Annual Operating Plan for Colorado River Reservoirs 2014
The Honorable Gary Herbert
Governor of Utah
Salt Lake City, Utah 84114

Dear Governor Herbert:

Enclosed is the Annual Operating Plan (AOP) for Colorado River System Reservoirs for 2014. The AOP contains the projected plan of operation of Colorado River reservoirs based on the most probable runoff conditions. The plan of operation reflects use of the reservoirs for all purposes consistent with the Criteria for Coordinated Long-Range Operation of Colorado River Reservoirs pursuant to the Colorado River Basin Project Act of September 30, 1968. The AOP for 2014 incorporates the Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead (2007 Interim Guidelines).

The AOP for 2014 was prepared by the Bureau of Reclamation in consultation with: the seven Colorado River Basin States Governors’ representatives; the Upper Colorado River Commission; Native American tribes; appropriate Federal agencies; representatives of the academic and scientific communities, environmental organizations, and the recreation industry; water delivery contractors; contractors for the purchase of Federal power; others interested in Colorado River operations; and the general public, through the Colorado River Management Work Group (Work Group). The Work Group held meetings on May 30, July 30, and September 5, 2013.

Given the current historic 14-year drought and declining Colorado River System storage, the water year release from Lake Powell in the 2014 water year is projected to be 7.48 million acre-feet (maf) (9,230 million cubic meters [mcm]). We note that an annual release of 7.48 maf (9,230 mcm) is the lowest release from Lake Powell since filling in the 1960s.

Water deliveries in the Lower Basin during calendar year 2014 will be limited to 7.5 maf (9,250 mcm) plus or minus any credits for Intentionally Created Surplus (ICS). The 2007 Interim Guidelines adopted the ICS mechanism that, among other things, encourages the efficient use and management of Colorado River water in the Lower Basin. The ICS may be created and delivered in 2014 pursuant to the 2007 Interim Guidelines and appropriate delivery and forbearance agreements.

A volume of up to 1.5 maf (1,850 mcm) of water will be scheduled for delivery to the Republic of Mexico during calendar year 2014 in accordance with Article 15 of the 1944 United States-Mexico Water Treaty and Minutes No. 242 and 314 (as it may be extended) of the International Boundary and Water Commission (IBWC). In accordance with IBWC Minute No. 319, it is anticipated that this amount may be increased to address water delivered consistent with
Sections III.4 and III.6.e.i. In addition, Mexico may defer delivery of water pursuant to Sections III.1 and III.4 of IBWC Minute No. 319.

Inflow to Lake Powell has been below average in 11 of the past 14 water years (2000-2013). This 14 year period is the lowest in over 100 years of record keeping on the Colorado River. Accordingly, all water users in the Colorado River Basin are encouraged to prudently manage the use of available supplies.

The Department of the Interior continues to closely monitor water supply conditions in the Colorado River Basin and looks forward to continuing to work with your representatives and other interested stakeholders regarding the management of this vital river system.

Sincerely,

Sally Jewell

Enclosure

Identical Letters Sent To:

The Honorable Joseph R. Biden, Jr.
President of the Senate
Washington, DC 20501

The Honorable Brian Sandoval
Governor of Nevada
Carson City, Nevada 89701

The Honorable John Boehner
Speaker of the House of Representatives
Washington, DC 20515

The Honorable Jerry Brown
Governor of California
Sacramento, California 95814

The Honorable Janice Brewer
Governor of Arizona
Phoenix, Arizona 85007

The Honorable Matt Mead
Governor of Wyoming
Cheyenne, Wyoming 82002

The Honorable John Hickenlooper
Governor of Colorado
Denver, Colorado 80203

Colonel Kimberly M. Colloton
District Commander
U.S. Army Corps of Engineers
Los Angeles District
P.O. Box 532711
Los Angeles, California 90053

The Honorable Susana Martinez
Governor of New Mexico
Santa Fe, New Mexico 87501
Continued from previous page.

Identical Letter Sent To:

Ms. Gina McCarthy
Administrator
Environmental Protection Agency
1200 Pennsylvania Avenue, N.W.
Washington, DC 20460

Mr. Mark Gabriel
Administrator
Western Area Power Administration
P.O. Box 281213
Lakewood, Colorado 80228

cc: Ms. Jayne Harkins, P.E.
Executive Director
Colorado River Commission of Nevada
555 East Washington Avenue, Ste. 3100
Las Vegas, Nevada 89101

Mr. Scott Verhines, P.E.
State Engineer
Office of the State Engineer
P.O. Box 25102
Santa Fe, New Mexico 87504

Ms. Sandra A. Fabritz-Whitney
Director
Arizona Department
of Water Resources
3550 North Central Avenue
Phoenix, Arizona 85012

Ms. Tanya M. Trujillo
Executive Director
Colorado River Board of California
770 Fairmont Avenue, Suite 100
Glendale, California 91203
(w/copy of encl to each)

Mr. Edward Drusina
Commissioner, United States Section
International Boundary and Water Commission
4171 North Mesa, Suite C-100
El Paso, Texas 79902

Mr. Dennis J. Strong
Director
Utah Division of Water Resources
P.O. Box 146201
Salt Lake City, Utah 84114

Mr. Patrick T. Tyrrell
State Engineer
State of Wyoming
Herschler Building, 4th Floor East
Cheyenne, Wyoming 82002

Mr. James Eklund
Director
Colorado Water Conservation Board
1313 Sherman Street, Suite 721
Denver, Colorado 80123

Mr. Don Ostler
Executive Director
Upper Colorado River Commission
355 South 400 East Street
Salt Lake City, Utah 84111
TABLE OF CONTENTS

INTRODUCTION .. 1
 Background ... 1
 Authority .. 2
 Purpose .. 3
 Summary .. 4
 Upper Basin Delivery .. 4
 Lower Basin Delivery .. 4
 1944 United States-Mexico Water Treaty Delivery ... 5

2013 HYDROLOGY SUMMARY AND RESERVOIR STATUS ... 6

2014 WATER SUPPLY ASSUMPTIONS .. 9

SUMMARY OF RESERVOIR OPERATIONS IN 2013 AND PROJECTED 2014 11

 Reservoir Operations ... 11
 Fontenelle Reservoir .. 12
 Flaming Gorge Reservoir ... 12
 Blue Mesa, Morrow Point, and Crystal Reservoirs (Aspinall Unit) 14
 Navajo Reservoir .. 15
 Lake Powell ... 17
 2014 Operating Tier and Projected Operations for Glen Canyon Dam 19
 Lake Mead ... 20
 Lakes Mohave and Havasu ... 21
 Bill Williams River .. 22
 Senator Wash and Laguna Reservoirs .. 22
 Imperial Dam .. 23
 Gila River Flows .. 23
 Warren H. Brock Reservoir ... 24
 Yuma Desalting Plant ... 24
 Off-stream Storage Agreements ... 24
 Intentionally Created Surplus ... 25
 Extraordinary Conservation ICS ... 25
 System Efficiency ICS ... 25
 Tributary Conservation ICS .. 26
 Imported ICS .. 26
 Delivery of Water to Mexico ... 26

2014 DETERMINATIONS ... 28

 Reservoir Determinations ... 28
 Upper Basin Reservoirs ... 28
 Lower Basin Reservoirs ... 29
 1944 United States-Mexico Water Treaty ... 31

DISCLAIMER .. 32
LIST OF TABLES

Table 1. Reservoir Conditions on October 1, 2013 (English Units) 8

Table 2. Reservoir Conditions on October 1, 2013 (Metric Units) 8

Table 3. Projected Unregulated Inflow into Lake Powell for Water Year 2014
(English Units) .. 10

Table 4. Projected Unregulated Inflow into Lake Powell for Water Year 2014
(Metric Units) .. 10
INTRODUCTION

Background

Each year’s Annual Operating Plan (AOP) for Colorado River Reservoirs reports on both the past operations of the Colorado River reservoirs for the completed year as well as projected operations and releases from these reservoirs for the current (i.e., upcoming) year. Accordingly, this 2014 AOP reports on 2013 operations as well as projected operations for 2014. In recent years, additional operational rules, guidelines, and decisions have been put into place for Colorado River reservoirs including the 1996 Glen Canyon Dam Record of Decision\(^1\) (ROD), the 1997 Operating Criteria for Glen Canyon Dam,\(^2\) the 1999 Off-stream Storage of Colorado River Water Rule (43 CFR Part 414),\(^3\) the 2001 Interim Surplus Guidelines\(^4\) addressing operation of Hoover Dam, the 2006 Flaming Gorge Dam ROD,\(^5\) the 2006 Navajo Dam ROD\(^6\) to implement recommended flows for endangered fish, the 2007 Interim Guidelines for the operations of Lake Powell and Lake Mead,\(^7\) and numerous environmental assessments addressing experimental releases from Glen Canyon Dam. Each AOP incorporates these rules, guidelines, and decisions and implements the criteria contained in the applicable decision document or documents. Thus, the AOP makes projections and reports on how the Bureau of Reclamation (Reclamation) will implement these decisions in response to changing water supply conditions as they unfold during the upcoming year, when conditions become known. Congress has charged the Secretary of the Interior (Secretary) with stewardship and responsibility for a wide range of natural, cultural, recreational, and tribal resources within the Colorado River Basin. The Secretary has the authority to operate and maintain Reclamation facilities within the Colorado River Basin addressed in this AOP to help manage these resources and accomplish their protection and enhancement in a manner fully consistent with applicable provisions of Federal law including the Law of the River, and other project-specific operational limitations.

\(^2\) Operating Criteria for Glen Canyon Dam (62 Federal Register 9447, March 3, 1997).
The Secretary recognized in the 2007 Interim Guidelines that the AOP serves to integrate numerous federal policies affecting reservoir operations: "The AOP is used to memorialize operational decisions that are made pursuant to individual federal actions (e.g., ISG [the 2001 Interim Surplus Guidelines], 1996 Glen Canyon Dam ROD, this [2007 Interim Guidelines] ROD). Thus, the AOP serves as a single, integrated reference document required by section 602(b) of the CRBPA of 1968 [Colorado River Basin Project Act of September 30, 1968 (Public Law 90-537)] regarding past and anticipated operations."

Authority

This 2014 AOP was developed in accordance with the processes set forth in: Section 602 of the CRBPA; the Criteria for Coordinated Long-Range Operation of Colorado River Reservoirs Pursuant to the Colorado River Basin Project Act of September 30, 1968 (P. L. 90-537) (Operating Criteria), as amended, promulgated by the Secretary; and Section 1804(c)(3) of the Grand Canyon Protection Act of 1992 (P. L. 102-575).

Section 602(b) of the CRBPA requires the Secretary to prepare and “transmit to the Congress and to the Governors of the Colorado River Basin States a report describing the actual operation under the adopted criteria [i.e., the Operating Criteria] for the preceding compact water year and the projected operation for the current year.”

This AOP has been developed consistent with: the Operating Criteria; applicable Federal laws; the Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande, the Treaty Between the United States of America and Mexico, signed February 3, 1944 (1944 United States-Mexico Water Treaty); interstate compacts; court decrees; the Colorado River Water Delivery Agreement,8 the 2007 Interim Guidelines; and other documents relating to the use of the waters of the Colorado River, which are commonly and collectively known as the “Law of the River.”

The 2014 AOP was prepared by Reclamation on behalf of the Secretary, working with other Interior agencies and the Western Area Power Administration (Western). Reclamation consulted with: the seven Colorado River Basin States Governors’ representatives; the Upper Colorado River Commission; Native American tribes; other appropriate Federal agencies; representatives of academic and scientific communities; environmental organizations; the recreation industry; water delivery contractors; contractors for the purchase of Federal power; others interested in Colorado River operations; and the general public through the Colorado River Management Work Group.

Article I(2) of the Operating Criteria allows for revision of the projected plan of operation to reflect current hydrologic conditions with notification to the Congress and the Governors of the Colorado River Basin States of any changes by June of each year. The process for

revision of the AOP is further described in Section 7.C of the 2007 Interim Guidelines. Any revision to the final AOP may occur only through the AOP consultation process as required by applicable Federal law.

Purpose

The purpose of the AOP is to illustrate the potential range of reservoir operations that might be expected in the upcoming water year, and to determine or address: (1) the quantity of water considered necessary to be in storage in the Upper Basin reservoirs as of September 30, 2014, pursuant to Section 602(a) of the CRBPA; (2) water available for delivery pursuant to the 1944 United States-Mexico Water Treaty and Minutes No. 242, 9 314 10 (as it may be extended), and 31911 of the International Boundary and Water Commission, United States and Mexico (IBWC); (3) whether the reasonable consumptive use requirements of mainstream users in the Lower Division States will be met under a “Normal,” “Surplus,” or “Shortage” Condition as outlined in Article III of the Operating Criteria and as implemented by the 2007 Interim Guidelines; and (4) whether water apportioned to, but unused by one or more Lower Division States, exists and can be used to satisfy beneficial consumptive use requests of mainstream users in other Lower Division States as provided in the Consolidated Decree of the Supreme Court of the United States in *Arizona v. California*, 547 U.S. 150 (2006) (Consolidated Decree).

Consistent with the above determinations and in accordance with other applicable provisions of the “Law of the River,” the AOP was developed with “appropriate consideration of the uses of the reservoirs for all purposes, including flood control, river regulation, beneficial consumptive uses, power production, water quality control, recreation, enhancement of fish and wildlife, and other environmental factors” (Operating Criteria, Article I (2)).

Since the hydrologic conditions of the Colorado River Basin can never be completely known in advance, the AOP presents projected operations resulting from three different hydrologic scenarios: the minimum probable, most probable, and maximum probable reservoir inflow conditions. Projected reservoir operations are modified during the water year as runoff forecasts are adjusted to reflect existing snowpack, basin storage, flow conditions, and as changes occur in projected water deliveries.

Summary

Upper Basin Delivery. Taking into account (1) the existing water storage conditions in the basin, (2) the August 2013 24-Month Study\(^\text{12}\) projection of the most probable near-term water supply conditions in the basin, and (3) Section 6.C of the 2007 Interim Guidelines, the Mid-Elevation Release Tier will govern the operation of Lake Powell for water year 2014. The August 2013 24-Month Study of the most probable inflow scenario projects the water year 2014 release from Glen Canyon Dam to be 7.48 million acre-feet (maf) (9,230 million cubic meters [mcm]).

For further information about the variability of projected inflow into Lake Powell, see the 2014 Water Supply Assumptions section and the Lake Powell section under the Summary of Reservoir Operations in 2013 and Projected 2014 Reservoir Operations, and Tables 3 and 4.

Lower Basin Delivery. Taking into account (1) the existing water storage conditions in the basin, (2) the most probable near-term water supply conditions in the basin, and (3) Section 2.B.5 of the 2007 Interim Guidelines, the Intentionally Created Surplus (ICS) Surplus Condition will govern the operation of Lake Mead for calendar year 2014 in accordance with Article III(3)(b) of the Operating Criteria and Article II(B)(2) of the Consolidated Decree.

No unused apportionment for calendar year 2014 is anticipated. If any unused apportionment becomes available after adoption of this AOP, Reclamation, on behalf of the Secretary, may allocate any such available unused apportionment for calendar year 2014. Any such allocation shall be made in accordance with Article II(B)(6) of the Consolidated Decree and the Lower Colorado Region Policy for Apportioned but Unused Water\(^\text{13}\) (Unused Water Policy).

Colorado River water may be stored off-stream pursuant to individual Storage and Interstate Release Agreements (SIRAs) and 43 CFR Part 414 within the Lower Division States. The Secretary shall make Intentionally Created Unused Apportionment (ICUA) available to contractors in Arizona, California, or Nevada pursuant to individual SIRAs and 43 CFR Part 414.

The Inadvertent Overrun and Payback Policy (IOPP), which became effective January 1, 2004, will be in effect during calendar year 2014.\(^\text{14}\)

\(^{12}\) The 24-Month Study refers to the operational study conducted by Reclamation to project future reservoir operations. The most recent 24-Month Study report is available on Reclamation’s Water Operations websites and is updated each month. Available online at: http://www.usbr.gov/uc/water/crsp/studies/index.html and http://www.usbr.gov/lc/region/g4000/24mo.pdf.

The 2007 Interim Guidelines adopted the ICS mechanism that among other things encourages the efficient use and management of Colorado River water in the Lower Basin. ICS may be created and delivered in 2014 pursuant to the 2007 Interim Guidelines and appropriate delivery and forbearance agreements.

1944 United States-Mexico Water Treaty Delivery. A volume of 1.500 maf (1,850 mcm) of water will be available to be scheduled for delivery to Mexico during calendar year 2014 in accordance with Article 15 of the 1944 United States-Mexico Water Treaty and Minutes No. 242 and 314 (as it may be extended) of the IBWC. In accordance with IBWC Minute No. 319, it is anticipated that this amount may be increased to address water delivered consistent with Sections III.4 and III.6.e.i. In addition, Mexico may defer delivery of water pursuant to Sections III.1 and III.4 of IBWC Minute No. 319.
2013 HYDROLOGY SUMMARY AND RESERVOIR STATUS

Below average stream flows were observed throughout much of the Colorado River Basin during water year 2013. Unregulated15 inflow to Lake Powell in water year 2013 was 5.12 maf (6,320 mcm), or 47 percent of the 30-year average16 which is 10.83 maf (13,360 mcm). Unregulated inflow to Flaming Gorge, Blue Mesa, and Navajo Reservoirs was 45, 59, and 51 percent of average, respectively.

Precipitation in the Upper Colorado River Basin was below average17 throughout most of water year 2013. During the fall and winter months (October through March) the overall precipitation rate was approximately 74 percent of average. During the spring runoff period (April through July), the precipitation rate was also below average at approximately 90 percent of average. On September 30, 2013, the cumulative precipitation for the Upper Colorado River Basin for water year 2013 was 95 percent of average.

Snowpack conditions trended below average18 in the Colorado River Basin throughout the entire snow accumulation season. Above average accumulation in December increased the overall snowpack; however, on January 1, 2013, snowpack levels in the basin remained below average with the basin-wide snow water equivalent measuring 87 percent of average. During January through March, snow accumulation was below average and the snow water equivalent measured 73 percent of average on April 1, 2013. Late-season storms in April increased the snowpack; however, total seasonal accumulation peaked at approximately 81 percent of average on April 21, 2013. On April 1, 2013, the snow water equivalents for the Green River, Upper Colorado River Headwater, and San Juan River Basins were 78, 77, and 68 percent of average, respectively.

During the 2013 spring runoff period, inflows to Lake Powell began to increase in early May as temperatures increased across the basin. On May 21, 2013, inflows to Lake Powell peaked at approximately 26,600 cubic feet per second (cfs) (750 cubic meters per second [cms]). During the spring runoff period Lake Powell storage decreased by 0.449 maf (554 mcm). The April through July unregulated inflow volume for Lake Powell was 2.56 maf (3,160 mcm) which was 36 percent of average.

Lower Basin tributary inflows above Lake Mead were below average for water year 2013. Tributary inflow from the Little Colorado River for water year 2013 totaled 0.112 maf (138

15 Unregulated inflow adjusts for the effects of operations at upstream reservoirs. It is computed by adding the change in storage and the evaporation losses from upstream reservoirs to the observed inflow. Unregulated inflow is used because it provides an inflow time series that is not biased by upstream reservoir operations.

16 Inflow statistics throughout this document will be compared to the mean of the 30-year period 1981-2010, unless otherwise noted.

17 Precipitation statistics throughout this document are provided by the National Weather Service’s Colorado Basin River Forecast Center and are based on the mean for the 30-year period 1981-2010, unless otherwise noted.

18 Snowpack and snow water equivalent statistics throughout this document are provided by the Natural Resources Conservation Service and are based on the median for the 30-year period 1981-2010, unless otherwise noted.
mcm), or 63 percent of the long-term average. Tributary inflow from the Virgin River for water year 2013 totaled 0.130 maf (160 mcm), or 76 percent of the long-term average.

Tributary inflows in the Lower Colorado River Basin below Hoover Dam were below average during water year 2013. Total tributary inflow for water year 2013 from the Bill Williams River was 0.017 maf (21.0 mcm), or 17 percent of the long-term average, and total tributary inflow from the Gila River was 0.005 maf (6.17 mcm).

The Colorado River total system storage experienced a net decline of 4.09 maf (5,040 mcm) in water year 2013. Reservoir storage in Lake Powell decreased during water year 2013 by 3.00 maf (3,700 mcm). Reservoir storage in Lake Mead decreased during water year 2013 by 0.773 maf (953 mcm). At the beginning of water year 2013 (October 1, 2012), Colorado River total system storage was 57 percent of capacity. As of September 30, 2013, total system storage was 50 percent of capacity.

Tables 1 and 2 list the October 1, 2013, reservoir vacant space, live storage, water elevation, percent of capacity, change in storage, and change in water elevation during water year 2013.

19 The basis for the long-term average of tributary inflows in the Lower Basin is natural flow data from 1906 to 2010. Additional information regarding natural flows may be found at http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html.

20 Tributary inflow from the Gila River to the mainstream is very sporadic. These flows occur very seldom and when they do they are typically of high magnitude.
Table 1. Reservoir Conditions on October 1, 2013 (English Units)

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Vacant Space (maf)</th>
<th>Live Storage (maf)</th>
<th>Water Elevation (ft)</th>
<th>Percent of Capacity (%)</th>
<th>Change in Storage (maf)</th>
<th>Change in Elevation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fontenelle</td>
<td>0.112</td>
<td>0.233</td>
<td>6,490.9</td>
<td>68</td>
<td>-0.030</td>
<td>-4.2</td>
</tr>
<tr>
<td>Flaming Gorge</td>
<td>0.932</td>
<td>2.82</td>
<td>6,015.3</td>
<td>75</td>
<td>-0.212</td>
<td>-6.1</td>
</tr>
<tr>
<td>Blue Mesa</td>
<td>0.481</td>
<td>0.348</td>
<td>7,456.2</td>
<td>42</td>
<td>0.008</td>
<td>1.4</td>
</tr>
<tr>
<td>Navajo</td>
<td>0.762</td>
<td>0.93</td>
<td>6,022.3</td>
<td>55</td>
<td>-0.102</td>
<td>-10.3</td>
</tr>
<tr>
<td>Lake Powell</td>
<td>13.4</td>
<td>10.9</td>
<td>3,591.3</td>
<td>45</td>
<td>-3.00</td>
<td>-30.3</td>
</tr>
<tr>
<td>Lake Mead</td>
<td>13.5</td>
<td>12.4</td>
<td>1,106.9</td>
<td>47</td>
<td>-0.773</td>
<td>-8.2</td>
</tr>
<tr>
<td>Lake Mohave</td>
<td>0.186</td>
<td>1.62</td>
<td>640.2</td>
<td>90</td>
<td>0.018</td>
<td>0.7</td>
</tr>
<tr>
<td>Lake Havasu</td>
<td>0.060</td>
<td>0.560</td>
<td>447.0</td>
<td>90</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Totals</td>
<td>29.4</td>
<td>29.8</td>
<td>50</td>
<td>4.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Reservoir Conditions on October 1, 2013 (Metric Units)

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Vacant Space (mcm)</th>
<th>Live Storage (mcm)</th>
<th>Water Elevation (m)</th>
<th>Percent of Capacity (%)</th>
<th>Change in Storage (mcm)</th>
<th>Change in Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fontenelle</td>
<td>138.2</td>
<td>287</td>
<td>1,978.4</td>
<td>68</td>
<td>-37.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Flaming Gorge</td>
<td>1150</td>
<td>3,480</td>
<td>1,833.5</td>
<td>75</td>
<td>-262</td>
<td>-1.9</td>
</tr>
<tr>
<td>Blue Mesa</td>
<td>593</td>
<td>430</td>
<td>2,272.7</td>
<td>42</td>
<td>10.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Navajo</td>
<td>940</td>
<td>1,150</td>
<td>1,835.6</td>
<td>55</td>
<td>-126</td>
<td>-3.2</td>
</tr>
<tr>
<td>Lake Powell</td>
<td>16,500</td>
<td>13,500</td>
<td>1,094.6</td>
<td>45</td>
<td>-3,700</td>
<td>-9.2</td>
</tr>
<tr>
<td>Lake Mead</td>
<td>16,700</td>
<td>15,200</td>
<td>337.4</td>
<td>47</td>
<td>-953</td>
<td>-2.5</td>
</tr>
<tr>
<td>Lake Mohave</td>
<td>230</td>
<td>2,000</td>
<td>195.1</td>
<td>90</td>
<td>22.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Lake Havasu</td>
<td>73.7</td>
<td>691</td>
<td>136.2</td>
<td>90</td>
<td>-0.57</td>
<td>0.0</td>
</tr>
<tr>
<td>Totals</td>
<td>36,300</td>
<td>36,800</td>
<td>50</td>
<td>-5,040</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2014 WATER SUPPLY ASSUMPTIONS

For 2014 operations, three reservoir unregulated inflow scenarios were developed and analyzed: minimum probable, most probable, and maximum probable.

There is considerable uncertainty associated with streamflow forecasts and projections of reservoir operations made a year in advance. The National Weather Service’s Colorado Basin River Forecast Center (CBRFC) forecasts the inflow for the minimum probable (90 percent exceedance), most probable (50 percent exceedance), and maximum probable (10 percent exceedance) inflow scenarios for 2014 using an Ensemble Streamflow Prediction model. Based upon the August CBRFC forecast, the range of unregulated inflows is projected to be as follows:

- The forecasted minimum probable unregulated inflow to Lake Powell in water year 2014 is 5.00 maf (6,170 mcm), or 46 percent of average.
- The forecasted most probable unregulated inflow to Lake Powell in water year 2014 is 8.32 maf (10,260 mcm), or 77 percent of average.
- The forecasted maximum probable unregulated inflow to Lake Powell in water year 2014 is 15.50 maf (19,120 mcm), or 143 percent of average.

Projected unregulated inflow volumes into Lake Powell for specific time periods for these three forecasted inflow scenarios are shown in Tables 3 and 4.

Inflows to the mainstream from Lake Powell to Lake Mead, Lake Mead to Lake Mohave, Lake Mohave to Lake Havasu, and below Lake Havasu are projected using historic data over the five-year period of January 2008 through December 2012, inclusive. These five years of historic data are representative of the most recent hydrologic conditions in the Lower Basin. The most probable side inflows into each reach are estimated as the arithmetic mean of the five-year record. The maximum probable and minimum probable projections for each reach are the 10 percent and 90 percent exceedance values, respectively, of the five-year record. For the reach from Lake Powell to Lake Mead, the minimum probable inflow during water year 2014 is 0.518 maf (639 mcm), the most probable inflow is 0.870 maf (1,070 mcm), and the maximum probable inflow is 1.29 maf (1,590 mcm).

The projected monthly volumes of inflow were input into the 24-Month Study and used to project potential reservoir operations for 2014. Starting with the projected October 1, 2013, reservoir storage conditions, the projected monthly releases for each reservoir were adjusted until release and storage levels best accomplished project purposes and applicable operational objectives.

For the latest monthly projections for the major reservoirs in the Colorado River system, please see the most recent 24-Month Study report available on these Reclamation websites:

Table 3. Projected Unregulated Inflow into Lake Powell for Water Year 2014 (English Units)\(^{21}\)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Minimum Probable (maf)</th>
<th>Most Probable (maf)</th>
<th>Maximum Probable (maf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/13 – 12/13</td>
<td>0.970</td>
<td>0.880</td>
<td>1.26</td>
</tr>
<tr>
<td>1/14 – 3/14</td>
<td>1.09</td>
<td>1.04</td>
<td>1.62</td>
</tr>
<tr>
<td>4/14 – 7/14</td>
<td>2.64</td>
<td>5.70</td>
<td>11.2</td>
</tr>
<tr>
<td>8/14 – 9/14</td>
<td>0.306</td>
<td>0.700</td>
<td>1.38</td>
</tr>
<tr>
<td>10/14 – 12/14</td>
<td>1.03</td>
<td>1.23</td>
<td>1.67</td>
</tr>
<tr>
<td>WY 2014</td>
<td>5.00</td>
<td>8.32</td>
<td>15.50</td>
</tr>
<tr>
<td>CY 2014</td>
<td>5.07</td>
<td>8.67</td>
<td>15.87</td>
</tr>
</tbody>
</table>

Table 4. Projected Unregulated Inflow into Lake Powell for Water Year 2014 (Metric Units)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Minimum Probable (mcm)</th>
<th>Most Probable (mcm)</th>
<th>Maximum Probable (mcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/13 – 12/13</td>
<td>1,200</td>
<td>1,090</td>
<td>1,550</td>
</tr>
<tr>
<td>1/14 – 3/14</td>
<td>1,340</td>
<td>1,280</td>
<td>2,000</td>
</tr>
<tr>
<td>4/14 – 7/14</td>
<td>3,260</td>
<td>7,030</td>
<td>13,810</td>
</tr>
<tr>
<td>8/14 – 9/14</td>
<td>377</td>
<td>860</td>
<td>1,700</td>
</tr>
<tr>
<td>10/14 – 12/14</td>
<td>1,270</td>
<td>1,520</td>
<td>2,060</td>
</tr>
<tr>
<td>WY 2014</td>
<td>6,170</td>
<td>10,260</td>
<td>19,120</td>
</tr>
<tr>
<td>CY 2014</td>
<td>6,250</td>
<td>10,690</td>
<td>19,580</td>
</tr>
</tbody>
</table>

\(^{21}\) All values in Tables 3 and 4 are projected inflows based upon the August CBRFC forecast with the exception of the values for 10/14-12/14. The values for 10/14-12/14 are based upon average unregulated inflow from 1981-2010. The calendar year totals in Tables 3 and 4 also reflect average values for the 10/14-12/14 time period.
SUMMARY OF RESERVOIR OPERATIONS IN 2013 AND PROJECTED 2014 RESERVOIR OPERATIONS

The operation of the Colorado River reservoirs has affected some aquatic and riparian resources. Controlled releases from dams have modified temperature, sediment load, and flow patterns, resulting in increased productivity of some riparian and non-native aquatic resources and the development of economically significant sport fisheries. However, these same releases have detrimental effects on endangered and other native species. Operating strategies designed to protect and enhance aquatic and riparian resources have been established after appropriate National Environmental Policy Act (NEPA) compliance at several locations in the Colorado River Basin.

In the Upper Basin, public stakeholder work groups have been established at Fontenelle Dam, Flaming Gorge Dam, the Aspinall Unit, and Navajo Dam. These work groups provide a public forum for dissemination of information regarding ongoing and projected reservoir operations throughout the year and allow stakeholders the opportunity to provide information and feedback with respect to ongoing reservoir operations. Additionally, the Glen Canyon Dam Adaptive Management Work Group (AMWG)22 was established in 1997 as a chartered committee under the Federal Advisory Committee Act of 1972 (Public Law 92-463).

Modifications to projected operations are routinely made based on changes in forecasted conditions or other relevant factors. Within the parameters set forth in the Law of the River and consistent with the Upper Colorado River Endangered Fish Recovery Program (Upper Colorado Recovery Program),23 the San Juan River Basin Recovery Implementation Program (San Juan Recovery Program),24 Section 7 consultations under the Endangered Species Act, and other downstream concerns, modifications to projected monthly operations may be based on other factors in addition to changes in streamflow forecasts. Decisions on spring peak releases and downstream habitat target flows may be made midway through the runoff season. Reclamation will conduct meetings with Recovery Program participants, the U.S. Fish and Wildlife Service (Service), other Federal agencies, representatives of the Basin States, and with public stakeholder work groups to facilitate the discussions necessary to finalize site-specific projected operations.

The following paragraphs discuss reservoir operations in 2013 and the range of probable projected 2014 operations of each of the reservoirs with respect to applicable provisions of compacts, the Consolidated Decree, statutes, regulations, contracts, and instream flow needs for maintaining or improving aquatic and riparian resources where appropriate.

22 Information on the AMWG can be found at www.usbr.gov/uc/rm/amp.
23 Information on the Upper Colorado Recovery Program can be found at http://coloradoriverrecovery.org.
24 Information on the San Juan Recovery Program can be found at www.fws.gov/southwest/sjrip.
Fontenelle Reservoir

Fontenelle Reservoir began water year 2013 with 0.263 maf (324 mcm) in storage, which is 76 percent of full capacity and corresponds to an elevation of 6,495.11 feet (1,979.71 meters) above sea level. Hydrologic conditions in the Upper Green River Basin were below average in water year 2013. Snowpack development tracked below average and, with late season storms, melt began later than average with the peak snow water equivalent reaching 86 percent of seasonal median on April 21, 2013. The April forecast for the April through July inflow to Fontenelle Reservoir was 0.405 maf (500 mcm), or 56 percent of average. The actual observed inflow during the April to July season was 0.317 maf (391 mcm), or 44 percent of average.

Fontenelle Reservoir did not fill in water year 2013. The reservoir elevation peaked at 6,492.29 feet (1,978.85 meters) on July 22, 2013, which was 13.71 feet (4.18 meters) below the spillway crest. Reservoir releases were held steady because of the dry conditions in the summer months to balance downstream water resources and power production during the high use summer months, while also allowing for filling the reservoir to maintain sufficient water in storage for use through the fall and winter months. Releases peaked at 907 cfs (25.7 cms) on October 6, 2012. Releases were reduced to 850 cfs (24.1 cms) from November 1, 2012 through mid-May 2013 when releases were further reduced to 800 cfs (22.6 cms). Hydrologic conditions continued to deteriorate and releases were further reduced to 700 cfs (19.8 cms) in mid-July and held at this rate going into the fall of 2013. Inflow peaked at 3,795 cfs (107.4 cms) on May 18, 2013.

Based on the August 2013 24-Month Study, the most probable April through July inflow scenario for Fontenelle Reservoir during water year 2014 is 0.618 maf (762 mcm), or 85 percent of average. This volume far exceeds the 0.345 maf (426 mcm) storage capacity of Fontenelle Reservoir. For this reason, the most probable and maximum probable inflow scenarios would require releases during the spring that exceed the capacity of the powerplant to avoid uncontrolled spills from the reservoir. It is very likely that Fontenelle Reservoir will fill during water year 2014. In order to minimize high spring releases and to maximize downstream water resources and power production, the reservoir will most likely be drawn down to about elevation 6,468.00 feet (1,971.45 meters) by early April 2014, which is 5.00 feet (1.52 meters) above the minimum operating level for power generation, and corresponds to a volume of 0.111 maf (137 mcm) of live storage.

Flaming Gorge Reservoir

Inflow to Flaming Gorge Reservoir during water year 2013 was below average. Unregulated inflow in water year 2013 was 0.657 maf (810 mcm), which is 45 percent of average. On October 1, 2012, the beginning of water year 2013, the reservoir elevation was 6,021.43 feet (1,835.33 meters), which was its maximum elevation for water year 2013, with 3.03 maf (3,740 mcm) of live storage. The reservoir elevation showed an overall decrease during water year 2013, ending the water year (September 30, 2013) at elevation 6,015.33
feet (1,833.47 meters) corresponding to a volume of 2.82 maf (3,480 mcm). The end of water year reservoir elevation was 24.67 feet (7.52 meters) below the full pool elevation (6,040.00 feet [1,840.99 meters]) which corresponded to an available storage space of 0.934 maf (1,150 mcm).

Flaming Gorge Dam operations in 2013 were in compliance with the 2006 Flaming Gorge ROD. Reclamation convened the Flaming Gorge Technical Working Group (FGTWG) comprised of the Service, Western, and Reclamation personnel, to provide Reclamation three proposed operating scenarios for 2013 based on varying hydrologic conditions and research requests. The FGTWG proposed Reclamation manage releases to the Green River to meet the commitments of the ROD and, to the extent possible, meet the experimental design parameters outlined in the Upper Colorado River Endangered Fish Recovery Program (Recovery Program) Larval Trigger Study Plan (LTSP). The LTSP contains an experimental research and monitoring plan for endangered fish critical habitat below the confluence of the Green and Yampa Rivers (Reach 2). The primary objective of the LTSP is to determine the effects of timing spring releases from Flaming Gorge during the presence of wild razorback sucker larvae in Reach 2. Wild razorback sucker larvae were detected in late-May and on May 29, 2013, releases were increased to powerplant capacity (approximately 4,500 cfs [127 cms]) for nine days. Yampa River flows at the Deerlodge gage decreased below 4,000 cfs (113 cms) on June 2, 2013, and Flaming Gorge releases were increased to 5,500 cfs (156 cms) for a total of two days of bypass releases in support of the LTSP.

The hydrologic conditions during spring 2013 consisted of below average snow accumulation with late season storms increasing snowpack and shifting runoff later in the season. Yampa River spring peak flows were below average. Considering the ROD Flow Recommendations for both the Upper Green and Yampa River conditions resulted in a designation of moderately dry. Releases from Flaming Gorge Dam remained at an average daily release of 829 cfs (23.5 cms) through May 29, 2013, when releases were increased to meet the LTSP request. After releases for the LTSP concluded, releases were decreased to base flow releases of 1,100 cfs (31.1 cms). Flows at Jensen met or exceeded 8,300 cfs (235 cms) for a total of 25 days, 18 of those days occurred during larval drift, meeting both the ROD Flow Recommendations and LTSP moderately dry targets in Reach 2 of between 7 and 14 days at or above 8,300 cfs (235 cms).

Consistent with the ROD, considering information provided to the FGTWG, the dry hydrologic conditions and in response to the request of the Service, Reclamation operated Flaming Gorge Dam at 40 percent above Reach 1 minimum base flows in the Green River during the summer of 2013. The ROD base flow period hydrologic classification was dry as of August 2013.

During water year 2014, Flaming Gorge Dam will continue to be operated in accordance with the ROD. Under the most probable inflow scenario, winter base flow releases are projected to be in the dry classification range between 800 cfs (22.6 cms) and 1,000 cfs (28.3 cms). Daily base flows will likely remain at 800 cfs (22.6 cms) in an attempt to meet
the average-year reservoir upper level elevation target of 6,027.00 feet (1,837.03 meters) by May 1, 2014. A spring peak release is projected to occur sometime in May 2014, and will be timed to coincide with either the peak flows of the Yampa River or emergence of razorback larvae. Reclamation is considering long-term implementation strategies for the Recovery Program LTSP.

The Recovery Program, in coordination with Reclamation, the Service, and Western, will continue conducting studies associated with floodplain inundation. Such studies may result in alternatives for meeting flow and temperature recommendations at lower peak flow levels where feasible.25

Blue Mesa, Morrow Point, and Crystal Reservoirs (Aspinall Unit)

At the beginning of water year 2013 (October 1, 2012) the elevation of Blue Mesa was 7,454.82 feet (2,272.23 meters), and the storage content was 0.340 maf (419 mcm), which was 41 percent of capacity.

Below average snowpack conditions prevailed in the Gunnison River Basin during water year 2013. Snow measurement sites in the basin reported below average seasonal snow water equivalent levels throughout the winter and into the spring of 2013. On April 1, 2013, the snow water equivalent for the Gunnison River Basin was 71 percent of average.

Below average snowpack conditions resulted in an April forecast for the April through July unregulated inflow above Blue Mesa that was 0.315 maf (389 mcm) which was 47 percent of average. The actual April through July unregulated inflow into Blue Mesa Reservoir in 2013 was 0.346 maf (427 mcm), which was 51 percent of average.

Releases from Crystal Dam during water year 2013 were below average. In October 2012, releases were about average at approximately 1,100 cfs (31.1 cms) but were decreased to 350 cfs (9.9 cms) by early November 2012. Releases from Crystal Dam were kept at this reduced rate from November through March based on below average snowpack conditions and reduced inflow forecasts. Releases were increased through the powerplant up to 1,300 cfs (36.8 cms) in a series of steps beginning April 1, 2013, continuing through the end of April resulting in 1,000 cfs (28.3 cms) being available to Gunnison Tunnel and 300 cfs (8.49 cms) through the Black Canyon. Releases were again increased in steps between June 20 and 26, 2013, up to 1,700 cfs (48.1 cms). ROD26 flow targets and Black Canyon Decree targets were met by releases through the powerplant. Flows through the Black Canyon and Gunnison River Gorge averaged approximately 650 cfs (18.4 cms) over the July through August period.

26 Record of Decision for the Aspinall Unit Operations Final Environmental Impact Statement, signed May 3, 2012. Available online at: \url{http://www.usbr.gov/uc/envdocs/eis/AspinallEIS/ROD.pdf}.
For water year 2013, the peak elevation of Blue Mesa Reservoir occurred on June 20, 2013, at an elevation of 7,472.32 feet (2,277.56 meters), which was 47.08 feet (14.35 meters) below full pool. Storage in Blue Mesa Reservoir increased during water year 2013 by 0.008 maf (10 mcm) and ended water year 2013 on September 30, 2013, at 0.348 maf (429 mcm) which was 42 percent of capacity. Total unregulated inflow into Blue Mesa Reservoir for water year 2013 was 0.561 maf (692 mcm) and this was 59 percent of average.

On May 3, 2012, Reclamation signed a ROD for the operation of the Aspinall Unit intended to avoid jeopardy to endangered species while maintaining and continuing to meet the congressionally authorized purposes of the Unit. The ROD selected the preferred alternative (Alternative B) described in the January 2012 Environmental Impact Statement (EIS). Significant issues addressed in the EIS and important in the selection of the preferred alternative included addressing the relationship with the recently quantified downstream senior Federal reserved water right for the Gunnison River through the Black Canyon of the Gunnison National Park. The selected alternative addresses operating the Aspinall Unit to meet specific downstream spring peak flow, duration flow, and base flow targets. For water year 2014, the Aspinall Unit will be operated in accordance with the 2012 ROD while maintaining and continuing to meet the congressionally authorized purposes. As part of the operational process, Reclamation will carry out the consultation required under the ROD and will continue to coordinate operations through tri-annual Aspinall Operations meetings.

The projected most probable unregulated inflow for water year 2014 into Blue Mesa Reservoir is 0.784 maf (967 mcm), or 82 percent of average. The reservoir is expected to decrease to a seasonal low elevation of 7,443.65 feet (2,268.82 meters) by October 31, 2013. The peak elevation is expected to be approximately 7,493.53 feet (2,284.03 meters) by about the end of July 2014. By the end of water year 2014, Blue Mesa Reservoir is expected to be at elevation 7,484.78 feet (2,281.36 meters), with a storage of 0.541 maf (667 mcm), or 65 percent of capacity.

Navajo Reservoir

At the beginning of the 2013 water year, Navajo Reservoir was at an elevation of 6,032.62 feet (1,838.74 meters) which was 61 percent of full capacity and corresponded to a live storage content of 1.04 maf (1,280 mcm). Snowpack conditions in the San Juan River Basin were persistently below average during the winter months. On April 1, 2013, the snow water equivalent in the San Juan River Basin above Navajo Reservoir was 67 percent of the seasonal average for the basin.

28 Decree quantifying the Federal Reserved Water Right for Black Canyon of the Gunnison National Park (State of Colorado District Court, Water Division Four, Case Number 01CW05), signed on January 8, 2009.
Inflow to Navajo Reservoir in water year 2013 was below average. Water year 2013 modified unregulated inflow\(^{29}\) to Navajo Reservoir was 0.543 maf (670 mcm), or 51 percent of average. The April through July modified unregulated inflow into Navajo Reservoir in water year 2013 was 0.267 maf (329 mcm), or 36 percent of average. Modified unregulated inflow to Navajo Reservoir was below average for all water years from 2000 through 2013, except for 2005 which was 136 percent of average and 2008 which was 120 percent of average.

Navajo Reservoir reached a peak water surface elevation of 6,029.22 feet (1,837.71 meters) on June 11, 2013, which was 55.78 feet (17.00 meters) below full pool. The water surface elevation at Navajo Reservoir on September 30, 2013, was 6,022.28 feet (1,835.59 meters), with a reservoir storage volume of 0.933 maf (1,151 mcm) or 55 percent of capacity.

A final report which outlines flow recommendations for the San Juan River (San Juan Flow Recommendations) below Navajo Dam was completed by the San Juan Recovery Program in May 1999 after a seven-year research period.\(^{30}\) The purpose of the report was to provide flow recommendations for the San Juan River that promote the recovery of the endangered Colorado River pikeminnow and razorback sucker, maintain important habitat for these two species as well as the other native species, and provide information for the evaluation of continued water development in the basin. The flow recommendations are scheduled to be reviewed by the San Juan River Basin Recovery Implementation Program in fiscal year 2015.

In 2006, Reclamation completed a NEPA process on the implementation of operations at Navajo Dam that meet the San Juan Flow Recommendations, or a reasonable alternative to them. The ROD for the Navajo Reservoir Operations Final EIS was signed by the Regional Director of Reclamation’s Upper Colorado Region on July 31, 2006.

Navajo Reservoir was operated in compliance with the ROD in 2013, including the San Juan Flow Recommendations which recommend no release.

In 2012, a four-year agreement on recommendations for San Juan River operations and administration was developed among major users to limit their water use to the rates and volumes in years 2013-2016, as indicated in the agreement.\(^{31}\) The 2013-2016 agreement is similar to agreements that were developed in 2003, 2004, 2005, 2006, 2007-2008, and 2009-2012. Ten major water users (the Jicarilla Apache and Navajo Nations, Hammond Conservancy District, Public Service Company of New Mexico, City of Farmington, Arizona Public Service Company, BHP-Billiton, Bloomfield Irrigation District, Farmers Mutual Ditch, and Jewett Valley Ditch) have endorsed these different flow

29 Modified Unregulated inflow into Navajo Reservoir is equivalent to unregulated inflow adjusted for trans-basin diversion through the San Juan-Chama Project.

recommendations. These recommendations included limitations on diversions for 2013-2016, criteria for determining a shortage, and shortage-sharing requirements in the event of a water supply shortfall, including sharing of shortages between the water users and the flows for endangered fish habitat. In addition to the ten major water users, the New Mexico Interstate Stream Commission and the Bureau of Indian Affairs all provided input to these recommendations. Reclamation received the endorsements of these recommendations and notified the New Mexico State Engineer of the endorsements. The New Mexico State Engineer accepted the recommendations on April 18, 2013.

During water year 2014, Navajo Reservoir will be operated in accordance with the Navajo Reservoir Operations ROD. Navajo Reservoir storage levels are expected to be below average in 2014 under the most probable inflow forecast. Base releases from the reservoir will likely range from 250 cfs (7.1 cms) to 500 cfs (14.2 cms) through the winter. Under the most probable April through July modified unregulated inflow forecast of 0.600 maf (740 mcm) in 2014, a spring peak release would not be recommended in the San Juan Recovery Program’s Flow Recommendations. The reservoir is projected to reach a peak elevation of 6,026.50 feet (1,836.88 meters) in June 2014. The reservoir is projected to reach a minimum elevation of 5,996.97 feet (1,827.88 meters) at the end of February 2014.

Under the minimum probable 2014 April through July inflow forecast of 0.291 maf (359 mcm), there will not be a spring peak release made during the spring of 2014 and a 34 percent shortage will be applied to all water users as per the Recommendations for San Juan River Operations and Administration for 2013-2016. Under the maximum probable 2014 April through July inflow forecast of 1.097 maf (1350 mcm), a 1-week spring peak release will be recommended as described in the San Juan Flow Recommendations.

Lake Powell

Reservoir storage in Lake Powell decreased during water year 2013. On October 1, 2012, the beginning of water year 2013, reservoir storage in Lake Powell was 57 percent of capacity at elevation 3,621.56 feet (1,103.85 meters), with 13.93 maf (17,180 mcm) in storage. On September 30, 2013, the reservoir storage in Lake Powell was 10.93 maf (13,480 mcm) at 45 percent of full capacity indicating a net loss during water year 2013 of 3.00 maf (3,700 mcm). The unregulated inflow to Lake Powell during water year 2013 was below average at 47 percent of average. Lake Powell ended the water year on September 30, 2013, at elevation 3,591.25 feet (1,094.61 meters).

The August 2012 24-Month Study was run to project the January 1, 2013, elevations of Lake Powell and Lake Mead and determine the water year 2013 operating tier for Lake Powell. Using the most probable inflow scenario, the January 1, 2013, reservoir elevations of Lake Powell and Lake Mead were projected to be 3,614.89 feet (1,101.82 meters) and 1,119.14 feet (341.11 meters), respectively. Given these projections, the annual release volume from

Lake Powell during water year 2013 was consistent with the Upper Elevation Balancing Tier (Section 6.B of the 2007 Interim Guidelines) and under Section 6.B.1, the annual release would be 8.23 maf (10,150 mcm). The Upper Elevation Balancing Tier, however, does provide for the possibility of adjustments to operation of Lake Powell based on the projected end of water year conditions of Lake Powell and Lake Mead from the April 24-Month Study. The April 2013 24-Month Study projected the end of water year elevation at Lake Powell to be 3,584.13 feet (1,092.44 meters) and Lake Mead to be 1,104.18 feet (336.55 meters). Since the projected end of water year elevation at Lake Powell was below the 2013 Equalization elevation of 3,646.00 feet (1,111.30 meters) and the projected end of water year elevation at Lake Mead was above elevation 1,075.00 feet (327.66 meters), Section 6.B.1 of the 2007 Interim Guidelines provided for an annual release volume of 8.23 maf (10,150 mcm) from Lake Powell during water year 2013. The annual release volume during water year 2013 from Glen Canyon Dam was 8.23 maf (10,150 mcm).

The April through July unregulated inflow to Lake Powell in water year 2013 was 2.56 maf (3,160 mcm) which was 36 percent of average. Lake Powell reached a spring peak elevation for water year 2013 of 3,601.18 feet (1,097.64 meters) on June 18, 2013, which was 98.82 feet (30.12 meters) below full pool. This peak elevation corresponds to a live storage content of 11.86 maf (14,630 mcm).

From November 18-23, 2012, the Department of the Interior conducted the first High Flow Experiment under a multi-year protocol for high flow experimental releases (Protocol), consistent with Reclamation’s May 12, 2012, Finding of No Significant Impact (FONSI).33 Beginning on the evening of November 18th, releases from Glen Canyon Dam began ramping up to full available powerplant capacity which was approximately 28,000 cfs (792 cms). At midday on November 19th, bypass tubes at Glen Canyon Dam were opened and releases continued to increase up to full available powerplant and bypass capacity of approximately 43,000 cfs (1,217 cms) by the evening of November 19th. Releases were maintained at peak release for 24 hours and then began ramping back down. Releases returned to normal operations in the evening of November 23rd. The entire experiment, including ramping lasted 5 days, with 24 hours at peak release. November releases from Glen Canyon Dam prior to and after the High Flow Experiment fluctuated between 7,000 cfs (198 cms) and 9,000 cfs (255 cms). The elevation of Lake Powell decreased approximately 2.75 feet (0.84 meters) during the 5-day experiment. Approximately 0.078 maf (96 mcm) was bypassed during the experiment. The total annual release from Glen Canyon Dam in water year 2013 did not change as a result of the High Flow Experiment.

The ten-year total flow of the Colorado River at Lee Ferry34 for water years 2004 through 2013 is 90.26 maf (111,330 mcm). This total is computed as the sum of the flow of the Colorado River at Lees Ferry, Arizona, and the Paria River at Lees Ferry, Arizona, surface

34 A point in the mainstream of the Colorado River one mile below the mouth of the Paria River.
water discharge stations which are operated and maintained by the United States Geological Survey.

2014 Operating Tier and Projected Operations for Glen Canyon Dam. The operating tier and annual release volume from Lake Powell during water year 2014 will be consistent with the Mid-Elevation Release Tier (Section 6.C of the 2007 Interim Guidelines) and under Section 6.C.1, the annual release will be 7.48 maf (9,230 mcm). Under the most probable inflow and release scenario Lake Powell is projected to decrease in elevation to 3,582.51 feet (1,091.95 meters) by the end of September 2014. Under the maximum probable inflow scenario, 7.48 maf (9,230 mcm) will be released and Lake Powell is projected to end the water year at 3,637.56 feet (1,108.73 meters). Under the minimum probable inflow scenario, 7.48 maf (9,230 mcm) will be released and Lake Powell is projected to end the water year at 3,555.45 feet (1,083.70 meters).

In 2014, scheduled maintenance activities at Glen Canyon Dam powerplant will require that two or more of the eight generating units periodically be offline. Coordination between Reclamation offices in Salt Lake City, Utah, and Page, Arizona, and Western will take place in the scheduling of maintenance activities to minimize impacts to operations throughout the water year including experimental releases.

Because of less than full storage conditions in Lake Powell resulting from drought in the Colorado River Basin, releases from Glen Canyon Dam for dam safety purposes are highly unlikely in 2014. If implemented, releases greater than powerplant capacity would be made consistent with the 1956 Colorado River Storage Project Act, the CRBPA, and to the extent practicable, the recommendations made pursuant to the Grand Canyon Protection Act of 1992. Reservoir releases in excess of powerplant capacity required for dam safety purposes during high reservoir conditions may be used to accomplish the objectives of the beach/habitat-building flow according to the terms contained in the 1996 Glen Canyon Dam ROD and as published in the 1997 Glen Canyon Dam Operating Criteria (Federal Register, Volume 62, No. 41, March 3, 1997).

Releases from Lake Powell in water year 2014 will continue to reflect consideration of the uses and purposes identified in the authorizing legislation for Glen Canyon Dam. Releases will reflect criteria based on the findings, conclusions, and recommendations made in the 1996 Glen Canyon Dam ROD for the Glen Canyon Dam Final Environmental Impact Statement (GCDFEIS) (required by the Grand Canyon Protection Act of 1992) and other Secretarial decisions.

Monthly releases are updated to be consistent with annual volumes determined pursuant to the 2007 Interim Guidelines. Monthly releases for 2014 will also be consistent with the GCDFEIS/ROD.

For the latest monthly projections for Lake Powell, please see the most recent 24-Month Study report available on Reclamation’s Upper Colorado Region Water Operations website:
Daily and hourly releases in 2014 will be made according to the parameters of the 1996 Glen Canyon Dam ROD for the GCDFEIS and the 1997 Glen Canyon Dam Operating Criteria. These parameters set the maximum and minimum flows and ramp rates within which the releases must be made. Exceptions to these parameters may be made during power system emergencies, during experimental releases, or for purposes of humanitarian search and rescue.

The Department of the Interior is conducting planning for high-flow experimental releases from Glen Canyon Dam in November 2013 in accordance with the Protocol and Reclamation’s May 12, 2012 FONSI.

Lake Mead

For calendar year 2013, the ICS Surplus Condition was the criterion governing the operation of Lake Mead in accordance with Article III(3)(b) of the Operating Criteria, Article II(B)(2) of the Consolidated Decree, and Section 2.B.5 of the 2007 Interim Guidelines. Delivery of water to Mexico was scheduled in accordance with Article 15 of the 1944 United States-Mexico Treaty and Minutes No. 242, 314, and 319 of the IBWC.

Lake Mead began water year 2013 on October 1, 2012, at elevation 1,115.16 feet (339.90 meters), with 13.13 maf (16,200 mcm) in storage, which is 50 percent of the conservation capacity of 26.12 maf (32,220 mcm). Lake Mead increased to elevation 1,122.32 feet (342.08 meters) by the end of January 2013. After January 2013, Lake Mead steadily declined during water year 2013 to elevation 1,106.92 feet (337.39 meters) with 12.36 maf (15,250 mcm) in storage (47 percent of capacity) on September 30, 2013.

The total release from Lake Mead through Hoover Dam during water year 2013 was 9.04 maf (11,150 mcm). The total release from Lake Mead through Hoover Dam during calendar year 2013 is projected to be 9.33 maf (11,510 mcm).

The total inflow into Lake Mead is a combination of water released from Glen Canyon Dam plus inflows in the reach between Glen Canyon and Hoover Dams. In water year 2013, inflow into Lake Mead was 9.06 maf (11,180 mcm). For water year 2014, under the most probable assumptions, total inflow into Lake Mead is anticipated to be 8.35 maf (10,300 mcm).

35 Conservation capacity is the amount of space available for water storage between Lake Mead’s water surface elevations 895 feet (272.8 meters) and 1,219.6 feet (371.7 meters), the start of the exclusive flood control space as defined in the Field Working Agreement Between Department of the Interior, Bureau of Reclamation and Department of the Army, Corps of Engineers for Flood Control of Hoover Dam and Lake Mead, Colorado River, Nevada-Arizona, February 8, 1984.
Under the most probable inflow scenario during 2014, the elevation of Lake Mead is projected to decrease to 1,082.74 feet (330.02 meters), with 10.24 maf (12,630 mcm) in storage, at the end of September 2014, with an elevation of 1,082.98 feet (330.09 meters), with 10.26 maf (12,660 mcm) in storage, at the end of December 2014.

Based on the August 2013 24-Month Study, Lake Mead’s elevation on January 1, 2014, is projected to be 1,103.08 feet (336.22 meters). In accordance with Section 2.B.5 of the 2007 Interim Guidelines, the ICS Surplus Condition will govern the releases and diversions from Lake Mead in calendar year 2014. Releases from Lake Mead through Hoover Dam for water year and calendar year 2014 are anticipated to be approximately the same as 2013 releases.

For the latest monthly projections for Lake Mead, please see the most recent 24-Month Study report available on Reclamation’s Lower Colorado Region Water Operations website:

http://www.usbr.gov/lc/region/g4000/24mo.pdf.

Lakes Mohave and Havasu

Lake Mohave started water year 2013 at an elevation of 639.55 feet (194.93 meters) with 1.61 maf (1,990 mcm) in storage. The water level of Lake Mohave was regulated between elevation 630.75 feet (192.25 meters) and 644.35 feet (196.40 meters) during the water year, ending at an elevation of 640.23 feet (195.14 meters), with 1.62 maf (2,000 mcm) in storage. The total release from Lake Mohave through Davis Dam for water year 2013 was 8.67 maf (10,690 mcm) for downstream water use requirements. The calendar year 2013 total release is projected to be 8.95 maf (11,040 mcm).

For water and calendar years 2014, Davis Dam is projected to release approximately the same amount of water as in 2013, and the water level in Lake Mohave will be regulated between an elevation of approximately 633 feet (193 meters) and 645 feet (197 meters).

Lake Havasu started water year 2013 at an elevation of 446.98 feet (136.24 meters) with 0.561 maf (692 mcm) in storage. The water level of Lake Havasu was regulated between elevation 446.41 feet (136.10 meters) and 449.31 feet (136.95 meters) during the water year, ending at an elevation of 446.96 feet (136.23 meters), with 0.560 maf (690 mcm) in storage. During water year 2013, 6.39 maf (7,880 mcm) was released from Parker Dam. The calendar year 2013 total release is projected to be 6.39 maf (7,880 mcm).

For water and calendar years 2014, Parker Dam is expected to release approximately the same amount of water as in 2013, and the water level in Lake Havasu will be regulated between an elevation of approximately 445 feet (136 meters) and 450 feet (137 meters).

Lakes Mohave and Havasu are scheduled to be drawn down in the late summer and fall months to provide storage space for local storm runoff and will be filled in the winter to
meet higher summer water needs. This drawdown also corresponds with normal maintenance at both Davis and Parker powerplants scheduled for September through March.

At Davis Dam, a major turbine overhaul of Unit No. 2 began in October 2013, and the unit is scheduled to return to service in February 2014.

At Parker Dam, no major turbine overhauls are scheduled in water year 2014; however, all acoustic flow meters at Parker Dam are scheduled to be replaced during water year 2014.

Bill Williams River

Abnormally dry to severe drought conditions persisted in western Arizona, including the Bill Williams River watershed, during water year 2013. Tributary inflows into Alamo Lake were below average during water year 2013 and water released by the U.S. Army Corps of Engineers (USACE) from Alamo Dam totaled 0.017 maf (21.0 mcm) for water year 2013, approximately 17 percent of the long-term average.

Due to the lack of significant runoff and precipitation events during water year 2013, Alamo Lake storage decreased by 0.014 maf (17.3 mcm) from October 1, 2012, to September 30, 2013. During this period, Alamo Lake decreased from elevation 1,098.64 feet (334.87 meters) to elevation 1,092.93 feet (333.13 meters). In water year 2013, average daily riparian releases from Alamo Lake ranged from 9.9 to 61 cfs (0.28 to 1.73 cms).

Senator Wash and Laguna Reservoirs

Senator Wash Reservoir is an off-stream regulating storage facility below Parker Dam (approximately 142 river miles downstream) and has a storage capacity of 0.014 maf (17.3 mcm) at full pool elevation of 251.0 feet (76.5 meters). The reservoir is used to store excess flows from the river caused by water user cutbacks, side wash inflows due to rain, and other factors. Stored waters are utilized to meet the water demands in the Lower Division States and the delivery obligation to Mexico.

Since 1992, elevation restrictions have been placed on Senator Wash Reservoir due to potential piping and liquefaction of foundation and embankment materials at West Squaw Lake Dike and Senator Wash Dam. Currently, Senator Wash Reservoir is restricted to an elevation of 240.0 feet (73.2 meters) with 0.009 maf (11.1 mcm) of storage, a loss of about 0.005 maf (6.2 mcm) of storage from its original capacity. Senator Wash Reservoir elevation must not exceed an elevation of 238.0 feet (72.5 meters) for more than 10 consecutive days. This reservoir restriction is expected to continue in 2014.

Laguna Reservoir is a regulating storage facility located approximately five river miles downstream of Imperial Dam and is primarily used to capture sluicing flows from Imperial Dam. The storage capability of Laguna Reservoir has diminished from about 1,500 acre-
feet (1.85 mcm) to approximately 400 acre-feet (0.493 mcm) due to sediment accumulation and vegetation growth. Sediment accumulation in the reservoir has occurred primarily due to flood releases that occurred in 1983 and 1984, and flood control or space building releases that occurred between 1985 and 1988 and from 1997 through 1999.

Sediment removal at Laguna Reservoir has begun so that operational sluicing can be reestablished. The Laguna Basin Dredging project will dredge approximately 2.25 million cubic yards (1.72 mcm), reestablishing 140 acres (0.57 square kilometers) of open water. As of August 2013, approximately 0.320 million cubic yards (0.245 mcm) of material have been removed. All dredged material will be disposed of in a designated area adjacent to the project site. The project incorporates the use of both land-based and waterborne heavy equipment. The project permit was obtained from the USACE in May 2013 and is valid through May 2016.

Imperial Dam

Imperial Dam is the last diversion dam on the Colorado River for United States water users. From the head works at Imperial Dam, water is diverted into the All-American Canal for use in the United States and Mexico on the California side of the dam, and into the Gila Gravity Main Canal on the Arizona side of the dam. These diversions supply all the irrigation districts in the Yuma area, in Wellton-Mohawk, in the Imperial and Coachella Valleys, and through Siphon Drop and Pilot Knob, to the Northerly International Boundary (NIB) for diversion at Morelos Dam to the Mexicali Valley in Mexico. The diversions also supply much of the domestic water needs in the Yuma area. Flows arriving at Imperial Dam for calendar year 2013 are projected to be 5.35 maf (6,600 mcm). The flows arriving at Imperial Dam for calendar year 2014 are projected to be 5.45 maf (6,720 mcm).

Gila River Flows

During water year 2013, there was below average snowfall in the Gila River Basin, including the Salt and Verde River watersheds. Due to rain events during the summer monsoon season, however, cumulative precipitation for water year 2013 in the Salt and Verde River watersheds was 100 percent of average. The Salt River Project did not release water from its system in excess of diversion requirements at Granite Reef Diversion Dam; therefore, no water reached or was released from Painted Rock Dam by the USACE in water year 2013.
Warren H. Brock Reservoir

The Warren H. Brock (Brock) Reservoir is located near the All-American Canal in Imperial County, California. Construction of the reservoir began in 2008 and was completed in the summer of 2010 with commissioning in September. The first filling and drainage test began in September 2010 and was completed in November 2010. In February 2011, Reclamation began operating the reservoir with the Imperial Irrigation District (IID) under an interim operating agreement. On July 5, 2012, Reclamation and IID entered into a long-term operations and maintenance agreement for Brock Reservoir.

The purpose of the 0.008 maf (9.9 mcm) Brock Reservoir is to reduce nonstorable flows and to enhance beneficial use of Colorado River water within the United States. The reservoir reduces the impact of loss of water storage at Senator Wash due to operational restrictions and provides additional regulatory storage, allowing for more efficient management of water below Parker Dam.

Brock Reservoir was out of service for approximately three months during the summer of 2013 to repair the expansion joints in the concrete inlet canal adjoining the reservoir. The repairs were completed on September 18, 2013, and the reservoir returned to normal operation at that time.

Yuma Desalting Plant

The Yuma Desalting Plant (YDP) was authorized in 1974 under the Colorado River Basin Salinity Control Act (Public Law 93-320) which authorized the federal government to construct the YDP to desalt the drainage flows from the Wellton-Mohawk Division of the Gila Project. This would allow the treated water to be delivered to Mexico as part of its 1944 United States-Mexico Water Treaty allotment. The United States has met salinity requirements established in IBWC Minute No. 242 primarily through use of a canal to bypass Wellton-Mohawk drain water to the Ciénega de Santa Clara (Ciénega), a wetland of open water, vegetation, and mudflats within a Biosphere Reserve in Mexico. In calendar year 2013, the amount of water discharged from the Wellton-Mohawk Division through the bypass canal is anticipated to be 0.115 maf (142 mcm), measured at the Southerly International Boundary (SIB), at an approximate concentration of total dissolved solids of 2,800 parts per million (ppm).

Off-stream Storage Agreements

Colorado River water may be stored off-stream pursuant to individual SIRAs and 43 CFR Part 414 within the Lower Division States. The Secretary shall make ICUA available to contractors in Arizona, California, or Nevada pursuant to individual SIRAs and 43 CFR Part 414. SNWA may propose to make unused Nevada basic apportionment available for
storage by MWD and/or Arizona Water Banking Authority (AWBA) in calendar years 2013 and 2014.36,37

Intentionally Created Surplus

The 2007 Interim Guidelines included the adoption of the ICS mechanism that, among other things, encourages the efficient use and management of Colorado River water in the Lower Basin. ICS may be created through several types of activities that include improvements in system efficiency, extraordinary conservation, tributary conservation, and the importation of non-Colorado River System water into the Colorado River mainstream over the course of a calendar year. Several implementing agreements38 were executed concurrent with the issuance of the ROD for the 2007 Interim Guidelines. ICS credits may be created and delivered in calendar years 2013 and 2014 pursuant to the 2007 Interim Guidelines and the implementing agreements. ICS balances by state, user, and type of ICS may be found in the annual Colorado River Accounting and Water Use Report, Arizona, California, and Nevada.39

Extraordinary Conservation ICS. IID has approved plans to create up to 0.025 maf (30.8 mcm) of Extraordinary Conservation ICS in 2013 and 2014. MWD has approved plans to create up to 0.200 maf (247 mcm) of Extraordinary Conservation ICS in 2013 and 2014. If unanticipated circumstances arise, contractors with available Extraordinary Conservation ICS may request delivery of ICS credits in 2013 and 2014.

System Efficiency ICS. When the Brock reservoir project was funded, CAWCD, MWD, and SNWA received System Efficiency ICS credits in exchange for funding. In 2013 and 2014, MWD and SNWA may request an annual delivery of up to 0.025 maf (30.8 mcm) and 0.040 maf (49.3 mcm) of those System Efficiency ICS credits, respectively. When the YDP Pilot Run was conducted, CAWCD, MWD, and SNWA received System Efficiency ICS credits in exchange for funding. Approximately 0.030 maf (37.0 mcm) of System Efficiency ICS credits from the YDP Pilot Run were created in 2010 and 2011. MWD and

36 Storage and Interstate Release Agreement among The United States of America, acting through the Secretary of the Interior; The Metropolitan Water District of Southern California; the Southern Nevada Water Authority; and the Colorado River Commission of Nevada, October 21, 2004. Available online at: http://www.usbr.gov/lc/region/g4000/contracts/SNWA_MWDSIRAfinal.pdf.
37 Storage and Interstate Release Agreement among The United States of America, acting through the Secretary of the Interior; The Arizona Water Banking Authority; the Southern Nevada Water Authority; and the Colorado River Commission of Nevada, December 18, 2002. Available online at: http://www.usbr.gov/lc/region/g4000/contracts/SIRAfinal.pdf.
38 Delivery Agreement between the United States and IID; Delivery Agreement between the United States and MWD; Delivery Agreement between the United States, SNWA and the CRCN; Lower Colorado River Basin Intentionally Created Surplus Forbearance Agreement among the Arizona Department of Water Resources, SNWA, CRCN, the Palo Verde Irrigation District (PVID), IID, Coachella Valley Water District (CVWD), MWD, and the City of Needles; and the California Agreement for the Creation and Delivery of Extraordinary Conservation Intentionally Created Surplus among the PVID, IID, CVWD, MWD, and the City of Needles. These agreements are available online at: http://www.usbr.gov/lc/region/programs/strategies/documents.html.
39 Available online at: http://www.usbr.gov/lc/region/g4000/wtracct.html.
SNWA may request delivery of these System Efficiency ICS credits in proportion to their capital contributions in 2013 or a subsequent year. Under the funding arrangements for Brock Reservoir and the YDP Pilot Run, CAWCD may not request delivery of System Efficiency ICS credits in 2013 and 2014.

Tributary Conservation ICS. SNWA has approved plans to create up to 0.037 maf (45.6 mcm) of Tributary Conservation ICS in 2013 and 2014. Any Tributary Conservation ICS not delivered for use by SNWA in the calendar year created will, at the beginning of the following year, be converted to Extraordinary Conservation ICS pursuant to the 2007 Interim Guidelines.

Imported ICS. SNWA has approved plans to create up to 0.009 maf (11.1 mcm) of Imported ICS in 2013 and 2014. Any Imported ICS not delivered for use by SNWA in the calendar year created will, at the beginning of the following year, be converted to Extraordinary Conservation ICS pursuant to the 2007 Interim Guidelines.

Delivery of Water to Mexico

Delivery to Mexico pursuant to the 1944 United States-Mexico Water Treaty, and IBWC Minute No. 319, is anticipated to be approximately 1.370 maf (1,690 mcm) in calendar year 2013, reflecting an anticipated downward adjustment of approximately 0.130 maf (160 mcm) in accordance with Minute No. 319. Balances of water deferred by Mexico in previous years may be found in the annual Colorado River Accounting and Water Use Report, Arizona, California, and Nevada. Excess flows arriving at the NIB are anticipated to be 0.068 maf (83.9 mcm) in calendar year 2013. Excess flows result from a combination of factors, including heavy rain from winter storms, water ordered but not delivered to United States users downstream of Parker Dam, inflows into the Colorado River below Parker Dam, and spills from irrigation facilities below Imperial Dam.

Of the scheduled delivery to Mexico in calendar year 2013, approximately 1.230 maf (1,520 mcm) is projected to be delivered at NIB and approximately 0.140 maf (173 mcm) is projected to be delivered at SIB. Although the Mexican Section of the IBWC initially requested the delivery of water under IBWC Minute No. 314 and the Emergency Delivery Agreement, the request for these deliveries was later withdrawn. Therefore, no water is anticipated to be diverted from Lake Havasu and delivered to Tijuana, Baja California in 2013.

Of the total delivery at SIB projected in calendar year 2013, approximately 0.116 maf (143 mcm) is projected to be delivered from the Yuma Project Main Drain and approximately

40 Available online at: http://www.usbr.gov/lc/region/g4000/wtracct.html.
41 Amendment No. 1 to Agreement for Temporary Emergency Delivery of a Portion of the Mexican Treaty Waters of the Colorado River to the International Boundary in the Vicinity of Tijuana, Baja California, Mexico, and for the Operation of Facilities in the United States, dated November 26, 2008.
0.024 maf (29.6 mcm) is expected to be delivered by the Protective and Regulatory Pumping Unit (Minute No. 242 wells).

Pursuant to the 1944 United States-Mexico Water Treaty, a volume of 1.500 maf (1,850 mcm) will be available to be scheduled for delivery to Mexico in calendar year 2014. Under IBWC Minute No. 319, it is anticipated that this amount may be increased to address water delivered consistent with Section III.6.e.i, as well as the potential for deliveries pursuant to Section III.4. In addition, Mexico may defer delivery of water through a downward adjustment of water pursuant to Sections III.1 and III.4 of IBWC Minute No. 319.

Following execution and approval of a new IBWC minute and amendment of the Emergency Delivery Agreement, up to 0.0008 maf (1.0 mcm) may be delivered for Tijuana through MWD, the San Diego County Water Authority, and the Otay Water District’s respective distribution system facilities in California. Approximately 0.140 maf (173 mcm) is projected to be delivered at SIB and the remainder of the water to be scheduled for delivery to Mexico in 2014 will be delivered at NIB.

Drainage flows to the Colorado River from the Yuma Mesa Conduit and South Gila Drain Pump Outlet Channels are projected to be 0.010 maf (12.3 mcm) and 0.045 maf (55.5 mcm), respectively, for calendar year 2013. This water is available for delivery at NIB in satisfaction of the 1944 United States-Mexico Water Treaty. Reclamation holds a permit from the Arizona Department of Water Resources (ADWR) to pump an additional 0.025 maf (30.8 mcm) of groundwater annually for water delivery to Mexico to replace water bypassed to the Ciénega through the bypass canal. Salinity conditions have not allowed for increased pumping and Reclamation will continue to monitor and evaluate conditions under the permit in the future.

As stated in Minute No. 242, the maximum allowable salinity differential is 145 ppm by the United States’ measurement or count and 151 ppm by the Mexican count. The salinity differential for calendar year 2013 is projected to be 135 ppm by the United States’ count.

Mexico has identified four critical months, October through January, regarding improving the quality of water delivered at SIB. As a matter of comity, the United States has agreed to reduce the salinity of water delivered at SIB during this period. To accomplish the reduction in salinity, the United States constructed a diversion channel to bypass up to 0.008 maf (9.9 mcm) of Yuma Valley drainage water during the four critical months identified by Mexico. This water will be replaced by better quality water from the Minute No. 242 well field to reduce the salinity at SIB. Reclamation anticipates bypassing approximately 0.001 maf (1.2 mcm) in calendar year 2013 to the diversion channel for salinity control and up to 0.008 maf (9.9 mcm) in calendar year 2014.

42 IBWC Minute No. 314 and the Emergency Delivery Agreement expire on November 9, 2013; therefore, a new minute and an amendment to the Emergency Delivery Agreement are required to extend the temporary emergency delivery of Colorado River water for use in Tijuana.

43 ADWR Transport Permit Number 30-001 entitled Permit to Transport Groundwater Withdrawn from the Yuma Groundwater Basin, March 1, 2007.
2014 DETERMINATIONS

The AOP provides projections regarding reservoir storage and release conditions during the upcoming year, based upon Congressionally mandated and authorized storage, release, and delivery criteria and determinations. After meeting these criteria and determinations, specific reservoir releases may be modified within these requirements as forecasted inflows change in response to climatic variability and to provide additional benefits coincident to the projects’ multiple purposes.

Upper Basin Reservoirs

Section 602(a) of the CRBPA provides for the storage of Colorado River water in Upper Basin reservoirs and the release of water from Lake Powell that the Secretary finds reasonably necessary to assure deliveries to comply with Articles III(c), III(d), and III(e) of the 1922 Colorado River Compact without impairment to the annual consumptive use in the Upper Basin. The Operating Criteria provide that the annual plan of operation shall include a determination of the quantity of water considered necessary to be in Upper Basin storage at the end of the water year after taking into consideration all relevant factors including historic streamflows, the most critical period of record, the probabilities of water supply, and estimated future depletions. Water not required to be so stored will be released from Lake Powell:

- to the extent it can be reasonably applied in the States of the Lower Division to the uses specified in Article III(e) of the 1922 Colorado River Compact, but these releases will not be made when the active storage in Lake Powell is less than the active storage in Lake Mead;

- to maintain, as nearly as practicable, active storage in Lake Mead equal to the active storage in Lake Powell; and

- to avoid anticipated spills from Lake Powell.

Taking into consideration all relevant factors required by Section 602(a)(3) of the CRBPA and the Operating Criteria, it is determined that the active storage in Upper Basin reservoirs projected for September 30, 2014, under the most probable inflow scenario would be below the threshold required under Section 602(a) of the CRBPA.

Taking into account (1) the existing water storage conditions in the basin, (2) the August 2013 24-Month Study projection of the most probable near-term water supply conditions in the basin, and (3) Section 6.C of the 2007 Interim Guidelines, the Mid-Elevation Release Tier will govern the operation of Lake Powell for water year 2014. The August 2013 24-Month Study of the most probable inflow scenario projects the water year 2014 release from Glen Canyon Dam to be 7.48 maf (9,230 mcm).
Lower Basin Reservoirs

Pursuant to Article III of the Operating Criteria and consistent with the Consolidated Decree, water shall be released or pumped from Lake Mead to meet the following requirements:

(a) 1944 United States-Mexico Water Treaty obligations;
(b) Reasonable beneficial consumptive use requirements of mainstream users in the Lower Division States;
(c) Net river losses;
(d) Net reservoir losses;
(e) Regulatory wastes; and
(f) Flood control.

The Operating Criteria provide that after the commencement of delivery of mainstream water by means of the Central Arizona Project, the Secretary will determine the extent to which the reasonable beneficial consumptive use requirements of mainstream users are met in the Lower Division States. Reasonable beneficial consumptive use requirements are met depending on whether a Normal, Surplus, or Shortage Condition has been determined. The Normal Condition is defined as annual pumping and release from Lake Mead sufficient to satisfy 7.500 maf (9,250 mcm) of consumptive use in accordance with Article III(3)(a) of the Operating Criteria and Article II(B)(1) of the Consolidated Decree. The Surplus Condition is defined as annual pumping and release from Lake Mead sufficient to satisfy in excess of 7.500 maf (9,250 mcm) of consumptive use in accordance with Article III(3)(b) of the Operating Criteria and Article II(B)(2) of the Consolidated Decree. An ICS Surplus Condition is defined as a year in which Lake Mead’s elevation is projected to be above elevation 1,075.0 feet (327.7 meters) on January 1, a Flood Control Surplus has not been determined, and delivery of ICS has been requested. The Secretary may determine an ICS Surplus Condition in lieu of a Normal Condition or in addition to other operating conditions that are based solely on the elevation of Lake Mead. The Shortage Condition is defined as annual pumping and release from Lake Mead insufficient to satisfy 7.500 maf (9,250 mcm) of consumptive use in accordance with Article III(3)(c) of the Operating Criteria and Article II(B)(3) of the Consolidated Decree.

The 2007 Interim Guidelines are being utilized in calendar year 2014 and serve to implement the narrative provisions of Article III(3)(a), Article III(3)(b), and Article III(3)(c) of the Operating Criteria and Article II(B)(1), Article II(B)(2), and Article II(B)(3) of the Consolidated Decree for the period through 2026. The 2007 Interim Guidelines will be used annually by the Secretary to determine the quantity of water available for use within the Lower Division States.

Consistent with the 2007 Interim Guidelines, the August 2013 24-Month Study was used to forecast the system storage as of January 1, 2014. Based on a projected January 1, 2014, Lake Mead elevation of 1,103.08 feet (336.22 meters) and consistent with Section 2.B.5 of the 2007 Interim Guidelines, the ICS Surplus Condition will govern releases for use in the
states of Arizona, Nevada, and California during calendar year 2014 in accordance with Article III(3)(b) of the Operating Criteria and Article II(B)(2) of the Consolidated Decree. Water deliveries in the Lower Basin during calendar year 2014 will be limited to 7.500 maf (9,250 mcm) plus or minus any credits for ICS.

Article II(B)(6) of the Consolidated Decree allows the Secretary to allocate water that is apportioned to one Lower Division State but is for any reason unused in that state to another Lower Division State. This determination is made for one year only, and no rights to recurrent use of the water accrue to the state that receives the allocated water. No unused apportionment for calendar year 2014 is anticipated. If any unused apportionment becomes available after adoption of this AOP, Reclamation, on behalf of the Secretary, shall allocate any such available unused apportionment for calendar year 2014 in accordance with Article II(B)(6) of the Consolidated Decree and the Unused Water Policy.

Water may be stored off-stream pursuant to individual SIRAs and 43 CFR Part 414 within the Lower Division States. The Secretary shall make ICUA available to contractors in Arizona, California, or Nevada pursuant to individual SIRAs and 43 CFR Part 414. SNWA may propose to make unused Nevada basic apportionment available for storage by MWD and/or AWBA in calendar year 2014.

The IOPP, which became effective January 1, 2004, will be in effect during calendar year 2014. In calendar year 2014, California and Arizona paybacks are projected to be 0.155 maf (191 mcm) and 0.0005 maf (0.6 mcm), respectively. Payback balances by state and user may be found in the annual Colorado River Accounting and Water Use Report, Arizona, California, and Nevada.

The 2007 Interim Guidelines included the adoption of the ICS mechanism that among other things encourages the efficient use and management of Colorado River water in the Lower Basin. The ICS Surplus Condition will govern Lower Basin operations in calendar year 2014 and ICS credits will be created and delivered pursuant to the 2007 Interim Guidelines and appropriate delivery and forbearance agreements.

Given the limitation of available supply and recent low inflow amounts within the Colorado River Basin, the Secretary, through Reclamation, will continue to review Lower Basin operations to assure that all deliveries and diversions of mainstream water are in strict accordance with the Consolidated Decree, applicable statutes, contracts, rules, and agreements.

As provided in Section 7.C of the 2007 Interim Guidelines, the Secretary may undertake a mid-year review to consider revisions of the current AOP. For Lake Mead, the Secretary shall revise the determination in any mid-year review for the current year only to allow for additional deliveries from Lake Mead pursuant to Section 7.C of the 2007 Interim Guidelines.

44 Available online at: http://www.usbr.gov/lc/region/g4000/wtracct.html.
1944 United States-Mexico Water Treaty

Under the minimum probable, most probable, and maximum probable inflow scenarios, water in excess of that required to supply uses in the United States and the guaranteed quantity of 1.500 maf (1,850 mcm) allotted to Mexico will not be available, subject to any increased amounts delivered consistent with Sections III.4 and III.6.e.i of IBWC Minute No. 319. Vacant storage space in mainstream reservoirs is substantially greater than that required by flood control regulations. Therefore, a volume of 1,500 maf (1,850 mcm) of water will be available to be scheduled for delivery to Mexico during calendar year 2014 subject to and in accordance with Article 15 of the 1944 United States-Mexico Water Treaty and Minutes No. 242 and 314 (as it may be extended) of the IBWC. In accordance with IBWC Minute No. 319, it is anticipated that this amount may be increased to address water delivered consistent with Sections III.4 and III.6.e.i. In addition, Mexico may defer delivery of water pursuant to Sections III.1 and III.4 of IBWC Minute No. 319.

Calendar year schedules of the monthly deliveries of Colorado River water are formulated by the Mexican Section of the IBWC and presented to the United States Section before the beginning of each calendar year. Pursuant to the 1944 United States-Mexico Water Treaty, the monthly quantity prescribed by those schedules may be increased or decreased by not more than 20 percent of the monthly quantity, upon 30-day notice in advance to the United States Section. Any change in a monthly quantity is offset in another month so that the total delivery for the calendar year is unchanged, subject to the provisions of the 1944 United States-Mexico Water Treaty and IBWC Minute No. 319 (which contains specific provisions regarding adjustment of delivery schedules).
DISCLAIMER

Nothing in this AOP is intended to interpret the provisions of the Colorado River Compact (45 Stat. 1057); the Upper Colorado River Basin Compact (63 Stat. 31); the Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande, Treaty Between the United States of America and Mexico (Treaty Series 994, 59 Stat. 1219); the United States/Mexico agreement in Minute No. 242 of August 30, 1973, (Treaty Series 7708; 24 UST 1968) or Minute No. 314 of November 26, 2008 (as it may be extended), or Minute No. 319 of November 20, 2012; the Consolidated Decree entered by the Supreme Court of the United States in Arizona v. California (547 U.S 150 (2006)); the Boulder Canyon Project Act (45 Stat. 1057); the Boulder Canyon Project Adjustment Act (54 Stat. 774; 43 U.S.C. 618a); the Colorado River Storage Project Act (70 Stat. 105; 43 U.S.C. 620); the Colorado River Basin Project Act (82 Stat. 885; 43 U.S.C. 1501); the Colorado River Basin Salinity Control Act (88 Stat. 266; 43 U.S.C. 1951); the Hoover Power Plant Act of 1984 (98 Stat. 1333); the Hoover Power Allocation Act of 2011 (125 Stat. 777); the Colorado River Floodway Protection Act (100 Stat. 1129; 43 U.S.C. 1600); the Grand Canyon Protection Act of 1992 (Title XVIII of Public Law 102-575, 106 Stat. 4669); or the Decree Quantifying the Federal Reserved Right for Black Canyon of the Gunnison National Park (Case No. 01CW05, District Court, Colorado Water Division No. 4, 2008).
Acronyms and Abbreviations

ADWR Arizona Department of Water Resources
AMP Glen Canyon Dam Adaptive Management Program
AMWG Glen Canyon Dam Adaptive Management Work Group
AOP Annual Operating Plan
AWBA Arizona Water Banking Authority
CAWCD Central Arizona Water Conservation District
CBRFC National Weather Service’s Colorado Basin River Forecast Center
CFR Code of Federal Regulations
cfs cubic feet per second
cms cubic meters per second
CRBPA Colorado River Basin Project Act of 1968
CRCN Colorado River Commission of Nevada
CVWD Coachella Valley Water District
EIS Environmental Impact Statement
FGTWG Flaming Gorge Technical Work Group
FONSI Finding of No Significant Impact
ft feet
GCDFEIS Glen Canyon Dam Final Environmental Impact Statement of 1996
IBWC International Boundary and Water Commission, United States and Mexico
ICS Intentionally Created Surplus
ICUA Intentionally Created Unused Apportionment
IID Imperial Irrigation District
IOPP Inadvertent Overrun and Payback Policy
LTSP Larval Trigger Study Plan
m meters
maf million acre-feet
mcm million cubic meters
MWD The Metropolitan Water District of Southern California
NEPA National Environmental Policy Act of 1969, as amended
NIB Northerly International Boundary
P. L. Public Law
ppm parts per million
Reclamation United States Bureau of Reclamation
ROD Record of Decision
Secretary Secretary of the United States Department of the Interior
Service United States Fish and Wildlife Service
SIB Southerly International Boundary
SIRA Storage and Interstate Release Agreement
SNWA Southern Nevada Water Authority
USACE United States Army Corps of Engineers
Western Western Area Power Administration
YDP Yuma Desalting Plant