ATTACHMENT 8

(Supplemental Documentation to the: Mogollon Rim Water Resource Management Study Report of Findings)

Estimation Work Sheets

MOGOLLON RIM WATER RESOURCE MANAGEMENT STUDY

SOCIAL ASSESSMENT AND ENVIRONMENTAL JUSTICE

A. Social Assessment

Social analysis is the process of considering impacts on humans, and social assessment is the product of the analysis (the results needed to describe the impacts on the human community from the action.

The goals of social analysis are to:

- Contribute to making projects more sound and sustainable by ensuring that projects fit the individuals and communities served and affected.
- Ensure project effectiveness by increasing support and tailoring institutional arrangements to the local culture.
- Make projects more inclusive by involving not only selected stakeholders but the larger, more diverse community

An extensive Social Analysis was not performed during this study. Rather an attempt has been made to identify significant area of social concern that could require additional research, analysis, and evaluation in subsequent studies. Social Assessment considerations for the Study Area include the following issues:

- Environmental Justice -- Distribution of minority population and low income populations of the Study Area within Gila County.
- Probable economic impacts - restrictive limits on growth for all economic units associated residential, commercial and industrial development and expansion.
- Reduced quality of life, changes in lifestyle, increased poverty in general, population migrations, reduction or modifications of recreation activities.
- Reevaluation of social values - growth vs. no-growth, community appearance, and cultural resources preservation and protection
- Public dissatisfaction with government water resource development and community growth policies and strategies -- moratorium on the issuance of water meters for community development (all considerations) and the introduction and application of restrictions on all community's planning and zoning policies and codes.
- Perceptions of inequity related to socioeconomic status, ethnicity, age, gender, and seniority, particularly with respect to water service rates.
- Recognition of institutional restraints on water use. Surface Water Rights
- Increased Restrictions and Conflicts -- Water user, Political, and Management (Community Fire Protection and Water Conservation), and (Other social conflicts?)
- Institutional Formation - Legal requirements and institutional organization

B. Environmental Justice

is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation and enforcement of environmental laws, regulations, and policies. Fair treatment means that no group of people, including a racial, ethnic, or a socioeconomic group, should bear a disproportionate share of the negative environmental consequences resulting from
industrial, municipal and commercial operations or the execution of federal, state, local, and tribal programs and policies. Meaningful involvement means that; (1) potentially affected community residents have an appropriate opportunity to participate in decisions about a proposed activity that will affect their environment and/or health; (2) the public's contribution can influence the regulatory agency's decision; (3) the concerns al all participants involved will be considered in the decision making process; and (4) the decision makers seek out and facilitate the involvement of those potentially affected.

In sum, environmental justice is the goal to be achieved for all communities and persons across this Nation. Environmental justice is achieved when everyone, regardless of race, culture, or income, enjoys the same degree of protection from environmental and health hazards and equal access to the decision-making process to have a healthy environment in which to live, learn, and work.

Environmental justice must be considered and where required appropriate mitigation measures will be established that will not create disproportionately high and adverse human health or environmental effects of federal programs, policies, and activities on minority populations and low-income populations in the Study Area.

The populations that could be affected in the Study Area are minority and low income populations in the Study Area are, in general, Black or African Americans, American Indian and Alaska Native, Asian, Native Hawaiian and other Pacific Islander, and Hispanic or Latino. The minorities population distribution, by population centers and estimation are shown in Table A.

Table A Minority Population Distribution by Town and Census Designated Place (CDP)-- 2000.

Table A

Population Distribution Center	Gila County	Town of Payson	Pine CDP	Strawberry CDP
Minority Groups	Population*	Population*	Population*	Population*
Black African American	197	36	3	1
American and Indian Alaska Native	6,630	257	10	6
Asian and	28	72	2	0
Native Hawaiian Pacific Other Islander	783	0		
Some Other Race	3,385	183	21	10
Hispanic or Latino	8,546	708	34	32
Total	19,006	1,263	70	56

*2000 U. S. Bureau Census Data

The population distribution of minorities in the residual population of the Study Area's unincorporated community population, 4,762 , is unknown, but mostly likely would be similar to the population distribution of minorities in the Pine and Strawberry Census Designated Places (CDP).

Low-Income populations are persons of low-income status. This status is based on U.S. Bureau of the Census definitions of individuals living below the poverty line, as defined by a statistical threshold that considers family size and income. Poverty levels census data -- 2000, in the Study Area, have been developed several ways, however, only two poverty status levels are presented in TableB., i.e. Families and Individuals.

Table B.
The Poverty Status of Families and Individuals in the Study Area. - 2000.

Population Distribution Center	Gila County	Town of Payson	Pine CDP	Strawberry CDP
Below Poverty Level	Numbers	Numbers	Numbers	Numbers
Families	1,785	274	31	24
Individuals	8,752	1,360	176	111

The population distribution of family and individual poverty status in the residual population of the Study Area's unincorporated community population, 4,762, is unknown, but most likely will be similar to the number shown for the Pine and Strawberry CDPs.

There are enough population in both minorities and low-income groups to flag these population groups as being groups that will require further considerations regarding environmental justice with respect to any proposed action associated with any or all of the proposed alternative prior to its implementation, including the Future Without alternative.

Probable economic impacts - The local economy is dominated by the tourism, inmigrating retirees, and seasonal residents are the primary drivers of the Payson and surrounding area economy. Government provides the most employment of any sector in Payson area. Another significant area of the local economy is the construction industries. There is a growing emphasis on manufacturing and service firms. Also encouraged is light industry and high tech operations compatible with the community's "High Quality of Life."

With the overall water supply being limited in both Payson and the surrounding area, the potential for the placement of restrictive limits on growth or expansion, e.g. moratorium on the sale of water meters or limitations on the issuance of building permits, could occur and hinder all future residential, commercial and industrial economic growth. The placement of restrictive growth limits would have a serious economic impact upon the construction industry as well as having a trickle down effect on the rest of the supporting economic sectors in the area.

As certain economic sectors are impacted the expected results would be a reduced quality of life, changes in lifestyle, increased poverty in general, population migrations, reduction or modifications of recreation activities to identify a few of the potential impacts.

Reevaluation of social values - Payson and the surrounding communities and unincorporated areas could settle the ongoing argument concerning growth vs. nogrowth. If the water supply is limited and the safe yield limits have been identified and perhaps encroached upon, it most likely that a political scenario would be developed that implements no-growth policies for Payson and the surrounding areas. Water currently used to maintain each community's appearance could be seriously reduced and perhaps eliminated from use. Other areas where water could be used but restricted or eliminated could include cultural resources preservation and protection and recreation facilities.

Public dissatisfaction with local government -- for past several years, water resource development and community growth policies and strategies have been hot topics with the citizens of Payson and the surrounding areas. Issues that have been regularly discussed over the years are growth and no-growth. In fact, election of mayors and council persons frequently revolve around this specific issue. Secondary to the growth and no-growth
issues is water resource development. Issues associated with special use permits, for groundwater exploration and development in the National Forest, have been quite difficult to acquire by the Town of Payson. It is expected that acquisition of special use permits by others will be equally difficult. Discussions that evolve around moratoriums, whether zoning or water supply availability, i.e. water meters; create heated and divisive discussions within the community.

Perceptions of inequity related to the cost of water services and water supply development and their impact upon the socioeconomic status, ethnicity, age, gender, and seniority of Payson's citizens and the surrounding unincorporated communities will require additional study. The concerns over the issues of inequity may become may require special deliberations with respect to their impacts upon each group's or grouping's quality of life.

Recognition of institutional restraints on water use -- As noted through out this Report, surface water rights in the Study Area can generally be regarded as owned by the Salt River Project. Land ownership is also an institutional restraint in a geographic area that is primarily owned by Federal and State governments. Very little private land is available for developing well sites and other water system facilities needed system development, particularly groundwater wells and associated pipelines.

Increased Restrictions and Conflicts - As each community's water supply reaches its "Safe Yield" limitations, the challenge will be to establish a process for sustainable water supply management that will protect both the supply and serve the water user. Groundwater has been the primary water resource for this are for several years. However, this supply is susceptible to drought conditions. As the aquifer storage is diminished and the assumptions associated with "Safe Yield" are violated; the impacts and conflicts between and among groundwater users will increase. Impacts that could be noticed are the reduction in available fire protection, increased use of restrictive water conservation measures - including policing of water use. Efforts to mitigate these impacts could include use of effluent for as a source to provide fire protection, persistent application of water conservation measures rather than seasonal application of those same measures.

Drought may be another area that creates water use restrictions and conflicts. As aquifer deplete and recharge and aquifer recovery fails to provide for an adequate water supply for a community conflicts between water resource managers and water users will increase. There will be a need to focus upon the issues of water demand management and supplement water supplies to alleviate these shortages.

Institutional Formation - Legal requirements and institutional organization - The only known formation of a legal institutional arrangement is between the Town of Payson and the Tonto Apache Tribe. This action is an extension of previous service agreements between the Town and the Tribe.

All considered alternatives are on or near Federal lands. The probability of the any project being impacted by one or more Federal laws is quite high, i.e. it should be expected that some type of Federal impact will occur to either a community or the environment. What has been presented here is a preliminary social assessment. Certainly, more intense research, analysis, and evaluation would be required prior to the implementation of any proposed projects. Even the activities associated with Future Without Alternative would have to have the same level of investigation prior to the implementation of this Alternative, particularly where the projects implemented traverse Federal lands.

FEATURE:
C. C. Cragin Reservoir Water Supply Alternative

Payson and Tonto Apache Tribe Only -- Raw Water
Transmission Pipeline and Water Treatment
Plant Cost Summary
(Annual Water Supply $=3,7250$ acre-feet per year

5
2

FEATURE:
C. C. Cragin Reservoir Water Supply Alternative Pine Only with CAP--Raw WaterTransmission Pipeline and Water Treatment Plant
Annual Water Supply $=500$ acre-feet per year

PROJECT:

Mogollon Rim Water Resource Management Study			
WOID:	ESTIMATE LEVEL:	Appraisal	
REGION:	LC	PRICE LEVEL:	1st quarter 2008
FILE:			

C. C. Cragin Reservoir Water Supply Alternative

Tetra Tech's Group -- Houston Mesa Road and
beyond to Round Valley and Oxbow Estates
Field Cost Summary
Source: Tetra Tech -- Base Cost

5
5

n
気
a
0

PROJECT:

Mogollon Rim Water Resource Management Study			
WOID:	ESTIMATE LEVEL:	Appraisal	
REGION:	LC	PRICE LEVEL:	
FILE:			

FEATURE:
C. C. Cragin Reservoir Water Supply Alternative

Tetra Tech's Group -- Houston Mesa Road and
beyond to Round Valley and Oxbow Estates
Field Cost Summary
Source: Tetra Tech -- Base Cost

5
5

FEATURE:
C. C. Cragin Reservoir Water Supply Alternative

Tetra Tech's Group -- Houston Mesa Road and
beyond to Round Valley and Oxbow Estates
Field Cost Summary
Source: Tetra Tech -- Base Cost

5

FEATURE:
C. C. Cragin Reservoir Water Supply Alternative

Tetra Tech's Group -- Houston Mesa Road and
beyond to Round Valley and Oxbow Estates
Field Cost Summary
Source: Tetra Tech -- Base Cost

C. C. Cragin Reservoir Water Supply Alternative

Tetra Tech's Group -- Houston Mesa Road and
beyond to Round Valley and Oxbow Estates
Field Cost Summary
Source: Tetra Tech -- Base Cost

PROJECT:

Mogollon Rim Water Resource Management Study			
WOID:	ESTIMATE LEVEL:	Appraisal	
REGION:	PRICE LEVEL:	1st qtr 2008	
FILE:			

FEATURE:

Installation of wells near C. C. Cragin Reservoir

Annual Groundwater Production $\mathbf{= 3 5 0 0}$ acre-feet

Mogollon Rim Water Resource Management Study			
WOID:	ESTIMATE LEVEL:	Appraisal	
REGION:	PRICE LEVEL:	1st quarter 2008	
FILE:			

FEATURE:
Central Arizona Project Water Supply Alternative
Option: Pine Creek
(Annual Water Volume $=161$ acre-feet per year)
CAP Waters Only

PROJECT:

Mogollon Rim Water Resource Management Study			
WOID:	ESTIMATE LEVEL:	Appraisal	
REGION:	LC	PRICE LEVEL:	
FILE:			

気気	$\underset{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$	DESCRIPTION	CODE	QUANTITY	UNIT	UNIT PRICE	AMOUNT
		Pine Creek Water Supply					
		Pipeline System					
		Diversion Structure		1	Lump Sum	\$250,000	\$250,000
		Pipeline -- 10"		2,640	If	\$75	\$198,000
		Pavement Replacement		250	If	\$40	\$10,000
		Rock Excavation		250	cy	\$45	\$67,500
		Water/Wash Crossing		1	Crossing	\$45,000	\$45,000
		Traffic Control		0.2	Lump Sum	\$170,000	\$42,500
		Booster Pump Station(s)		0	Stations	\$104,000	0
		Subtotal					\$613,000
		Mobilization @ 5\%					\$30,600
		Subtotal with Mobilization					\$643,700
		Unlisted @ 15\%					\$96,600
		Contract Cost					\$740,200
		Contingencies @ 25\%					\$185,000
		Field Cost (1st qtr 2006)					\$925,200
		Water Treatment Plant					\$649,300
		Finished Water Storage					\$1,143,400
		Field Cost (1st Qtr 2006)					\$1,792,700
		Total Field Cost (1st qtr 2006)					\$2,717,900
		Adjusted Total Field Cost (1st qtr 2008) TFC					\$2,885,000
		Annual Cost					
		Amortized (20 yrs @ 4.875\%; CRF = 0.07939)					\$229,000
		Operation \& Maintenance @ 8\% TFC					\$230,800
		Total Annual Cost					\$459,800
		Annual Cost per Acre-Foot					\$2,856
		Annual Cost per 1,000 gallons					\$8.76

FEATURE:

FEATURE:

FEATURE: |ADOT HWY 260 Surface Water Diversion Station 0+00 is located at or near Lion Springs @ HWY 260 Pipeline Terminus is at or near Kohl's Ranch @ HWY 260 Communities that could be served include Kohl's Ranch, Pine Meado, Thompson Draw I \& II, and Tonto Village. One or more of these communities can use all of the expected water supply from this source, i.e 100 acre-feet per annum

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

Geronimo Estates
2040 Annual Low Water Demand = 84 af/yr Low volume production well(s) High volume production well(s)
Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC Total Annual Cost Annual Cost per Acre-Foot Annual Cost per 1,000 gallons

Bonita Creek
2040 Annual Low Water Demand = 27 af/yr Low volume production well(s) High volume production well(s) Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20$ yrs; $\mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot Annual Cost per 1,000 gallons
Note: The estimate does not include Non-contract costs.
QUANTITIES

BY	CHECKED	BY
Marvin Murray		PA
DATE PREPARED		
April $\mathbf{3 0 2 0 0 8}$	PEER REVIEW	

BY	CHECKED
DATE PREPARED	PEER REVIEW

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

| | Sub-Region One - Non-Cluster Communities |
| :--- | :--- | :--- |
| | Diamond Point Recreation |

	2040

Low Water Demand = $15 \mathrm{af} / \mathrm{yr}$ Low volume production well(s) High volume production well(s)
Field Cost (FC)

	Kohn's Ranch

2040 Annual Low Water Demand = 62 af/yr
Low volume production well(s)
High volume production well(s)
Field Cost (FC)
Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons
Tonto Creek Estates
2040 Annual Low Water Demand = $21 \mathrm{af} / \mathrm{yr}$
Low volume production well(s)
High volume production well(s)
Field Cost (FC)
Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{l}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons

Note: The estimate does not include Non-contract costs.
QUANTITIES

BY	CHECKED	By
Marvin Murray	PEER REVIEW	DA
DATE PREPARED		
April 302008		

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

	$\stackrel{\text { S }}{\stackrel{y}{4}}$	

Sub-Region One - Cluster 1
Pine Water Company
2040 Annual Low Water Demand = 1128 af/yr Low volume production well(s) High volume production well(s)
Field Cost (FC)

| | | |
| :--- | :--- | :--- | :--- |

	Annual Cost
	Amortization: $\mathrm{n}=20$
	Annual O \& M Cost
	Total Annual Cost
	Annual Cost per Acr
	Annual Cost per 1,000

Pine Creek Canyon DWID
2040 Annual Low Water Demand = 58 af/yr Low volume production well(s) High volume production well(s)
Field Cost (FC)

Field Cost (FC)
Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons
Pine Water Association DWID
2040 Annual Low Water Demand = $18 \mathrm{af} / \mathrm{yr}$
Low volume production well(s)
High volume production well(s)
Field Cost (FC)
Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{l}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons

Note: The estimate does not include Non-contract costs.
QUANTITIES

BY \quad Marvin Murray

DATE PREPARED

CHECKED	BY
PEER REVIEW	DA

Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

Sub-Region One - Cluster 1
Solitude Trails DWID
2040 Annual Low Water Demand = 25 af/yr Low volume production well(s) High volume production well(s)
Field Cost (FC)

	Annual Cost

	Annual Cost
	Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
	Annual O \& M Cost @ 8\% of FC
	Total Annual Cost
	Annual Cost per Acre-Foot
	Annual Cost per 1,000 gallons
	Strawberry Hollow DWID

	Strawberry Hol
	204

	Note: The estimate does include Non-contract costs.
QUANTITIES	

BY	CHECKED	B
Marvin Murray		D
DATE PREPARED April 302008	PEER REVIEW	

BY	CHECKED
DATE PREPARED	PEER REVIEW

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

REGION:
FILE:

code	quantity	unit	unit price	FIELD costamount

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

	Sub-Region One - Cluster 2
	Whispering Pines
	2040 Annual Low Water Demand = 74 af/yr
	Low volume production well(s)
	High volume production well(s)
	Field Cost (FC)
	Annual Cost
	Anortization: $\mathrm{n}=20$ yrs; $\mathrm{I}=4.875 \%$
	Total Annual Cost \quad 8\% of FC
	Annual Cost per Acre-Foot

Cowan Ranch

2040 Annual Low Water Demand = 7 af/yr Low volume production well(s)
High volume production well(s) Field Cost (FC) Annual Cost

Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons
Verde Glen
2040 Annual Low Water Demand = $37 \mathrm{af} / \mathrm{yr}$
Low volume production well(s)
High volume production well(s) Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons
Note: The estimate does not include Non-contract costs.
QUANTITIES

BY Marvin Murray

DATE PREPARED
CHECKED PEER REVIEW
April 302008

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

| Sub-Region One - Cluster 2 |
| :--- | :--- |
| Cluster 2 -- Sub-Regional System |

2040 Annual Low Water Demand = 178 af/yr Low volume production well(s) High volume production well(s) Field Cost (FC) Annual Cost Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$ Annual O \& M Cost @ 8\% of FC Total Annual Cost Annual Cost per Acre-Foot Annual Cost per 1,000 gallons

Sub-Region One - Cluster 3
Zane Grey Meadows
2040 Annual Low Water Demand = 6 af/yr Low volume production well(s) High volume production well(s) Field Cost (FC)
Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$ Annual O \& M Cost @ 8\% of FC Total Annual Cost Annual Cost per Acre-Foot Annual Cost per 1,000 gallons

Collins Ranch
2040 Annual Low Water Demand = 11 af/yr Low volume production well(s) High volume production well(s) Field Cost (FC) Annual Cost Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$ Annual O \& M Cost @ 8\% of FC Total Annual Cost Annual Cost per Acre-Foot Annual Cost per 1,000 gallons
Note: The estimate does not include Non-contract costs.
QUANTITIES
PRICES

BY	CHECKED	BY	CHECKED
Marvin Murray			
DATE PREPARED April 302008	PEER REVIEW	DATE PREPARED	PEER REVIEW

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

Cluster 5 -- Sub-Regional System

Note: The estimate does not include Non-contract costs.
QUANTITIES
BY Marvin Murray

April 302008

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

	Sub-Region One - Cluster 6
	Christopher Creek
	2040 Annual Low Water Demand = 183 af/yr
	Low volume production well(s)
	High volume production well(s)
	Field Cost (FC)
	Annual Cost
	Anortization: $\mathrm{n}=20$ yrs; I $=4.875 \%$
	Total Annual Cost
	Annual Cost per Acre-Foot
	Annual Cost per 1,000 gallons

Hunter Creek

2040 Annual Low Water Demand = 54 af/yr Low volume production well(s)
High volume production well(s)
Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons

R Bar C Boy Scout Camp
2040 Annual Low Water Demand = 3 af/yr Low volume production well(s) High volume production well(s) Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons

Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and
Associated Annual Cost

気茑	$\stackrel{\text { S }}{\stackrel{y}{4}}$	

Sub-Region One - Cluster 6
Cluster 6 - Sub-Regional System

2040 Annual Low Water Demand = 286 af/yr	
	Low volume production well(s)
	High volume production well(s)
	Annual Cost
	Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC	
	Annual Cost per Acre-Foot
	Annual Cost per 1,000 gallons

Sub-Region Two
Arrowhead Canyon
2040 Annual Low Water Demand = 3 af/yr
Low volume production well(s)
High volume production well(s)
Field Cost (FC)

Note: The estimate does not include Non-contract costs.
QUANTITIES

BY	CHECKED	BY	CHECKED
Marvin Murray			
DATE PREPARED April 302008	PEER REVIEW	DATE PREPARED	PEER REVIEW

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and
Associated Annual Cost

上
咅
د
0.0
0

	Sub-Region Three - Individual Communities
	Flowing Springs
	2040 Annual Low Water Demand = 26 af/yr
	Low volume production well(s)
	High volume production well(s)
	Field Cost (FC)
	Annual Cost
	Anortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
	Total Annual O \& M Cost @ 8\% of FC
	Annual Cost per Acre-Foot
	Annual Cost per 1,000 gallons

East Verde Estates

Note: The estimate does not include Non-contract costs.
QUANTITIES
BY \quad Marvin Murray

DATE PREPARED
CHECKED

April 302008
PEER REVIEW

Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

CODE	QUANTITY	UNIT	UNIT PRICE	FIELD COSTAMOUNT

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and
Associated Annual Cost

	Sub-Region Three - Individual Communities
	Star Valley
	2040 Annual Low Water Demand = 509 af/yr
	Low volume production well(s)
	High volume production well(s)
	Field Cost (FC)
	Annual Cost
	Amortization: $\mathrm{n}=20$ yrs; I = 4.875\%
	Annual O \& M Cost @ 8\% of FC
	Total Annual Cost
	Annual Cost per Acre-Foot
	Annual Cost per 1,000 gallons
	Sub-Region Three - Group 7

Sub-Region Three - Group 7
Beaver Valley
2040 Annual Low Water Demand = 113 af/yr
Low volume production well(s)
High volume production well(s)
Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{l}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons

Freedom Acres
2040 Annual Low Water Demand = 7 af/yr Low volume production well(s) High volume production well(s) Field Cost (FC)

Annual Cost
Amortization: $\mathrm{n}=20 \mathrm{yrs} ; \mathrm{I}=4.875 \%$
Annual O \& M Cost @ 8\% of FC
Total Annual Cost
Annual Cost per Acre-Foot
Annual Cost per 1,000 gallons
Note: The estimate does not include Non-contract costs.
QUANTITIES
BY \quad Marvin Murray

DATE PREPARED
CHECKED PEER REVIEW
April 302008

Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

CODE	QUANTITY	UNIT	UNIT PRICE	FIELD COSTAMOUNT

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and
Associated Annual Cost

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

Sub-Regional Groundwater Alternative Individual, Cluster and Group Field Cost and Associated Annual Cost

WOID:	ESTIMATE LEVEL:	Appraisal
REGION:	PRICE LEVEL:	1st quarter 2008

FILE:

FEATURE:
Tonto Apache Tribe
Roosevelt Lake Option
(Annual Water Supply $=128$ acre-feet per year)
Reclamation Construction Cost Trend Adjusted

Original Cost:Gookin Engineers 1992

PROJECT:
Mogollon Rim Water Resource Management Study

WOID:	ESTIMATE LEVEL:	Appraisal
REGION: LC	PRICE LEVEL:	1st qtr 2008
FILE:		

FILE: U:IPaysonAppraisalReport|Attach. 8|[TontoRooseveltTablelV37.x|s]Sheet1

