletions + the forecast error

where: the forecast error is computed using equations derived from an analysis of past Colorado River forecasts and runoff data for the period 1947 to 1983.

An analysis of these data reveals two strongly established patterns: (1) high runoff years are under-forecast, and low runoff years are over-forecast; and (2) the error in the current month's seasonal forecast is strongly correlated with the error in the preceding month's forecast (Reclamation 1985). A regression model was developed to aid in determining the error to be incorporated into the seasonal forecast for each month from January to June. The error is the sum of a deterministic component and a random component. The deterministic component is computed from the regression equation. The random component is computed by multiplying the standard error of the regression equation by a random mean deviation selected from a standard normal distribution.

The forecast error equation has the following form (all runoff units are maf):

$E_i = a_i$	$X_i +$	$b_i E_{(i-1)}$	$c_i + c_i + Z_r d_i$
where	:		
	i	=	month,
	E_i	=	error in the forecast for month "i,"
	$\mathbf{X}_{\mathbf{i}}$	=	natural runoff into Lake Powell from month "i" through July,
	ai	=	linear regression coefficient for Xi,
	E _(i-1)	=	previous month's forecast error,
	b_{i}	=	linear regression coefficient for E(i-1),
	ci	=	constant term in regression equation for month "i,"
	Z_r	=	randomly determined deviation, and
	d_i	=	standard error of estimate for regression equation for month "i."

Table A-5 Lake Powell Inflow Forecast Regression Equation Coefficients				
Month	ai	bi	Ci	di
January	0.70	0.00	-8.195	1.270
February	0.00	0.80	-0.278	0.977
March	0.00	0.90	0.237	0.794
April	0.00	0.76	0.027	0.631
May	0.00	0.85	0.132	0.377

Table A-5 summarizes the regression equation coefficients for each month.

The magnitude of the June forecast error is constrained to not exceed 50 percent of the May forecast error and the July forecast error is equal to 25 percent of the June forecast error.

0.79

0.150

A.5.2 January through July Operation

June

0.24

To accomplish the operation from January through July, the unregulated forecast is first adjusted to account for potential reservoir regulation upstream of Lake Powell. This potential regulation is currently computed as just the sum of the available space (live capacity – previous month's storage) in Fontenelle, Flaming Gorge, Blue Mesa, and Navajo reservoirs. Using the regulated forecast inflow, the total volume of water necessary to release from the current month through July is computed as

> total volume to release = end of previous month's storage - July target storage + forecast regulated inflow - loss due to evaporation - loss due to bank storage

0.460

The release for the current month is then computed by multiplying the total volume to release by a fraction for the current month, where the fraction reflects a user-supplied preferred weighting pattern. The weights and resulting fractions used for this study are listed in Table A-6.

Table A-6 Lake Powell January through July Operation Weights and Resulting Fractions					
Month	Weights	Fractions			
January	0.170	0.170			
February	0.160	0.193			
March	0.130	0.194			
April	0.100	0.185			
Мау	0.100	0.227			
June	0.160	0.471			
July	0.180	1.000			

The fraction is computed as current month's weight divided by the sum of the current and remaining month's weights for the season.

During the operation from January through July, the computed release is constrained to be at least as great as the total volume divided by the number of months remaining. This constraint ensures that sufficient water is released early during high forecast years. Lake Powell's operational release during January through July is further constrained in each month to be within a minimum and maximum range (currently set to 6,500 and 25,000 cfs, respectively).

An additional constraint is placed on computed monthly release during spill avoidance. If the calculated average flow for a given month is in excess of 1.0 maf, then it is held to a maximum of 1.0 maf each month.

A.5.3 August through December Operation

Conceptually, the computation for the operation from August through December is identical to the computation made for the operation from January through July. The regulated inflow forecast is simply the natural inflow, adjusted for Upper Basin depletions, and potential reservoir regulation with no forecast error added. The potential reservoir regulation is again computed as the sum of the available space in Fontenelle, Flaming Gorge, Blue Mesa, and Navajo reservoirs, where the space is the target storage in December for each reservoir minus the end of the previous month's storage. User-supplied weights are also used to compute the current month release from the total volume to release. The weights and resulting fractions are listed in Table A-7.

Table A-7 Lake Powell August through December Operation Weights and Resulting Fractions					
Weights	Fractions				
0.266	0.266				
0.200	0.272				
0.156	0.292				
0.156	0.413				
0.222	1.000				
	Table A-7 ugh December Operation Weights 0.266 0.200 0.156 0.156 0.222				

Two additional constraints are placed on the computed monthly release to ensure a smooth operation. In July, the release is constrained to be at least 1.0 maf if Lake Powell's storage is greater than 23.0 maf. From July through December, the release is constrained to not exceed 1.5 maf, as long as a 1.5 maf release results in storage at Lake Powell less than 23.822 maf. Lake Powell's operational release during August through December is further constrained in each month to be within a minimum and maximum range (currently set to 6,500 and 25,000 cfs, respectively).

A.5.4 602(a) Storage Requirement

The 602(a) storage requirement refers to the quantity of water required to be in storage in the Upper Basin so as to assure future deliveries to the Lower Basin without impairing annual consumptive uses in the Upper Basin (Bureau of Reclamation 1985). The current implementation of that storage requirement duplicates the original CRSS calculation. It computes a storage amount necessary in the Upper Basin to meet the minimum objective release and Upper Basin depletions over the next "n" years, assuming the inflow over that period would follow that seen in the most "critical period on record." The critical period in the Colorado River basin occurred in 1953 through 1964, a length of 12 years. Inflows from these years are used in the calculation of 602(a) storage.

At the beginning of each calendar year, a value for 602(a) storage is computed by the following formula:

```
602a = {(UBDepletion + UBEvap)* (1 - percentShort/ 100) + minObjRel - 
criticalPeriodInflow} * 12 + minPowerPoolStorage
```

where:

602a	=	the 602(a) storage requirement
UBDepletion	=	the average over the next 12 years of the Upper Basin scheduled depletions
UBEvap	=	the average annual evaporation loss in the Upper Basin (currently set to 560 kaf)
percentShort	=	the percent shortage that will be applied to Upper Basin depletions during the critical period (currently set to zero)
minObjRel	=	the minimum objective release to the Lower Basin (currently set to 8.23 maf)
criticalPeriodInflow	=	average annual natural inflow into the Upper Basin during the critical period (1953–1964) (currently set to 12.18 maf)
minPowerPoolStorage	e =	the amount of minimum power pool to be preserved in Upper Basin reservoirs (currently set to 5.179 maf)

All parameter values currently used were as found in the original CRSS data files converted from the Cyber mainframe in 1994.

Additionally, since 2004, the Interim 602(a) Storage Guideline (69 Fed. Reg. 28945) has been included in CRSS. This guideline necessitates that for the 602(a) storage requirement to be met, Lake Powell storage must be greater than 14.85 maf (elevation 3,630 feet msl) on September 30. This interim guideline provides guidance to the Secretary in making a determination of the quantity of water considered necessary as of September 30 of each year to assist in implementation of and as required by Article II(1) of the 1970 Criteria for Coordinated Long-Range Operation of Colorado River Reservoirs (Long-Range Operating Criteria or LROC) pursuant to the Colorado River Basin Project Act of September 30, 1968. The interim guideline specifies that:

- 1. through the year 2016, 602(a) storage requirements determined in accordance with Article II(1) of the LROC shall utilize a value of not less than 14.85 maf (elevation 3,630 feet msl) for Lake Powell. Accordingly, when projected September 30 Lake Powell storage is less than 14.85 maf (elevation 3,630 feet msl), the objective will be to maintain a minimum annual release of water from Lake Powell of 8.23 maf, consistent with Article II(2) of the LROC;
- 2. under the current area-capacity relationship at Lake Powell, a reservoir elevation of 3,630 feet msl corresponds to 14.85 maf of storage. In the event that a sediment survey is performed at Lake Powell and a revised area-capacity relationship is determined before 2016, the revised water storage volume that correlates with the

A-9

reservoir elevation of 3,630 feet msl at Lake Powell shall be used in Section V(1) of this Interim 602(a) Storage Guideline; and

3. the Interim 602(a) Storage Guideline shall be utilized in the operation of the Colorado River from 2005 through 2016. This guideline will first be implemented in the development of the 2005 Colorado River Annual Operating Plan (AOP) and for all subsequent AOPs through 2016.

In the modeling for the Final EIS, the Interim 602(a) Storage Guideline is in effect through 2016. In the CRSS simulation, following the 602(a) storage computation described above, a subsequent rule checks to see if Lake Powell elevation is above 3,630 feet msl on September 30. The 602(a) requirement is not met if projected September 30 elevation of Lake Powell is below 3,630 feet msl, through 2016.

A.5.5 Predicting End-of-Water Year Volumes of Lake Powell and Lake Mead

Lake Powell end-of-water year (EOWY) volume is predicted each month by taking the end of the previous month's storage, adding the estimated inflow, subtracting the estimated release, and subtracting the estimate of evaporation and change in bank storage. All estimated values are for the period from the current month through September. The estimated inflow is just the regulated inflow forecast previously discussed, where the forecast error is included through July. The estimated release is based on the operation from January through July and the operation for August and September. The estimated evaporation and bank storage losses are based on an initial estimate of the EOWY volume.

Similarly, the Lake Mead EOWY volume is predicted each month by taking the end of previous month's volume, adding the estimated Lake Powell release, subtracting the estimated Lake Mead release, adding the average gain between Lake Powell and Lake Mead, subtracting the Southern Nevada depletion, and subtracting the estimate of evaporation and change in bank storage. Again, all values are for the period from the current month through September. Lake Mead's release is estimated as the sum of the depletions downstream of Lake Mead and the reservoir regulation requirements (including evaporation losses) for Lake Mohave and Lake Havasu minus the gains below Lake Mead.

The changes in volume of water storage in Lake Powell and Lake Mead are calculated by the model using relationship curves that are programmed into the model. These relationship curves correlate the water surface elevation to live capacity, total capacity, and surface area for each respective reservoir. Tables which present the corresponding values for the range of operational elevations at Lake Powell and Lake Mead are provided in Attachment B to this appendix (Table Att. B-1 and Table Att. B-2, respectively).

A.5.6 Beach/Habitat-Building Flows

Under the current rule that implements BHBFs, a BHBF is triggered for the current month if the following conditions are met:

- in January, if the unregulated inflow forecast for January through July (the natural flow – Upper Basin depletions plus forecast error) is greater than the "January trigger volume" (currently set to 13.0 maf); and
- in January through July, if the current month's Lake Powell release is greater than the "release trigger" (currently set to 1.5 maf) or if the release volume for the current month through July equally distributed over those months would result in a release greater than the release trigger.

Once a BHBF has been triggered, if Lake Powell would have had to spill in that month anyway, the total outflow from Lake Powell is not increased; rather the volume for the BHBF (currently set to 200 kaf) is taken from the total outflow already determined by the operational rule. If Lake Powell was not going to spill in that month, then the total outflow from Lake Powell is increased (i.e., the volume for the BHBF is taken from Lake Powell's storage). Under the case where the BHBF is triggered even though the current month's release is less than the release trigger, the rule re-sets Lake Powell's outflow for that month to the trigger release amount (1.5 maf).

Under all circumstances, only one BHBF is made per calendar year in the model.

A.5.7 Minimum Objective Release

A minimum objective release is required from Lake Powell only under the No Action Alternative, as discussed below. The minimum release required under the action alternatives varies by alternative and Lake Powell volume. These releases are described in Section A.5.9.

A.5.7.1 No Action Alternative

Under the No Action Alternative, a higher priority rule ensures that the previously described Lake Powell operation will satisfy a minimum objective release to the Lower Basin, currently equal to 8.23 maf over each water year (October through September). Similar to the weighting and release fraction scheme used for the operational rule, a preferred release pattern for each month to meet the minimum objective release is supplied and a fraction is computed. The release pattern (in kaf) and resulting fractions are listed in Table A-8.

Lake Powell Release Pattern and Resulting Fractions No Action Alternative					
	8,230 kaf				
MONUT	Release (kaf)	Fraction			
October	600	0.073			
November	600	0.079			
December	800	0.114			
January	800	0.128			
February	600	0.110			
March	600	0.124			
April	600	0.142			
Мау	600	0.165			
June	650	0.215			
July	850	0.357			
August	900	0.588			
September	630	1.000			
Total 8,230					

Table A-8
Lake Powell Release Pattern and Resulting Fractions
No Action Alternative

The fraction is computed as current month's release divided by the sum of the current and remaining months' releases through September.

Each month the rule computes the volume of water remaining to meet the minimum objective release for the current water year (accounting for the water released previously in the water year) and multiplies that volume by the release fraction. The release determined by the operational rule must then be at least as great as this resulting minimum objective release for the month.

Equalization of Lake Powell and Lake Mead A.5.8

A.5.8.1 No Action Alternative

Under the No Action Alternative, the equalization of storage between Lake Powell and Lake Mead is implemented in a rule that accurately models the past and current operations of equalization at Glen Canyon Dam. The rule first determines if equalization needs to occur, and if so, determines how much water to release from Lake Powell to accomplish it. The rule is in effect from January through September of each year. The rule states that equalization needs to occur if two criteria are met: (1) if the storage in the Upper Basin meets the 602(a) storage requirement; and (2) if the projected EOWY storage in Lake Powell is greater than that in Lake Mead.

The storage in the Upper Basin is computed for each month (January through September) and consists of the predicted EOWY storage in Lake Powell, plus the sum of the end of previous month's storage for Flaming Gorge, Blue Mesa, and Navajo reservoirs. That storage is then compared to the computed value of 602(a) storage, described above, to

determine if the 602(a) storage requirement is met each month. The method of estimating the EOWY storage is described above.

The release for equalization is computed by taking half of the difference between the predicted EOWY volumes of Lake Powell and Lake Mead and dividing by the number of months remaining through September. Evaporation and bank storage losses at Lake Powell and Lake Mead are included in the calculation, resulting in an iterative procedure to arrive at the computed equalization release. The iteration stops when the forecast EOWY volumes of Lake Powell and Lake Mead are within a user-specified tolerance. That tolerance is currently set to 250,000 af.

The computed equalization release for each month is constrained in three ways: (1) if the additional release due to equalization would cause the total Upper Basin storage to drop below the 602(a) storage requirement, then the amount of the equalization release can be adjusted downward but cannot be reduced below 8.23 maf; (2) the equalization release is reduced if it would cause Lake Mead volumes to exceed its exclusive flood control space; and (3) the equalization release is constrained to be not greater than 25,000 cfs, the maximum normal release as per the Glen Canyon Operating Criteria.

A.5.8.2 Basin States Alternative

Under the Basin States Alternative, the equalization of storage between Lake Powell and Lake Mead is implemented in a rule that first determines if equalization needs to occur, and if so, then determines how much water to release from Lake Powell to accomplish it. The rule is in effect from January through September of each year. The rule states that equalization needs to occur if two criteria are met: (1) if the EOWY elevation of Lake Powell is predicted to be equal to or higher than the Equalization Level (see Table A-9); and (2) if the EOWY storage in Lake Powell is greater than EOWY storage in Lake Mead. The Basin States Alternative substitutes the 602(a) Storage and Interim 602(a) Storage Guideline with the Equalization Level for each year 2008 through 2026.

In years when Lake Powell EOWY elevation is projected to be equal to or above the Equalization Level and the EOWY volume of Lake Powell is projected to be above the EOWY volume of Lake Mead, a volume of water greater than 8.23 maf is scheduled for annual release from Lake Powell to the extent necessary to equalize storage in the two reservoirs. Otherwise, if Lake Powell EOWY volume is not higher than Lake Mead EOWY volume, the annual release volume from Lake Powell is scheduled at 8.23 maf.

The release for equalization is computed by taking half of the difference between the predicted EOWY volumes of Lake Powell and Lake Mead and dividing by the number of months remaining through September. Evaporation and bank storage losses at Lake Powell and Lake Mead are included in the calculation, resulting in an iterative procedure to arrive at the computed equalization release. The iteration stops when the forecast EOWY volumes of Lake Powell and Lake Mead are within a user-specified tolerance. That tolerance is currently set to 250,000 af.

Lake Powell Equalization Elevation Basin States Alternative				
Year	Equalization Elevation (feet msl)			
2008	3,636			
2009	3,639			
2010	3,642			
2011	3,643			
2012	3,645			
2013	3,646			
2014	3,648			
2015	3,649			
2016	3,651			
2017	3,652			
2018	3,654			
2019	3,655			
2020	3,657			
2021	3,659			
2022	3,660			
2023	3,662			
2024	3,663			
2025	3,664			
2026	3,666			

Table A-9
Lake Powell Equalization Elevation
Basin States Alternative

The computed equalization release for each month is constrained in three ways: (1) if the additional release due to equalization would cause the Lake Powell EOWY elevation to drop below the Equalization Line, then the amount of the equalization release is reduced to prevent this from happening; (2) the equalization release is reduced if it would cause Lake Mead volumes to exceed its exclusive flood control space; and (3) the equalization release is constrained to be not greater than 25,000 cfs, the maximum normal release as per the Glen Canyon Operating Criteria.

A.5.8.3 **Conservation Before Shortage Alternative**

The equalization method for Lake Powell under the Conservation Before Shortage Alternative is identical to that of the Basin States Alternative.

A.5.8.4 Water Supply Alternative

The equalization criteria for Lake Powell under the Water Supply Alternative are identical to those of the No Action Alternative.

A.5.8.5 Reservoir Storage Alternative

The equalization criteria for Lake Powell under the Reservoir Storage Alternative are identical to those of the No Action Alternative.

A-14

A.5.8.6 Preferred Alternative

The equalization method for Lake Powell under the Preferred Alternative is identical to that of the Basin States and Conservation Before Shortage Alternatives.

A.5.9 Water Year Releases When Equalization Does Not Apply

A.5.9.1 No Action Alternative

Under the No Action Alternative, Lake Powell water releases are constrained by the minimum objective release as described in Section A.5.7.

A.5.9.2 Basin States Alternative

Under the Basin States Alternative, when the EOWY level of Lake Powell is below the Equalization Level (see Table A-9), a higher priority rule ensures that the Lake Powell operation will satisfy a water year release to the Lower Basin, between 7.00 maf and 9.50 maf, depending on elevations in Lake Powell and Lake Mead. Similar to the weighting and release fraction scheme used for the operational rule in the No Action Alternative, a preferred release pattern for each month to meet the water year release is supplied and a fraction is computed. The fraction is computed as current month's release divided by the sum of the current and remaining months' releases through September. Each month the rule computes the volume of water remaining to meet the release for the current water year (accounting for the water released previously in the water year) and multiplies that volume by the release fraction. The release determined by the operational rule must then be at least as great as this resulting release for the month.

Specific release patterns (in kaf) and resulting fractions for the Basin States Alternative are provided in Table A-10.

Total Release	7,00	0 kaf	7,48	0 kaf	8,23	0 kaf	9,00	0 kaf	9,50	0 kaf
Month	Release (kaf)	Fraction								
October	480	0.069	480	0.064	600	0.073	600	0.067	600	0.063
November	500	0.077	500	0.071	600	0.079	600	0.071	600	0.067
December	600	0.100	600	0.092	800	0.114	800	0.103	800	0.096
January	600	0.111	800	0.136	800	0.128	800	0.114	850	0.113
February	600	0.124	600	0.118	600	0.110	650	0.105	650	0.098
March	500	0.118	600	0.133	600	0.124	650	0.117	650	0.108
April	500	0.134	500	0.128	600	0.142	600	0.122	650	0.121
May	500	0.155	600	0.176	600	0.165	650	0.151	800	0.170
June	600	0.221	600	0.214	650	0.215	800	0.219	900	0.231
July	800	0.377	800	0.364	850	0.357	1,000	0.351	1,050	0.350
August	800	0.606	800	0.571	900	0.588	1,050	0.568	1,100	0.564
September	520	1.000	600	1.000	630	1.000	800	1.000	850	1.000
Total	7,000		7,480		8,230		9,000		9,500	

Table A-10 Lake Powell Release Patterns and Resulting Fractions Basin States Alternative

In years when Lake Powell EOWY elevation is projected to be lower than the Equalization Level and equal to or above 3,575 feet msl, and the projected Lake Mead EOWY elevation is equal to or above 1,075 feet msl, then the annual release volume is scheduled to be 8.23 maf. If the projected Lake Mead EOWY elevation is below 1,075 feet msl, however, then a volume of water is scheduled for annual release from Lake Powell to the extent necessary to balance storage in the two reservoirs, constrained by being no more than 9.00 maf and no less than 7.00 maf.

In years when Lake Powell EOWY elevation is projected to be lower than 3,575 feet msl and at or above 3,525 feet msl, and the projected Lake Mead EOWY elevation is equal to or above 1,025 feet msl, then the annual release volume is scheduled at 7.48 maf. However, if Lake Powell EOWY elevation is projected to be lower than 3,575 feet msl and at or above 3,525 feet msl, but the projected Lake Mead EOWY elevation is below 1,025 feet msl, then the annual release volume is scheduled at 8.23 maf.

In years when Lake Powell EOWY elevation is projected to be below 3,525 feet msl, then a volume of water is scheduled for annual release from Lake Powell to the extent necessary to balance storage in the two reservoirs, constrained by being no more than 9.50 maf and no less than 7.00 maf.

A.5.9.3 Conservation Before Shortage Alternative

Water year releases for Lake Powell under the Conservation Before Shortage Alternative are identical to those of the Basin States Alternative.

A.5.9.4 Water Supply Alternative

Under the Water Supply Alternative, when projected EOWY storage in the Upper Basin is less than the 602(a) storage requirement, a higher priority rule ensures that the Lake Powell operation will satisfy a water year release to the Lower Basin between 7.00 maf and 9.50 maf, depending on projected EOWY elevations in Lake Powell and Lake Mead. Similar to the weighting and release fraction scheme used for the operational rule, a preferred release pattern for each month to meet the water year release is supplied and a fraction is computed. The fraction is computed as current month's release divided by the sum of the current and remaining months' releases through September. Each month the rule computes the volume of water remaining to meet the release for the current water year (accounting for the water released previously in the water year) and multiplies that volume by the release fraction. The release determined by the operational rule must then be at least as great as this resulting release for the month.

Specific release patterns (in kaf) and resulting fractions for the Water Supply Alternative are provided in Table A-11.

In years when the Lake Powell EOWY volume is projected to be below the 602(a) storage requirement and equal to or above 3,575 feet msl, and the projected Lake Mead EOWY elevation is equal to or above 1,075 feet msl, then the annual release volume is scheduled to be 8.23 maf. If the projected Lake Mead EOWY elevation is below 1,075 feet msl, however, then a volume of water is scheduled for annual release from Lake Powell to the extent necessary to balance storage in the two reservoirs, constrained by being no more than 9.50 maf and no less than 7.00 maf.

In years when the Lake Powell EOWY elevation is projected to be less than 3,575 feet msl, then a volume of water is scheduled for annual release from Lake Powell to the extent necessary to balance storage in the two reservoirs, constrained by being no more than 9.50 maf and no less than 7.00 maf.

Total Release	7,000 kaf		8,23	30 kaf	9,500 kaf			
Month	Release (kaf)	Fraction	Release (kaf)	Fraction	Release (kaf)	Fraction		
October	480	0.069	600	0.073	600	0.063		
November	500	0.077	600	0.079	600	0.067		
December	600	0.100	800	0.114	800	0.096		
January	600	0.111	800	0.128	850	0.113		
February	600	0.124	600	0.110	650	0.098		
March	500	0.118	600	0.124	650	0.108		
April	500	0.134	600	0.142	650	0.121		
Мау	500	0.155	600	0.165	800	0.170		
June	600	0.221	650	0.215	900	0.231		
July	800	0.377	850	0.357	1,050	0.350		
August	800	0.606	900	0.588	1,100	0.564		
September	520	1.000	630	1.000	850	1.000		
Total	7,000		8,230		9,500			

Table A-11
Lake Powell Release Patterns and Resulting Fractions
Water Supply Alternative

A.5.9.5 Reservoir Storage Alternative

Under the Reservoir Storage Alternative, when projected EOWY storage in the Upper Basin is less than the 602(a) storage requirement, a higher priority rule ensures that the Lake Powell operation will satisfy a water year release to the Lower Basin between 7.80 maf and 9.50 maf, depending on projected EOWY elevations in Lake Powell and Lake Mead. Similar to the weighting and release fraction scheme used for the operational rule, a preferred release pattern for each month to meet the water year release is supplied and a fraction is computed. The fraction is computed as current month's release divided by the sum of the current and remaining months' releases through September. Each month the rule computes the volume of water remaining to meet the release for the current water year (accounting for the water released previously in the water year) and multiplies that volume by the release fraction. The release determined by the operational rule must then be at least as great as this resulting release for the month.

Specific release patterns (in kaf) and resulting fractions for the Reservoir Storage Alternative are provided in Table A-12.

A-18

Total Release	7,800 kaf		8,23	0 kaf	9,500 kaf	
Month	Release (kaf)	Fraction	Release (kaf)	Fraction	Release (kaf)	Fraction
October	600	0.077	600	0.073	600	0.063
November	600	0.083	600	0.079	600	0.067
December	600	0.091	800	0.114	800	0.096
January	800	0.133	800	0.128	850	0.113
February	600	0.115	600	0.110	650	0.098
March	600	0.130	600	0.124	650	0.108
April	600	0.150	600	0.142	650	0.121
May	600	0.176	600	0.165	800	0.170
June	600	0.214	650	0.215	900	0.231
July	800	0.364	850	0.357	1,050	0.350
August	800	0.571	900	0.588	1,100	0.564
September	600	1.000	630	1.000	850	1.000
Total	7,800		8,230		9,500	

Table A-12 Lake Powell Release Patterns and Resulting Fractions Reservoir Storage Alternative

In years when Lake Powell EOWY volume is projected to be below the 602(a) storage requirement, and Lake Powell EOWY elevation is equal to or above 3,595 feet msl, then the annual release volume is scheduled at 8.23 maf.

In years when the Lake Powell EOWY elevation is projected to be lower than 3,595 feet msl and equal to or above 3,560 feet msl, then the annual release volume is scheduled at 7.80 maf.

In years when Lake Powell EOWY elevation is projected to be below 3,560 feet msl, the annual release is scheduled at the volume of water required to balance the volumes of Lake Powell and Lake Mead, constrained by being no more than 9.50 maf and no less than 7.80 maf.

A.5.9.6 Preferred Alternative

Water year releases for Lake Powell under the Preferred Alternative are identical to those of the Basin States and Conservation Before Shortage alternatives.

A.6 Lake Mead Operation

Lake Mead is operated primarily to meet downstream demands, including downstream depletions (both United States and Mexico) and reservoir regulation requirements. In any month, the rule computes the downstream depletions based on schedules that have been set as input data

(or by other rules) and the amount of water necessary to meet the storage targets for downstream Lake Mohave and Lake Havasu and to overcome evaporation losses at those lakes. The rule sets the total release necessary each month from Lake Mead to meet the total downstream demand, taking into account gains and losses below Lake Mead.

The depletions from Lake Mead and downstream of Hoover Dam are affected by the determination of the water supply conditions (Normal, Surplus, or Shortage). Additional rules determine the water supply condition and set the appropriate depletion schedule for the entities affected, as described in Sections A.6.2 and A.6.3.

Under certain conditions, Lake Mead may release water in addition to downstream demand. This condition is termed "flood control" and is guided by the United States Army Corps of Engineers' (USACE) flood control regulations as contained in the USACE's Water Control Manual for Flood Control, Hoover Dam and Lake Mead, Colorado River, Nevada and Arizona (Water Control Manual) dated December 1982. These flood control operations and their simulation in the CRSS model are described in Section A.6.1.

A.6.1 Lake Mead/Hoover Dam Flood Control

There are three flood control procedures currently in effect for different times of the year. These procedures were developed in the original CRSS and are based on the Field Working Agreement between Reclamation and the USACE (United States Army Corps of Engineers 1982). The first procedure is in effect throughout the year. Its objective is to maintain a minimum space of 1.5 maf in Lake Mead, primarily for extreme rain events. This space is referred to as the exclusive flood control space and is represented by the space above elevation 1,219.61 feet msl. The second procedure is used during the period from January through July. The objective during this period is to route the maximum inflow forecast through the reservoir system using specific rates of Hoover Dam discharge, assuming that Lake Mead will fill to elevation 1,219.61 feet msl at the end of July. The third procedure is used during the space building or drawdown period (August through December). The objective during this period is to gradually draw down the reservoir system to meet the total system space requirements in each month in anticipation of the next year's runoff.

A.6.1.1 Exclusive Flood Control Space Requirement

This requirement states that there must be a minimum space of 1.5 maf in Lake Mead at all times. If the release computed to meet downstream demand results in a Lake Mead storage that would violate this space requirement, the rule computes the additional release necessary to maintain that space.

A.6.1.2 January through July Operation

The flood control policy requires that the maximum forecast be used where that forecast is defined as the estimated inflow volume that, on average, will not be exceeded 19 times out of 20 (a 95 percent non-exceedance). The rule first computes the inflow forecast to Lake Mead by taking the Lake Powell forecast (Section A.5) and adds the long-term, average natural tributary inflows between Lake Powell and Lake Mead. The maximum forecast is then estimated by adding an additional volume (the "forecast error term")

to that inflow forecast. The forecast error term (in maf) is provided in Table A-13, taken from the original CRSS data.

Table A-13 Lake Mead January through July Forecast Error				
Forecast Period	Forecast Error Term (maf)			
January – July	4.980			
February – July	4.260			
March – July	3.600			
April – July	2.970			
May – July	2.525			
June – July	2.130			
July – July	0.750			

The Field Working Agreement defines an iterative algorithm by which the current month's release (in cfs) is determined. Certain release levels are specified, as listed in Table A-14.

Table A-14 Lake Mead Flood Control Release Levels				
Release Level	Release (cfs)	Description		
1	19,000	Parker Powerplant capacity		
2	28,000	Davis Powerplant capacity		
3	35,000	Hoover Powerplant capacity (in 1987)		
4	40,000	Approximate maximum flow non-damaging to streambed		
5	73,000	Hoover Dam controlled discharge capacity		

The flood control release needed for the current month is determined by:

release needed for the current month = maximum forecast inflow – current storage space in Lake Powell (below 3,700 feet msl) – current storage space in Lake Mead (below 1,229 feet msl) + 1.5 maf (exclusive space) – evaporation and bank storage losses from Lake Powell and Lake Mead – Southern Nevada depletion – future volume of water released (assuming a release level from Table A-14 for the remaining months through July)

If the computed release for the current month is greater than that assumed for the future months, the future level is increased and the current month release is re-computed. The computation stops once the computed release for the current month is less than or equal to that assumed for the future months. If the computed release is greater than the previously assumed level, that release is used for the current month; otherwise, the previously assumed level is used.

The rule sets Lake Mead's release to the flood control release if it is greater than the release previously computed to meet downstream demands.

A.6.1.3 Space Building (August to December)

The flood control policy states the flood control storage space (in maf) in Lake Mead (storage below elevation 1,229 feet msl) required at the beginning of each month from August through January, as listed in Table A-15.

Table A-15 Lake Mead Flood Control Required Storage Space				
Date	Required Storage Space (maf)			
August	1.50			
September	2.27			
October	3.04			
November	3.81			
December	4.58			
January	5.35			

However, these targets may be reduced to the minimum of 1.5 maf in each month if additional space is available upstream in live storage. Certain upstream reservoirs are specified with a maximum creditable space (in maf) that can be applied towards the total required flood control space. The creditable storage space allowed for each of these reservoirs is listed in Table A-16.

Table A-16 Lake Mead Flood Control Maximum Creditable Storage Space				
Reservoir Maximum Creditable Storage Space (m				
Powell	3.8500			
Navajo	1.0359			
Blue Mesa	0.7485			
Flaming Gorge plus Fontenelle	1.5072			

In each month (July through December), if the release computed to meet downstream demands results in an end-of-month Lake Mead storage that would violate the space requirement adjusted for upstream storage, the rule computes the additional release necessary to maintain that space. However, these releases are constrained to be less than or equal to 28,000 cfs.

A.6.2 Lower Basin Surplus Strategies

Under the No Action Alternative, the Interim Surplus Guidelines (ISG) are assumed to be in effect through 2016. Beginning in 2017, surpluses are determined based on the 70R Strategy (Section A.6.2.4.). The action alternatives use some or all of the surplus conditions and vary by the duration that each type is in effect. A summary comparison of the surplus strategy for each alternative is provided in Attachment A to this appendix (Table Att. A-2). Surplus schedules by entity are provided in Appendix D. The ISG are specified in the Record of Decision (ROD), Colorado River ISG, Final Environmental Impact Statement, January 2001, and the model implements those as follows:

A.6.2.1 Normal Conditions

If the model determines that neither surplus or shortage conditions exists, the model assigns the Normal schedules to all diversion points in the Lower Basin. The Normal schedules total 7.5 maf of annual consumptive use in the Lower Basin.

A.6.2.2 Partial Domestic Surplus

If the modeled January 1 Lake Mead elevation is at or above 1,125 feet msl and below 1,145 feet msl, the model assigns the Partial Domestic Surplus schedules to Metropolitan Water District of Southern California (MWD) and the Southern Nevada Water Authority (SNWA). All other diversion points remain at Normal schedules. The Partial Domestic Surplus schedules yield the amount of surplus for MWD and SNWA as specified in the ROD, and are documented in the Final Environmental Impact Statement, Implementation Agreement, Inadvertent Overrun and Payback Policy, and Other Federal Actions (SIA-EIS, Bureau of Reclamation 2002).

A.6.2.3 Full Domestic Surplus

If the modeled January 1 Lake Mead elevation is at or above 1,145 feet msl but below the spill avoidance strategy assuming the runoff value of the 70th percentile of exceedance based on the historic record of runoff above Lake Powell (i.e., the 70R Strategy), the model assigns the Full Domestic Surplus schedules to MWD and SNWA. All other diversion points remain at Normal schedules. The Full Domestic Surplus schedules yield the amount of surplus for MWD and SNWA as specified in the ROD, and are documented in the Implementation Agreement Final EIS (Reclamation 2002).

A.6.2.4 Quantified Surplus (70R Strategy)

Under the 70R Strategy, a surplus condition is based on the system space requirement at the beginning of each year. Based on the 70th percentile historical runoff, a normal 7.5 maf delivery to the Lower Division states, the Upper Basin scheduled use, and Lake Powell and Lake Mead volumes at the beginning of the year, the volume of water in excess of the system space requirement at the end of the year is estimated. If that volume is greater than zero, a Surplus is declared. The quantity of the surplus volume (*SurVol*) is computed as follows:

SurVol = (PowellStorage + MeadStorage - maxStorage)* (1 + aveBankStorCoef) + runoff - UBDemand - LBDemand

Where:

Powell Storage	=	Lake Powell storage at the beginning of the year
Mead Storage	=	Lake Mead storage at the beginning of the year
maxStorage	=	maximum combined storage of Lake Powell and Lake Mead that will meet the system space requirement at the beginning of the year, assuming 30% of that requirement will be met by the reservoirs upstream of Lake Powell (computed as live capacity of Lake Powell and Lake Mead – 70% * Lake Mead space requirement at the beginning of the year equal to 5.35 maf = 47.96 maf)
aveBankStorCoef	=	average of Lake Powell and Lake Mead bank storage coefficients
runoff	=	assumed percentile runoff
UBDemand	=	Upper Basin depletion scheduled for the year + the average evaporation loss in the Upper Basin (same as assumed in the 602(a) calculation, 560 kaf)
LBDemand =		sum of depletions below Lake Powell + the evaporation losses in the Lower Basin (average loss of 900 kaf at Lake Mead and computed for Lake Mohave and Lake Havasu, based on target storage) – average gains between Lake Powell and Lake Mead – average gains below Lake Mead

Once the quantity of surplus volume is known, the model computes each state's share (50 percent to California, 46 percent to Arizona, and 4 percent to Nevada). The model then assigns the Full Domestic Surplus schedules to MWD and SNWA. Arizona's share of the surplus is assigned to the Central Arizona Project (CAP), up to their Full Surplus schedule. If surplus water is still available for California, up to 300 kaf is made available to the Imperial Irrigation District (IID) and the Coachella Valley Water District (CVWD).

A.6.2.5 Flood Control Surplus

If the modeled January 1 system volumes projects Hoover Dam flood control releases based on the Field Working Agreement between Reclamation and the USACE for the flood control operation of Hoover Dam and Lake Mead (USACE 1982), the model assigns the Full Surplus schedules to MWD, SNWA, CAP, IID, and CVWD. In addition, the model assigns an additional delivery of up to 200 kaf to Mexico. All other diversion points remain at Normal schedules. The Full Domestic Surplus schedules are documented in the Secretarial Implementation Agreement Final EIS (2002).

A.6.3 Lower Basin Shortage Strategies

A summary comparison of the shortage strategy for each alternative is provided in Attachment A to this appendix (Table Att. A-2).

A.6.3.1 No Action Alternative

In the absence of specific shortage guidelines, modeling assumptions were made that followed assumptions for previous environmental compliance documents. Based on these assumptions a two-level shortage protection strategy was employed. This strategy established the elevations in Lake Mead to be protected and the protection strategy (probabilistic or absolute). Within the two protection levels are two methods or stages for allocating the required shortage amount as explained below. See Section 4.2, Volume I, in this Final EIS for a description of the methodology regarding the shortage sharing assumptions under the two stages of shortage.

In Level 1 protection, the shortage determination is based on comparing the January 1 Lake Mead elevation to a user-input trigger elevation, where the trigger elevations are determined from other modeling studies to protect a significant elevation within a given degree of confidence. The Level 1 shortage trigger elevations are presented in Table A-17.

		Table Level 1 Shortage	e A-17 Trigger Elevations		
Year	Elevations (feet msl)	Year	Elevations (feet msl)	Year	Elevations (feet msl)
2008	1,079	2026	1,101	2043	1,127
2009	1,082	2027	1,103	2044	1,129
2010	1,083	2028	1,104	2045	1,132
2011	1,084	2029	1,106	2046	1,133
2012	1,085	2030	1,107	2047	1,135
2013	1,086	2031	1,108	2048	1,137
2014	1,086	2031	1,108	2049	1,138
2015	1,087	2032	1,109	2050	1,140
2016	1,088	2033	1,110	2051	1,142
2017	1,090	2034	1,112	2052	1,144
2018	1,091	2035	1,113	2053	1,145
2019	1,093	2036	1,114	2054	1,147
2020	1,094	2037	1,116	2055	1,149
2021	1,095	2038	1,117	2056	1,151
2022	1,096	2039	1,119	2057	1,152
2023	1,097	2040	1,120	2058	1,154
2024	1,098	2041	1,123	2059	1,156
2025	1,100	2042	1,125	2060	1,157

Under Level 1 protection, if Lake Mead's elevation at the beginning of the year is less than the trigger elevation, a Stage 1 shortage is declared and certain Lower Basin depletions are reduced. The shortage remains in effect for that calendar year. A Stage 1 shortage is defined as a shortage of magnitude less than that which would cause Arizona 4th priority uses to be reduced to zero.

Level 1 protection of elevation 1,050 feet msl (minimum water level for operation of Southern Nevada's upper diversion intake and minimum power pool) was used in this study. Trigger elevations were input to protect each elevation with an approximately 80 percent probability; however, actual model simulations showed that the protection was less, approximately 70 percent over the entire simulation period. Under Level 1 protection a Stage 1 shortage is declared and the CAP depletion is set to 1.0 maf, and other Arizona 4th priority uses are reduced proportionately, as described in the equations below.

$$CAP_{short} = CAP_{norm} - 1.0maf$$

$$OtherAZP4_{short} = (CAP_{short} * \frac{CAP_{norm} + OtherAZP4_{norm}}{CAP_{norm}}) - CAP_{short}$$

Where:

the subscript norm denotes the normal depletion amount and the subscript short denotes the shortage amount. The shortage amount is subtracted from the normal depletion amount to solve for the shorted depletion amount.

The percent shortage applied to each Arizona 4th priority in OtherAZP4 is computed as a fraction of their normal use divided by the total other Arizona 4th priority use.

Other Lower Basin depletions are reduced according to the percents presented in Table A-18.

A-26

	Modeling Ass	Table A-18 umptions for Distribution of Stage 1 Shortages ^a
Entity	Percentage of Total Lower Basin Shortage	Calculation
Arizona ^b	80	 Computed assuming that Arizona takes the remaining amount of shortage after Nevada and Mexico take their respective shares
Quilife main		◆ Calculated as: 1.0 – 0.1667 – 0.0333 = 0.80 or 80.0 percent
California	0	Does not receive shortage under Stage 1
Nevada	3.33	 Computed as a ratio of Nevada's apportionment to the total apportionments of the Lower Division states and Mexico
		 Calculated as: 0.3 maf / 9.0 maf – 0.0333 or 3.33 percent
Mexico 1	16.67	 Computed as a ratio of Mexico's allotment to the total allotments of the Lower Division states and Mexico
		 Calculated as: 1.5 maf / 9.0 maf = 0.1667 or 16.67 percent

-

These modeling assumptions do not reflect policy decisions and are not intended to constitute an interpretation or application of the 1944 Treaty. a.

Within the CAP, Ak-Chin and Salt River Pima-Maricopa Indian Community tribes have pre-1968 contracts for the delivery of 72 kaf that is not reduced until b a Stage 2 Shortage is applied.

Mexico and SNWA are reduced by 16.67 and 3.33 percent of the total Stage 1 shortage, respectively. The MWD does not take a Stage 1 shortage. The total Stage 1 shortage is computed as:

$$TotalStage1Short = \frac{CAP_{short} + OtherAZP4_{short}}{100\% - (3.33\% + 16.67\%)}$$

Under Level 2 protection, the shortage required to keep Lake Mead above elevation 1,000 feet msl (minimum elevation for operation of Southern Nevada's lower diversion intake) is computed and distributed among Lower Basin users as described in Table A-19. In each month, January through September, a rule estimates the end-of-April through end-of-September Lake Mead elevation (using Stage 1 shortage schedules and normal schedules for other users). April through September is generally the high demand period from Lake Mead. If in any month during the high demand period the estimated Lake Mead elevation is below 1,000 feet msl, Arizona 4th priority users are reduced to zero and SNWA and Mexico take their respective percents of the total shortage for the current month. This type of pre-emptive shortage approach is required to avoid the

¹ The proposed federal action is for the purpose of adopting additional operational guidelines to improve the Department's annual management and operation of key Colorado River reservoirs for an interim period through 2026. However, in order to assess the potential effects of the proposed federal action in this Final EIS, certain modeling assumptions (discussed in Chapter 2, Volume I) are used that display projected water deliveries to Mexico. Reclamation's modeling assumptions are not intended to constitute an interpretation or application of the 1944 Treaty or to represent current United States policy or a determination of future United States policy regarding deliveries to Mexico.

The United States will conduct all necessary and appropriate discussions regarding the proposed federal action and implementation of the 1944 Treaty with Mexico through the IBWC in consultation with the Department of State.

situation when, in a given month, the shortage required to keep Lake Mead above elevation of 1,000 feet msl is greater than the available demand. If, in the current month the shortage required to protect elevation 1,000 feet msl does not require Arizona 4th priority users to be reduced to zero, the lesser shortage amount is allocated.

If, in any month additional shortage beyond Stage 1 is required to protect Lake Mead elevation of 1,000 feet msl, a Stage 2 shortage is declared. The Stage 2 shortage amount is the amount in excess of the Stage 1 shortage amount required to protect elevation 1,000 feet msl absolutely. In a Stage 2 shortage Mexico and SNWA are further reduced and Arizona 2nd and 3rd priority uses and MWD are reduced. These entities are reduced according to the percentage values provided in Table A-19.

Table A-19

	Modeling Ass	sumptions for Distribution of Stage 2 Shortages ¹ No Action Alternative
Entity	Percentage of Total Lower Basin Shortage	Calculation
		 The percentage changes as Arizona's 4th priority use schedule changes and ranges between 15 and 20 percent
Arizona	15 to 20	 Computed as a ratio of Arizona's apportionment less the amount of shortage applied to Arizona under Stage 1, to the total apportionments of the Lower Division states and Mexico less the total amount shorted to users under Stage 1 Calculated as: (2.8 – Arizona Stage 1 shortage) / (9.0 – total Stage 1 shortage)
California		 California shortage sharing percentage changes as Arizona's 4th priority use schedule changes and ranges between 60 and 65 percent
	60 to 65	 Computed assuming that California takes the remaining amount of the additional shortage
		 Calculated as: 1.0 – 0.1667 – 0.0333 – Arizona's Stage 2 percentage expressed as a fraction
Nevada	3.33	 Computed as a ratio of Nevada's apportionment less the amount of shortage applied to Nevada under Stage 1, to the total apportionments of the Lower Division states and Mexico less the amount shorted to users under Stage 1
		 Calculated as: (0.3 – Nevada Stage 1 shortage) / (9.0 – total Stage 1 shortage) = 0.0333 or 3.33 percent
Mexico	16.67	 Computed as a ratio of Mexico's apportionment less the amount of shortage applied to Mexico under Stage 1, to the total apportionments of the Lower Division states and Mexico less the total amount shorted to users under Stage 1
Monoo	10.07	 Calculated as: (1.5 – Mexico Stage 1 shortage) / (9.0 – total Stage 1 shortage) = 0.1667 or 16.67percent

1. These modeling assumptions do not reflect policy decisions and are not intended to constitute an interpretation or application of the 1944 Treaty. They have been developed for comparison of the alternatives.

The maximum amount of Stage 2 shortage that can be applied is dictated by MWD demand. If the amount of Stage 2 shortage required is greater then MWD demand, then the Stage 2 shortage amount becomes

$$TotalStage2Short_{Constrained} = \frac{MWD_{norm}}{100\% - (3.33\% + 16.67\% + AZP2and3Short\%)}$$

In the event that a Stage 2 shortage is constrained and not fully allocated, Lake Mead elevation decline to below 1,000 feet msl. If Lake Mead elevation drops below 1,000 feet msl, SNWA is reduced to zero (due to physical limitations) for the current month and the other users maintain their shortage amounts as if SNWA had not been completely reduced.

A.6.3.2 Basin States Alternative

The Basin States Alternative provides discrete stepped levels of shortage associated with specific Lake Mead elevations. These shortage amounts and the corresponding elevations are provided in Attachment A to this appendix (Table Att. A-2). The maximum shortage is 600 kaf below elevation 1,025 feet msl. The shortage determination is based on comparing the January 1 Lake Mead elevation to the specific Lake Mead trigger elevations. If Lake Mead's elevation at the beginning of the year is less than the trigger elevation, a shortage of the corresponding amount is declared and certain Lower Basin depletions are reduced. The shortage remains in effect for that calendar year. The shortage is allocated according to the percentages used under a Stage 1 shortage in the No Action Alternative provided in Table A-19. As under the No Action Alternative, SNWA is reduced to zero for the current month if, in the previous month Lake Mead elevation is below 1,000 feet msl.

A.6.3.3 Conservation Before Shortage Alternative

The shortage strategy under the Conservation Before Shortage Alternative is identical to the Level 2 shortage protection in the No Action Alternative. The Level 1 shortage protection in the No Action Alternative is replaced with various levels of voluntary conservation in the Conservation Before Shortage Alternative. Modeling assumptions regarding the voluntary conservation portion of this alternative are located in Appendix M. The amounts of voluntary conservation and the corresponding reservoir elevations are identical to the shortage amounts and corresponding reservoir elevations under the Basin States Alternative.

A.6.3.4 Water Supply Alternative

There is no shortage strategy in place in the Water Supply Alternative. The only reduction in use occurs when, in the previous month Lake Mead elevation is below 1,000 feet msl. In this event SNWA is reduced to zero for the current month.

A.6.3.5 Reservoir Storage Alternative

Like the Basin States Alternative, the Reservoir Storage Alternative provides discrete stepped levels of shortage associated with specific Lake Mead elevations. These shortage amounts and the corresponding elevations are provided in Attachment A to this appendix (Table Att. A-2). The maximum shortage is 1,200 kaf below elevation 1,025 feet msl. Shortage determination and allocation occurs in the same way as under the Basin States Alternative.

A.6.3.6 Preferred Alternative

The Preferred Alternative utilizes identical shortage assumptions as the Basin States Alternative.

A.6.4 Lake Mead Storage and Delivery of Conserved System and/or Non-system Water

Detailed modeling assumptions regarding the Lake Mead storage and delivery mechanism for conserved system and/or non-system water as part of the Basin States, Conservation Before Shortage, and Reservoir Storage alternatives, and the Preferred Alternative, is provided in Appendix M.

A.7 Summary Comparison of Lake Powell and Lake Mead Operations

A summary comparison of Lake Powell and Lake Mead operations under the No Action Alternative and the action alternatives is provided in Attachment A to this appendix (Tables Att. A-1 and Att. A-2, respectively).

A.8 Lake Mohave and Lake Havasu Operations

Lake Mohave and Lake Havasu are operated to meet user-specified target storages at the end of each month. This operation remained consistent for all alternatives. The storage targets and the corresponding elevations for Lake Mohave and Lake Havasu are presented in Tables B-4 and B-5, respectively, in Appendix B.

A.9 Energy Generation

RiverWare[™] includes a variety of methods that can be chosen to compute power generation. All methods compute power and energy on a monthly basis. The following sections describe the methods used to compute power at Glen Canyon Dam, Hoover Dam, Davis Dam and Parker Dam.

A.9.1 Glen Canyon Dam

The computation of power and energy generated at Glen Canyon Dam is based on the turbine release for the current month and a power coefficient which is a function of the turbine release and operating head. Turbine release is the lesser value of the maximum power release or the result of outflow minus spill. The power coefficient is computed through table interpolation given the operating head. The table used for interpolation is chosen based on the turbine release and can represent either flow through the turbine for most efficient power generation or the maximum flow through the turbine. The power coefficient may also be an intermediate value, computed through interpolation of both tables, if the turbine release is between the most efficient for power generation and the maximum flow through the turbine.

Once the power coefficient is computed, power generated for the current month is computed as

Power = PowerCoefficient*Turbine Release

Energy is calculated as the power multiplied by the length of the month in hours.

If the previous month's elevation is less than 3,490 feet msl, there is no power or energy generated for the current month. This elevation reflects the minimum power pool elevation at Lake Powell.

A.9.2 Hoover Dam

The method that computes power and energy generated at the Hoover Dam assumes two levels of power generation. The lower level of generation occurs at base flow while the upper level occurs at peak flow. The method computes the fraction of the month that the powerplant is operated at peak flow and base flow. The peaking flow is the most efficient flow through the turbines for the current operating head while the baseflow represents the minimum flow through the turbines to produce energy.

The base flow and corresponding power generation is based on the outflow for the current month. The peak flow must be computed through an iterative procedure using operating head, tailwater elevation and turbine release. The initial turbine release is assumed to be that corresponding to maximum power production. Tailwater elevation at Hoover Dam is computed as function of Lake Mohave elevation, and Hoover Dam release.

The monthly Hoover Dam release volume at base flow is computed by applying the base flow over the month. The monthly release volume at peak flow is computed as

PeakFlowVolume = Turbine Re leaseVolume - BaseFlowVolume

Next, the number of hours required for operation at base and peak flows are then computed as

 $PeakHours = \frac{PeakFlowVolume}{(PeakFlow - BaseFlow)*3600}$

 $BaseHours = \frac{SecondsInMonth}{3600} - PeakHours$

where 3600 is the amount of seconds per hour.

If the peak hours are greater than the length of the month, the peak hours value is set equal to the length of the month and base hours value is set to zero. The peak and base hours are then multiplied by the powerplant capacity at each level and added together to obtain the total energy produced for the month. Power is computed as the energy divided by the length of the month in hours.

The algorithm described above allows generation at elevations below 1,050 feet msl, the minimum power pool at Lake Mead. According to the algorithm, power is generated as long as the minimum operating head of 360 feet is available, corresponding to an elevation of about 1,011 feet msl. Because there is no operating experience at these elevations, it is

impossible to verify if CRSS mimics the actual turbine performance at such low heads. It is therefore critical to view energy results from CRSS in a relative manner and not in a strict numeric sense.

A.9.3 Davis Dam

The method that computes power and energy generation at Davis Dam is the same method used for Hoover Dam.

A.9.4 Parker Dam

The method that computes power and energy generation at Parker Dam is the same method used for Hoover Dam.

A.10 Reservoir Evaporation

Evaporation at Lake Powell and Lake Mead is calculated in CRSS by multiplying the reservoir surface area by user-supplied evaporation coefficients. Specifically, the average reservoir surface area over the previous and current month (in acres) is multiplied by the monthly evaporation coefficient (in feet per month) to produce the rate of evaporation in acre-feet per month as specified by the following equation:

 $Evaporation(t) = EvaporationCoefficient(t) * \frac{(SurfaceArea(t) + SurfaceArea(t-1))}{2} * TimestepLength$

Where: t = current time-stept-1 = previous time-step

The monthly evaporation coefficients for Lake Powell and Lake Mead are presented in Table A-20.

Monthly Evapo	Table A-20 ration Coefficients for Lake Powell	and Lake Mead
Mariath	Evaporation Coeff	icient (feet/month)
Month	Lake Powell	Lake Mead
January	0.198	0.36
February	0.186	0.33
March	0.233	0.37
April	0.265	0.46
May	0.359	0.53
June	0.411	0.64
July	0.466	0.80
August	0.478	0.85
September	0.415	0.70
October	0.375	0.51
November	0.312	0.51
December	0.261	0.44

A.11 Model Input and Simulation

CRSS is used to simulate the future conditions of the system on a monthly time step. Output data include reservoir storage, releases from dams, hydroelectric generation, etc. Input data for the model includes monthly natural flow at 29 nodes throughout the Colorado River system. Input data also includes physical parameters (e.g., individual reservoir storage capacity, evaporation rates, and reservoir release capabilities), initial reservoir conditions, and the diversion and depletion schedules for entities in the Colorado River Basin States and Mexico. Operating rules for current or proposed operating policies are considered input.

Although several methods are available for ascertaining the range of possible future inflows, Reclamation utilized the existing historical record of natural flows to create several distinct and synthetic hydrologic sequences that are then used in a series of simulations. For this process, Reclamation used a particular technique for sampling from the historical record known as the Indexed Sequential Method, or ISM (Reclamation 1985; Ouarda et al. 1997). Each future hydrologic sequence is generated from the historical natural flow record by "cycling" through the record. This method produces the "n" possible flow sequences, where n corresponds to the number of years in the flow data set. Using the historical natural flow data from 1906 through 2005 with ISM results in a set of 100 separate simulations referred to as "traces." This enables an evaluation of proposed criteria over a broad range of possible future hydrologic conditions. Evaluations typically include all 100 traces using statistical techniques.

A.12 Model Uncertainty

Using ISM, CRSS generates a wide range of hydrologic possibilities which include periods of extreme drought and periods of much above average flow, allowing evaluation of the proposed federal action under a wide range of future flows. However, it is possible that future flows may include periods of wet or dry conditions that are outside of all the possible sequences seen in the historical record. Appendix N provides alternate hydrologic inflow scenarios for comparison with the 1906 through 2005 natural flow record using ISM.

Model output is also sensitive to input diversion and depletion schedules. The best available data for future diversions and depletions are input to CRSS (Appendix C and Appendix D). Actual future depletion schedules, especially when simulating system conditions far into the future (beyond about 20 years from the present) may differ.

A.13 References

Bureau of Reclamation. 1985. Colorado River Simulation System: System Overview. Denver, CO.

- Bureau of Reclamation. 1996. *Replacement of the Colorado River Simulation System*. Draft Report. Lower Colorado Region, Boulder City, NV.
- Bureau of Reclamation. 1998. CRSSez: Annual Colorado River System Simulation Model, Overview and Users Manual. Lower Colorado Region, Boulder City, NV.
- Bureau of Reclamation. 2001. Record of Decision, Colorado River Interim Surplus Guidelines, Final Environmental Impact Statement. Lower Colorado Region, Boulder City, NV.
- Bureau of Reclamation. 2002. *Final Environmental Impact Statement for the Secretarial Implementation Agreement, Inadvertent Overrun and Payback Policy, and Related Federal Actions.* October. Lower Colorado Region, Boulder City, NV.
- Bureau of Reclamation. 2005. CRSS-Lite Overview and Users' Manual. Lower Colorado Region. Boulder City, NV.
- Fulp, T. 1999. *Colorado River Operations*, paper presented at Climate Change Symposium, Cooperative Institute for Research in Environmental Systems (CIRIES). Boulder, CO.
- Fulp, T., B. Vickers, B. Williams, and D. King. 1999. *Replacing an Institutional Model: The Colorado River Simulation System Example*. Presented at the WaterPower 99 conference, American Society of Civil Engineers. Las Vegas, NV.
- Ouarda, T., J.W. Labadie, and D.G. Fontane. 1997. *Indexed Sequential Hydrologic Modeling for Hydropower Capacity Estimation. Journal of the American Water Resources Association*, 33(6):1337-1349.

- U.S. Army Corps of Engineers. 1982. Water Control Manual for Flood Control: Hoover Dam and Lake Mead, Colorado River. Los Angeles, CA.
- Zagona, E., T. Fulp, R. Shane, T. Magee, and H. Goranflo. 2001. *RiverWare™: A Generalized Tool for Complex Reservoir Systems Modeling. Journal of the American Water Resources Association.* 37(4):913–929.

This page intentionally left blank.

Attachment A

Summary Comparison of Lake Powell and Lake Mead Operations Under the No Action Alternative and the Action Alternatives

This attachment to Appendix A contains the summary comparison table of the Lake Powell and Lake Mead operational strategies for each alternative.

 Table Att. A-1

 Lake Powell

 Comparison of Alternatives

 Coordinated Reservoir Operations Element of the Proposed Federal Action

Lake Powell Storage (maf)	24.3	Equalization		11.3	ŭ	n n		o.	4.0	0
Preferred Alternative	Equalize, avoid spills or release 8.23 maf	Upper Equalization Line	Release 8.23 maf; if Lake Mead < 1,075 feet msl, balance contents with a min/max release of 7.0 and 9.0 maf			Release 7.48 mať; if Lake Mead < 1,025 feet msl, release 8.23 maf		Balance contents with a min/max release of 7 0 and 6 5 mat		
Reservoir Storage Alternative	Equalize, avoid spills or release 8.23 maf		Release 8.23 maf		Release 7.8 maf		Balance contents with a min/max release of 7.8 and 9.5 maf			
Water Supply Alternative	Equalize, avoid spills or release 8.23 maf	6 <u>02(a)</u>	Release 8.23 maf; if Lake Mead < 1,075 feet msl, balance contents with a min/max release of 7.0 and 9.5 maf			Balance contents with a min/max release of 7.0 and 9.5 maf				
Conservation Before Shortage Alternative	Equalize, avoid spills or release 8.23 maf	Upper Equalization Line	Release 8.23 maf: if Lake Mead < 1,075 feet msl, balance contents with a min/max release of 7.0 and 9.0 maf			Release 7.48 mať; if Lake Mead < 1,025 feet msl, release 8.23 maf		Balance contents with a min/max release of 7 0 and 0 5 maf		
Basin States Alternative	Equalize, avoid spills or release 8.23 maf	Upper Equalization Line	Release 8.23 mat: if Lake Mead < 1.075 feet msl, balance contents with a min/max release of 7.0 and 9.0 maf			Release 7.48 maf; if Lake Mead < 1,025 feet msl, release 8.23 maf		Balance contents with a min/max release of 7 0 and 0 5 maf	2	
No Action Alternative	Equalize, avoid spills or release 8.23 maf	<u> </u>	Release 8.23 maf							
Lake Powell Elevation (feet msl)	3,700	Equalization		3,595	575	0,070 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3,525	3,490	3,370

 Table Att. A-2

 Lake Mead

 Comparison of Alternatives

 Coordinated Reservoir Operations Element of the Proposed Federal Action

Lake Mead Elevation (feet msl)	No Action Alternative	Basin States Alternative	Conservation Before Shortage Alternative	Water Supply Alternative	Reservoir Storage Alternative	Preferred Alternative	Lake Mead Storage (maf)
1,220	Flood Control or 70R Surplus	Flood Control or 70R Surplus	Flood Control or 70R Surplus	Flood Control or 70R Surplus	Flood Control or 70R Surplus	Flood Control or 70R Surplus	25.9
007	Full Domestic Surplus (through 2016)	Domestic Surplus	Domestic Surplus	Full Domestic Surplus	Normal Operations	Domestic Surplus	6.777
1,145	Partial Domestic Surplus (through 2016)	Normal Operations	Normal Operations	Partial Domestic Surplus		Normal Operations	15.9
1,125	Normal Operations			Normal Operations			13.9
	Shortage 80 percent				Shortage 500 ¹ kaf		2
6/0 ⁽ L	Protection of elevation 1,050 feet msI	Shortage 333 kaf ¹	Voluntary Conservation		Shortage 667 ¹ kaf	Shortage 333 kaf ¹	20 I
0:00,1		Shortage 417 kaf ¹			Shortage 833 ¹ kaf	Shortage 417 kaf ¹	۹. / ۱
1,025		Shortage 500 kaf ¹ and Consultation ²			Shortage 1,000 ¹ kaf	Shortage 500 kaf ¹ and Consultation ²	2.8
-	Shortage Absolute Protection of elevation 1,000 feet msl		Shortage Absolute Protection of elevation 1,000 feet msl				}
895							o
¹ These are amount ² If Lake Mead falls I	's of shortage (i.e., reduced deliverie below elevation 1,025, the Departm	is in the United States). As in the Dra ent will initiate efforts to develop add	aft EIS, the Final EIS includes mode ittional guidelines for shortages at lo	ling assumptions that identify water ower Lake Mead elevations.	deliveries to Mexico pursuant to th	e 1944 Treaty.	

Attachment A CRSS Model Documentation

Attachment B

Elevation, Capacity, and Surface Area Relationships for Lake Powell and Lake Mead

This attachment to Appendix A contains tables used in the CRSS model which present the corresponding values for the range of operational elevations at Lake Powell and Lake Mead to the live capacity, total capacity, and surface area for each respective reservoir.

Elevation	Volume Live	Volume Total	Surface Area	 Elevation	Volume Live	Volume Total	Surface Area
(feet msl)	Capacity (af)	Capacity (af)	(acres)	 (feet msl)	Capacity (af)	Capacity (af)	(acres)
3,370	0	1,895,000	20,303	 3,410	964,242	2,859,242	28,054
3,371	20,393	1,915,393	20,483	 3,411	992,396	2,887,396	28,253
3,372	40,966	1,935,966	20,663	 3,412	1,020,748	2,915,748	28,452
3,373	61,719	1,956,719	20,843	 3,413	1,049,299	2,944,299	28,651
3,374	82,651	1,977,651	21,023	 3,414	1,078,050	2,973,050	28,850
3,375	103,764	1,998,764	21,203	 3,415	1,106,999	3,001,999	29,049
3,376	125,056	2,020,056	21,382	 3,416	1,136,148	3,031,148	29,248
3,377	146,529	2,041,529	21,562	 3,417	1,165,496	3,060,496	29,448
3,378	168,181	2,063,181	21,742	 3,418	1,195,043	3,090,043	29,647
3,379	190,013	2,085,013	21,922	 3,419	1,224,790	3,119,790	29,846
3,380	212,025	2,107,025	22,102	3,420	1,254,735	3,149,735	30,045
3,381	234,226	2,129,226	22,300	3,421	1,284,896	3,179,896	30,278
3,382	256,625	2,151,625	22,498	 3,422	1,315,290	3,210,290	30,510
3,383	279,222	2,174,222	22,696	3,423	1,345,917	3,240,917	30,743
3,384	302,017	2,197,017	22,894	3,424	1,376,777	3,271,777	30,976
3,385	325,010	2,220,010	23,092	3,425	1,407,869	3,302,869	31,208
3,386	348,201	2,243,201	23,290	 3,426	1,439,194	3,334,194	31,441
3,387	371,590	2,266,590	23,488	 3,427	1,470,751	3,365,751	31,674
3,388	395,177	2,290,177	23,686	3,428	1,502,541	3,397,541	31,907
3,389	418,962	2,313,962	23,884	 3,429	1,534,564	3,429,564	32,139
3,390	442,945	2,337,945	24,082	 3,430	1,566,820	3,461,820	32,372
3,391	467,126	2,362,126	24,280	 3,431	1,599,308	3,494,308	32,605
3,392	491,505	2,386,505	24,478	 3,432	1,632,029	3,527,029	32,837
3,393	516,082	2,411,082	24,676	 3,433	1,664,983	3,559,983	33,070
3,394	540,857	2,435,857	24,874	 3,434	1,698,170	3,593,170	33,303
3,395	565,830	2,460,830	25,072	 3,435	1,731,589	3,626,589	33,535
3,396	591,001	2,486,001	25,270	 3,436	1,765,241	3,660,241	33,768
3,397	616,370	2,511,370	25,468	 3,437	1,799,125	3,694,125	34,001
3,398	641,937	2,536,937	25,666	 3,438	1,833,242	3,728,242	34,234
3,399	667,702	2,562,702	25,864	 3,439	1,867,592	3,762,592	34,466
3,400	693,665	2,588,665	26,062	 3,440	1,902,175	3,797,175	34,699
3,401	719,827	2,614,827	26,261	 3,441	1,937,016	3,832,016	34,982
3,402	746,187	2,641,187	26,460	3,442	1,972,139	3,867,139	35,265
3,403	772,747	2,667,747	26,659	3,443	2,007,546	3,902,546	35,548
3,,404	799,506	2,694,506	26,859	3,444	2,043,236	3,938,236	35,831
3,405	826,464	2,721,464	27,058	 3,445	2,079,209	3,974,209	36,115
3,406	853,622	2,748,622	27,257	 3,446	2,115,465	4,010,465	36,398
3,407	880,978	2,775,978	27,456	 3,447	2,152,004	4,047,004	36,681
3,408	908,534	2,803,534	27,655	 3,448	2,188,826	4,083,826	36,964
3,409	936,289	2,831,289	27,854	 3,449	2,225,932	4,120,932	37,247

Table Att. B-1 Lake Powell Elevation to Storage Volume and Surface Area Relationships

Elevation	Volume Live	Volume Total	Surface Area (acres)	 Elevation	Volume Live	Volume Total	Surface Area
2.450			(acres)				(acres)
3,450	2,263,320	4,158,320	37,530	 3,490	3,997,163	5,892,163	49,330
3,451	2,300,992	4,195,992	37,813	 3,491	4,046,646	5,941,646	49,636
3,452	2,338,946	4,233,946	38,096	 3,492	4,096,435	5,991,435	49,942
3,453	2,377,184	4,272,184	38,379	 3,493	4,146,529	6,041,529	50,247
3,454	2,415,705	4,310,705	38,662	 3,494	4,196,929	6,091,929	50,553
3,455	2,454,509	4,349,509	38,946	 3,495	4,247,634	6,142,634	50,858
3,456	2,493,596	4,388,596	39,229	 3,496	4,298,645	6,193,645	51,164
3,457	2,532,966	4,427,966	39,512	 3,497	4,349,962	6,244,962	51,469
3,458	2,572,619	4,467,619	39,795	 3,498	4,401,584	6,296,584	51,775
3,459	2,612,556	4,507,556	40,078	 3,499	4,453,512	6,348,512	52,080
3,460	2,652,775	4,547,775	40,361	 3,500	4,505,745	6,400,745	52,386
3,461	2,693,284	4,588,284	40,657	 3,501	4,558,308	6,453,308	52,741
3,462	2,734,088	4,629,088	40,952	 3,502	4,611,226	6,506,226	53,095
3,463	2,775,189	4,670,189	41,248	 3,503	4,664,498	6,559,498	53,450
3,464	2,816,585	4,711,585	41,544	 3,504	4,718,125	6,613,125	53,804
3,465	2,858,276	4,753,276	41,840	 3,505	4,772,106	6,667,106	54,159
3,466	2,900,264	4,795,264	42,135	 3,506	4,826,442	6,721,442	54,513
3,467	2,942,547	4,837,547	42,431	 3,507	4,881,132	6,776,132	54,868
3,468	2,985,125	4,880,125	42,727	 3,508	4,936,177	6,831,177	55,222
3,469	3,028,000	4,923,000	43,022	 3,509	4,991,576	6,886,576	55,577
3,470	3,071,170	4,966,170	43,318	 3,510	5,047,330	6,942,330	55,931
3,471	3,114,636	5,009,636	43,614	 3,511	5,103,438	6,998,438	56,286
3,472	3,158,397	5,053,397	43,909	 3,512	5,159,901	7,054,901	56,640
3,473	3,202,455	5,097,455	44,205	 3,513	5,216,718	7,111,718	56,994
3,474	3,246,808	5,141,808	44,501	 3,514	5,273,890	7,168,890	57,349
3,475	3,291,456	5,186,456	44,797	 3,515	5,331,416	7,226,416	57,704
3,476	3,336,401	5,231,401	45,092	 3,516	5,389,297	7,284,297	58,058
3,477	3,381,641	5,276,641	45,388	 3,517	5,447,532	7,342,532	58,412
3,478	3,427,176	5,322,176	45,684	3,518	5,506,122	7,401,122	58,767
3,479	3,473,008	5,368,008	45,979	3,519	5,565,066	7,460,066	59,122
3,480	3,519,135	5,414,135	46,275	3,520	5,624,365	7,519,365	59,476
3,481	3,565,563	5,460,563	46,581	3,521	5,684,034	7,579,034	59,863
3,482	3,612,296	5,507,296	46,886	3,522	5,744,090	7,639,090	60,249
3,483	3,659,335	5,554,335	47,192	3,523	5,804,532	7,699,532	60,635
3,484	3,706,679	5,601,679	47,497	3,524	5,865,361	7,760,361	61,022
3,485	3,754,329	5,649,329	47,803	 3,525	5,926,576	7,821,576	61,409
3,486	3,802,285	5,697,285	48,108	 3,526	5,988,178	7,883,178	61,795
3,487	3,850,546	5,745,546	48,414	 3,527	6,050,166	7,945,166	62,181
3,488	3,899,113	5,794,113	48,719	 3,528	6,112,541	8,007,541	62,568
3,489	3,947,985	5,842,985	49,025	3,529	6,175,302	8,070,302	62,955

Table Att. B-1 Lake Powell Elevation to Storage Volume and Surface Area Relationships

	Lake			oiu				
Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)		Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)
3,530	6,238,450	8,133,450	63,341		3,570	9,107,080	11,002,080	80,824
3,531	6,301,984	8,196,984	63,727		3,571	9,188,146	11,083,146	81,308
3,532	6,365,905	8,260,905	64,114		3,572	9,269,697	11,164,697	81,793
3,533	6,430,212	8,325,212	64,501		3,573	9,351,731	11,246,731	82,277
3,534	6,494,906	8,389,906	64,887		3,574	9,434,250	11,329,250	82,761
3,535	6,559,986	8,454,986	65,274		3,575	9,517,254	11,412,254	83,246
3,536	6,625,453	8,520,453	65,660		3,576	9,600,741	11,495,741	83,730
3,537	6,691,306	8,586,306	66,047		3,577	9,684,713	11,579,713	84,214
3,538	6,757,546	8,652,546	66,433		3,578	9,769,170	11,664,170	84,698
3,539	6,824,172	8,719,172	66,820		3,,579	9,854,110	11,749,110	85,183
3,540	6,891,185	8,786,185	67,206		3,580	9,939,535	11,834,535	85,667
3,541	6,958,610	8,853,610	67,645		3,581	10,025,445	11,920,445	86,153
3,542	7,026,475	8,921,475	68,083		3,582	10,111,841	12,006,841	86,639
3,543	7,094,777	8,989,777	68,522		3,583	10,198,723	12,093,723	87,125
3,544	7,163,519	9,058,519	68,961		3,584	10,286,091	12,181,091	87,611
3,545	7,232,699	9,127,699	69,400		3,585	10,373,945	12,268,945	88,097
3,546	7,302,319	9,197,319	69,839		3,586	10,462,285	12,357,285	88,583
3,547	7,372,376	9,267,376	70,277		3,587	10,551,111	12,446,111	89,069
3,548	7,442,873	9,337,873	70,716		3,588	10,640,423	12,535,423	89,555
3,549	7,513,808	9,408,808	71,155		3,589	10,730,221	12,625,221	90,041
3,550	7,585,183	9,480,183	71,594		3,590	10,820,505	12,715,505	90,527
3,551	7,656,995	9,551,995	72,032		3,591	10,911,275	12,806,275	91,013
3,552	7,729,247	9,624,247	72,471		3,592	11,002,531	12,897,531	91,499
3,553	7,801,937	9,696,937	72,910		3,593	11,094,273	12,989,273	91,985
3,554	7,875,067	9,770,067	73,348		3,594	11,186,501	13,081,501	92,471
3,555	7,948,634	9,843,634	73,787		3,595	11,279,215	13,174,215	92,957
3,556	8,022,641	9,917,641	74,226		3,596	11,372,415	13,267,415	93,443
3,557	8,097,086	9,992,086	74,665		3,597	11,466,101	13,361,101	93,929
3,558	8,171,970	10,066,970	75,104		3,598	11,560,273	13,455,273	94,415
3,559	8,247,293	10,142,293	75,542		3,599	11,654,931	13,549,931	94,901
3,560	8,323,055	10,218,055	75,981		3,600	11,750,075	13,645,075	95,387
3,561	8,399,278	10,294,278	76,465		3,601	11,845,726	13,740,726	95,914
3,562	8,475,986	10,370,986	76,950		3,602	11,941,903	13,836,903	96,441
3,563	8,553,177	10,448,177	77,434		3603	12,038,608	13,933,608	96,968
3,564	8,630,853	10,525,853	77,918		3,,604	12,135,840	14,030,840	97,495
3,565	8,709,014	10,604,014	78,402		3,605	12,233,599	14,128,599	98,023
3,566	8,787,658	10,682,658	78,887		3,606	12,331,885	14,226,885	98,550
3,567	8,866,787	10,761,787	79,371		3,607	12,430,698	14,325,698	99,077
3,568	8,946,401	10,841,401	79,855		3,608	12,530,038	14,425,038	99,604
3,569	9,026,498	10,921,498	80,340		3,609	12,629,906	14,524,906	100,131

Table Att. B-1 Lake Powell Elevation to Storage Volume and Surface Area Relationships

	Nelson II	Volume	Surface		Nolone 11	Volume	Surface
Elevation (feet msl)	Volume Live Capacity (af)	Total Capacity (af)	Area (acres)	Elevation (feet msl)	Volume Live Capacity (af)	Total Capacity (af)	Area (acres)
3,610	12,730,300	14,625,300	100,658	3,650	17,215,718	19,110,718	124,477
3,611	12,831,222	14,726,222	101,185	3,651	17,340,515	19,235,515	125,119
3,612	12,932,670	14,827,670	101,712	3,652	17,465,955	19,360,955	125,761
3,613	13,034,646	14,929,646	102,239	3,653	17,592,037	19,487,037	126,403
3,614	13,137,149	15,032,149	102,766	3,654	17,718,762	19,613,762	127,046
3,615	13,240,179	15,135,179	103,294	3,655	17,846,128	19,741,128	127,688
3,616	13,343,736	15,238,736	103,821	3,656	17,974,137	19,869,137	128,330
3,617	13,447,820	15,342,820	104,348	3,657	18,102,788	19,997,788	128,972
3,618	13,552,431	15,447,431	104,875	3,658	18,232,082	20,127,082	129,615
3,619	13,657,570	15,552,570	105,402	3,659	18,362,017	20,257,017	130,257
3,620	13,763,235	15,658,235	105,929	3,660	18,492,595	20,387,595	130,899
3,621	13,869,467	15,764,467	106,535	3,661	18,623,863	20,518,863	131,636
3,622	13,976,306	15,871,306	107,142	3,662	18,755,868	20,650,868	132,374
3,623	14,083,750	15,978,750	107,748	3,663	18,888,610	20,783,610	133,111
3,624	14,191,801	16,086,801	108,354	3,664	19,022,090	20,917,090	133,849
3,625	14,300,458	16,195,458	108,960	3,665	19,156,308	21,051,308	134,586
3,626	14,409,722	16,304,722	109,567	3,666	19,291,262	21,186,262	135,323
3,627	14,519,591	16,414,591	110,173	3,667	19,426,954	21,321,954	136,061
3,628	14,630,067	16,525,067	110,779	3,668	19,563,384	21,458,384	136,798
3,629	14,741,149	16,636,149	111,385	3,669	19,700,551	21,595,551	137,536
3,630	14,852,838	16,747,838	111,992	3,670	19,838,455	21,733,455	138,273
3,631	14,965,132	16,860,132	112,598	3,671	19,977,097	21,872,097	139,010
3,632	15,078,033	16,973,033	113,204	3,672	20,116,476	22,011,476	139,748
3,633	15,191,540	17,086,540	113,810	3,673	20,256,592	22,151,592	140,485
3,634	15,305,654	17,200,654	114,417	3,674	20,397,446	22,292,446	141,223
3,635	15,420,373	17,315,373	115,023	3,675	20,539,038	22,434,038	141,960
3,636	15,535,699	17,430,699	115,629	3,676	20,681,366	22,576,366	142,697
3,637	15,651,631	17,546,631	116,235	3,677	20,824,432	22,719,432	143,435
3,638	15,768,170	17,663,170	116,842	3,678	20,968,236	22,863,236	144,172
3,639	15,885,314	17,780,314	117,448	 3,679	21,112,777	23,007,777	144,910
3,640	16,003,065	17,898,065	118,054	3,680	21,258,055	23,153,055	145,647
3,641	16,121,440	18,016,440	118,696	3,681	21,404,080	23,299,080	146,404
3,642	16,240,458	18,135,458	119,339	3,682	21,550,863	23,445,863	147,161
3,643	16,360,117	18,255,117	119,981	3,683	21,698,402	23,593,402	147,918
3,644	16,480,419	18,375,419	120,623	3,684	21,846,698	23,741,698	148,674
3,645	16,601,363	18,496,363	121,265	3,685	21,995,751	23,890,751	149,431
3,646	16,722,950	18,617,950	121,908	3,686	22,145,560	24,040,560	150,188
3,647	16,845,178	18,740,178	122,550	3,687	22,296,127	24,191,127	150,945
3,648	16,968,049	18,863,049	123,192	3,688	22,447,450	24,342,450	151,702
3,649	17,091,562	18,986,562	123,834	3,689	22,599,530	24,494,530	152,459

Table Att. B-1 Lake Powell Elevation to Storage Volume and Surface Area Relationships

	Lake	Powell Elevation t	o Storage V	olu	me and Surfac	ce Area Relationshi	ps	
Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)		Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)
3,690	22,752,368	24,647,368	153,216		3,701	24,483,556	26,378,556	161,598
3,691	22,905,961	24,800,961	153,972		3,702	24,645,562	26,540,562	162,413
3,692	23,060,312	24,955,312	154,729		3,703	24,808,381	26,703,381	163,227
3,693	23,215,420	25,110,420	155,486		3,704	24,972,015	26,867,015	164,041
3,694	23,371,284	25,266,284	156,243		3,705	25,136,463	27,031,463	164,855
3,695	23,527,906	25,422,906	157,000		3,706	25,301,726	27,196,726	165,670
3,696	23,685,284	25,580,284	157,757		3,707	25,467,802	27,362,802	166,484
3,697	23,843,419	25,738,419	158,513		3,708	25,634,693	27,529,693	167,298
3,698	24,002,311	25,897,311	159,270		3,709	25,802,398	27,697,398	168,112
3,699	24,161,959	26,056,959	160,027		3,710	25,970,918	27,865,918	168,927
3,700	24,322,365	26,217,365	160,784					

Table Att. B-1 Lake Powell Elevation to Storage Volume and Surface Area Relationships

Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)	Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)
895	0	2,035,000	28,911	937	1,413,865	3,448,865	38,456
896	29,011	2,064,011	29,119	938	1,452,433	3,487,433	38,682
897	58,234	2,093,234	29,327	939	1,491,228	3,526,228	38,908
898	87,665	2,122,665	29,535	940	1,530,249	3,565,249	39,134
899	117,303	2,152,303	29,742	941	1,569,495	3,604,495	39,357
900	147,153	2,182,153	29,950	942	1,608,964	3,643,964	39,581
901	177,220	2,212,220	30,183	943	1,648,656	3,683,656	39,804
902	207,519	2,242,519	30,416	944	1,688,572	3,723,572	40,027
903	238,052	2,273,052	30,649	945	1,728,711	3,763,711	40,251
904	268,818	2,303,818	30,882	946	1,769,073	3,804,073	40,474
905	299,817	2,334,817	31,116	947	1,809,659	3,844,659	40,697
906	331,049	2,366,049	31,349	948	1,850,468	3,885,468	40,921
907	362,515	2,397,515	31,582	949	1,891,500	3,926,500	41,144
908	394,213	2,429,213	31,815	950	1,932,756	3,967,756	41,367
909	426,145	2,461,145	32,048	951	1,974,256	4,009,256	41,633
910	458,310	2,493,310	32,281	952	2,016,021	4,051,021	41,898
911	490,708	2,525,708	32,515	953	2,058,052	4,093,052	42,164
912	523,339	2,558,339	32,748	954	2,100,348	4,135,348	42,429
913	556,203	2,591,203	32,981	955	2,142,910	4,177,910	42,695
914	589,300	2,624,300	33,214	956	2,185,737	4,220,737	42,960
915	622,631	2,657,631	33,447	957	2,228,830	4,263,830	43,225
916	656,195	2,691,195	33,680	958	2,272,188	4,307,188	43,491
917	689,992	2,724,992	33,913	959	2,315,812	4,350,812	43,756
918	724,022	2,759,022	34,147	960	2,359,701	4,394,701	44,022
919	758,285	2,793,285	34,380	961	2,403,855	4,438,855	44,287
920	792,781	2,827,781	34,613	962	2,448,275	4,483,275	44,553
921	827,507	2,862,507	34,839	963	2,492,960	4,527,960	44,818
922	862,459	2,897,459	35,065	964	2,537,911	4,572,911	45,083
923	897,637	2,932,637	35,291	965	2,583,127	4,618,127	45,349
924	933,041	2,968,041	35,517	966	2,628,609	4,663,609	45,614
925	968,671	3,003,671	35,743	967	2,674,356	4,709,356	45,880
926	1,004,527	3,039,527	35,969	968	2,720,369	4,755,369	46,145
927	1,040,609	3,075,609	36,195	969	2,766,646	4,801,646	46,411
928	1,076,918	3,111,918	36,421	970	2,813,190	4,848,190	46,676
929	1,113,452	3,148,452	36,647	971	2,859,995	4,894,995	46,934
930	1,150,212	3,185,212	36,873	972	2,907,058	4,942,058	47,192
931	1,187,199	3,222,199	37,099	973	2,954,380	4,989,380	47,450
932	1,224,411	3,259,411	37,326	974	3,001,959	5,036,959	47,709
933	1,261,850	3,296,850	37,552	975	3,049,797	5,084,797	47,967
934	1,299,515	3,334,515	37,778	976	3,097,893	5,132,893	48,225
935	1,337,405	3,372,405	38,004	977	3,146,247	5,181,247	48,483
936	1.375.522	3.410.522	38,230	978	3,194,859	5,229,859	48,741

Table Att. B-2 Lake Mead Elevation to Storage Volume and Surface Area Relationships

Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)	Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)
979	3,243,729	5,278,729	48,999	1,021	5,552,628	7,587,628	61,469
980	3,292,857	5,327,857	49,257	1,022	5,614,254	7,649,254	61,783
981	3,342,244	5,377,244	49,516	1,023	5,676,195	7,711,195	62,098
982	3,391,888	5,426,888	49,774	1,024	5,738,449	7,773,449	62,412
983	3,441,791	5,476,791	50,032	1,025	5,801,018	7,836,018	62,726
984	3,491,952	5,526,952	50,290	1,026	5,863,901	7,898,901	63,040
985	3,542,371	5,577,371	50,548	1,027	5,927,098	7,962,098	63,354
986	3,593,048	5,628,048	50,806	1,028	5,990,610	8,025,610	63,668
987	3,643,983	5,678,983	51,064	1,029	6,054,435	8,089,435	63,983
988	3,695,177	5,730,177	51,322	1,030	6,118,575	8,153,575	64,297
989	3,746,628	5,781,628	51,581	1,031	6,183,029	8,218,029	64,611
990	3,798,338	5,833,338	51,839	1,032	6,247,797	8,282,797	64,925
991	3,850,325	5,885,325	52,136	1,033	6,312,879	8,347,879	65,239
992	3,902,611	5,937,611	52,434	1,034	6,378,275	8,413,275	65,553
993	3,955,194	5,990,194	52,732	1,035	6,443,986	8,478,986	65,868
994	4,008,074	6,043,074	53,029	1,036	6,510,011	8,545,011	66,182
995	4,061,252	6,096,252	53,327	1,037	6,576,350	8,611,350	66,496
996	4,114,728	6,149,728	53,625	1,038	6,643,003	8,678,003	66,810
997	4,168,502	6,203,502	53,922	1,039	6,709,970	8,744,970	67,124
998	4,222,573	6,257,573	54,220	1,040	6,777,251	8,812,251	67,438
999	4,276,942	6,311,942	54,518	1,041	6,844,882	8,879,882	67,823
1,000	4,331,609	6,366,609	54,816	1,042	6,912,897	8,947,897	68,208
1,001	4,386,583	6,421,583	55,133	1,043	6,981,297	9,016,297	68,592
1,002	4,441,874	6,476,874	55,449	1,044	7,050,082	9,085,082	68,977
1,003	4,497,482	6,532,482	55,766	1,045	7,119,251	9,154,251	69,361
1,004	4,553,407	6,588,407	56,083	1,046	7,188,804	9,223,804	69,746
1,005	4,609,649	6,644,649	56,400	1,047	7,258,742	9,293,742	70,130
1,006	4,666,208	6,701,208	56,717	1,048	7,329,065	9,364,065	70,515
1,007	4,723,084	6,758,084	57,034	1,049	7,399,772	9,434,772	70,899
1,008	4,780,277	6,815,277	57,351	1,050	7,470,864	9,505,864	71,284
1,009	4,837,787	6,872,787	57,668	1,051	7,542,340	9,577,340	71,669
1,010	4,895,613	6,930,613	57,985	1,052	7,614,201	9,649,201	72,053
1,011	4,953,757	6,988,757	58,302	1,053	7,686,447	9,721,447	72,438
1,012	5,012,218	7,047,218	58,619	1,054	7,759,077	9,794,077	72,822
1,013	5,070,996	7,105,996	58,936	1,055	7,832,091	9,867,091	73,207
1,014	5,130,090	7,165,090	59,253	1,056	7,905,490	9,940,490	73,591
1,015	5,189,502	7,224,502	59,570	1,057	7,979,274	10,014,274	73,976
1,016	5,249,231	7,284,231	59,887	1,058	8,053,442	10,088,442	74,360
1,017	5,309,277	7,344,277	60,204	1,059	8,127,995	10,162,995	74,745
1,018	5,369,639	7,404,639	60,521	1,060	8,202,932	10,237,932	75,130
1,019	5,430,319	7,465,319	60,838	1,061	8,278,239	10,313,239	75,485
1.020	5,491,315	7 526 315	61 155	1 062	8 353 902	10.388.902	75 840

Table Att. B-2 Lake Mead Elevation to Storage Volume and Surface Area Relationships

Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)	Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)
1,063	8,429,920	10,464,920	76,196	1,105	11,943,866	13,978,866	91,423
1,064	8,506,293	10,541,293	76,551	1,106	12,035,485	14,070,485	91,814
1,065	8,583,022	10,618,022	76,906	1,107	12,127,494	14,162,494	92,204
1,066	8,660,106	10,695,106	77,262	1,108	12,219,893	14,254,893	92,595
1,067	8,737,546	10,772,546	77,617	1,109	12,312,683	14,347,683	92,985
1,068	8,815,340	10,850,340	77,972	1,110	12,405,864	14,440,864	93,376
1,069	8,893,490	10,928,490	78,328	1,111	12,499,435	14,534,435	93,766
1,070	8,971,996	11,006,996	78,683	1,112	12,593,397	14,628,397	94,157
1,071	9,050,857	11,085,857	79,038	1,113	12,687,749	14,722,749	94,548
1,072	9,130,073	11,165,073	79,394	1,114	12,782,492	14,817,492	94,938
1,073	9,209,644	11,244,644	79,749	1,115	12,877,626	14,912,626	95,329
1,074	9,289,571	11,324,571	80,105	1,116	12,973,149	15,008,149	95,719
1,075	9,369,853	11,404,853	80,460	1,117	13,069,064	15,104,064	96,110
1,076	9,450,491	11,485,491	80,815	1,118	13,165,369	15,200,369	96,500
1,077	9,531,484	11,566,484	81,171	1,119	13,262,064	15,297,064	96,891
1,078	9,612,832	11,647,832	81,526	1,120	13,359,150	15,394,150	97,281
1,079	9,694,536	11,729,536	81,881	1,121	13,456,647	15,491,647	97,713
1,080	9,776,595	11,811,595	82,237	1,122	13,554,576	15,589,576	98,145
1,081	9,859,002	11,894,002	82,578	1,123	13,652,937	15,687,937	98,577
1,082	9,941,751	11,976,751	82,919	1,124	13,751,730	15,786,730	99,008
1,083	10,024,841	12,059,841	83,261	1,125	13,850,954	15,885,954	99,440
1,084	10,108,272	12,143,272	83,602	1,126	13,950,610	15,985,610	99,872
1,085	10,192,045	12,227,045	83,943	1,127	14,050,698	16,085,698	100,304
1,086	10,276,159	12,311,159	84,285	1,128	14,151,218	16,186,218	100,736
1,087	10,360,614	12,395,614	84,626	1,129	14,252,169	16,287,169	101,167
1,088	10,445,411	12,480,411	84,967	1,130	14,353,553	16,388,553	101,599
1,089	10,530,549	12,565,549	85,309	1,131	14,455,368	16,490,368	102,031
1,090	10,616,028	12,651,028	85,650	1,132	14,557,615	16,592,615	102,463
1,091	10,701,869	12,736,869	86,032	1,133	14,660,293	16,695,293	102,895
1,092	10,788,092	12,823,092	86,414	1,134	14,763,404	16,798,404	103,326
1,093	10,874,698	12,909,698	86,796	1,135	14,866,946	16,901,946	103,758
1,094	10,961,685	12,996,685	87,178	1,136	14,970,920	17,005,920	104,190
1,095	11,049,054	13,084,054	87,560	1,137	15,075,326	17,110,326	104,622
1,096	11,136,805	13,171,805	87,942	1,138	15,180,164	17,215,164	105,054
1,097	11,224,939	13,259,939	88,324	1,139	15,285,433	17,320,433	105,485
1,098	11,313,454	13,348,454	88,706	1,140	15,391,135	17,426,135	105,917
1,099	11,402,352	13,437,352	89,089	1,141	15,497,372	17,532,372	106,558
1,100	11,491,631	13,526,631	89,471	1,142	15,604,251	17,639,251	107,199
1,101	11,581,297	13,616,297	89,861	1,143	15,711,770	17,746,770	107,840
1,102	11,671,354	13,706,354	90,252	1,144	15,819,930	17,854,930	108,480
1,103	11,761,801	13,796,801	90,642	1,145	15,928,731	17,963,731	109,121
1 104	11,852,638	13,887,638	91.033	1,146	16.038.172	18 073 172	109 762

Table Att. B-2 Lake Mead Elevation to Storage Volume and Surface Area Relationships

Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)	Elevation (feet msl)	Volume Live Capacity (af)	Volume Total Capacity (af)	Surface Area (acres)
1,147	16,148,255	18,183,255	110,403	1,189	21,364,868	23,399,868	138,210
1,148	16,258,978	18,293,978	111,044	1,190	21,503,408	23,538,408	138,870
1,149	16,370,342	18,405,342	111,684	1,191	21,642,579	23,677,579	139,472
1,150	16,482,347	18,517,347	112,325	1,192	21,782,352	23,817,352	140,074
1,151	16,594,992	18,629,992	112,966	1,193	21,922,727	23,957,727	140,677
1,152	16,708,279	18,743,279	113,607	1,194	22,063,705	24,098,705	141,279
1,153	16,822,206	18,857,206	114,248	1,195	22,205,285	24,240,285	141,881
1,154	16,936,774	18,971,774	114,888	1,196	22,347,468	24,382,468	142,483
1,155	17,051,983	19,086,983	115,529	1,197	22,490,252	24,525,252	143,086
1,156	17,167,833	19,202,833	116,170	1,198	22,633,639	24,668,639	143,688
1,157	17,284,323	19,319,323	116,811	1,199	22,777,628	24,812,628	144,290
1,158	17,401,454	19,436,454	117,452	1,200	22,922,220	24,957,220	144,893
1,159	17,519,226	19,554,226	118,092	1,201	23,067,429	25,102,429	145,526
1,160	17,637,639	19,672,639	118,733	1,202	23,213,271	25,248,271	146,159
1,161	17,756,711	19,791,711	119,410	1,203	23,359,746	25,394,746	146,792
1,162	17,876,460	19,911,460	120,087	1,204	23,506,855	25,541,855	147,425
1,163	17,996,885	20,031,885	120,764	1,205	23,654,596	25,689,596	148,058
1,164	18,117,988	20,152,988	121,441	1,206	23,802,971	25,837,971	148,691
1,165	18,239,767	20,274,767	122,118	1,207	23,951,978	25,986,978	149,324
1,166	18,362,224	20,397,224	122,795	1,208	24,101,619	26,136,619	149,957
1,167	18,485,357	20,520,357	123,472	1,209	24,251,893	26,286,893	150,590
1,168	18,609,168	20,644,168	124,149	1,210	24,402,800	26,437,800	151,224
1,169	18,733,655	20,768,655	124,826	1,211	24,554,316	26,589,316	151,808
1,170	18,858,820	20,893,820	125,503	1,212	24,706,417	26,741,417	152,393
1,171	18,984,661	21,019,661	126,180	1,213	24,859,103	26,894,103	152,978
1,172	19,111,179	21,146,179	126,857	1,214	25,012,373	27,047,373	153,563
1,173	19,238,375	21,273,375	127,534	1,215	25,166,229	27,201,229	154,148
1,174	19,366,247	21,401,247	128,211	1,216	25,320,669	27,355,669	154,733
1,175	19,494,796	21,529,796	128,888	1,217	25,475,695	27,510,695	155,318
1,176	19,624,022	21,659,022	129,565	1,218	25,631,305	27,666,305	155,903
1,177	19,753,925	21,788,925	130,242	1,219	25,787,500	27,822,500	156,488
1,178	19,884,505	21,919,505	130,919	1,220	25,944,281	27,979,281	157,073
1,179	20,015,762	22,050,762	131,595	1,221	26,101,666	28,136,666	157,697
1,180	20,147,696	22,182,696	132,272	1,222	26,259,675	28,294,675	158,322
1,181	20,280,298	22,315,298	132,932	1,223	26,418,310	28,453,310	158,947
1,182	20,413,560	22,448,560	133,592	1,224	26,577,569	28,612,569	159,572
1,183	20,547,482	22,582,482	134,252	1,225	26,737,453	28,772,453	160,196
1,184	20,682,064	22,717,064	134,911	1,226	26,897,962	28,932,962	160,821
1,185	20,817,305	22,852,305	135,571	1,227	27,059,095	29,094,095	161,446
1,186	20,953,206	22,988,206	136,231	1,228	27,220,854	29,255,854	162,071
1,187	21,089,767	23,124,767	136,891	1,229	27,383,237	29,418,237	162,695
1.188	21.226.987	23.261.987	137.550			1	1

Table Att. B-2 Lake Mead Elevation to Storage Volume and Surface Area Relationships

This page left intentionally blank.