6-4 Grand Canyon National Park Water Supply Appraisal Study Chapter 6 Consultation and Coordination

batching that are allowed to run into stream channels (wet or dry). These permits typically require 9 to 12 months to process.

A 402 stormwater discharge permit also would be required under Section 402 of the CWA before construction begins if 5 acres or more of vegetated land are disturbed. This permit requires the contractor to submit a Notice of Intent (NOI) before beginning any construction and to develop and implement a stormwater pollution prevention plan (SWPPP) to minimize impacts from runoff through construction areas on waters of the United States. This would not be an extensive or expensive effort.

Section 404 of the CWA requires acquisition of a permit from the U.S. Army Corps of Engineers (Corps) to discharge dredged or fill material into "Waters of the U.S." In general, a 404 permit is required for activities that fall below the "ordinary high water mark" (OHWM), which the Corps establishes on a project area specific basis. For this project, the following proposed activities would require a 404 permit: discharge of sediment into the Colorado River, such as excess sediment being trapped in settling ponds on the mainstem of the Colorado River being returned to the river with a sluicing operation (alternative 6) or construction of pipelines where they cross dry or wet washes (alternatives 3, 4, 5, 6, 7, and 8). A 404 permit can take anywhere from several months to over a year to obtain from the Corps.

Some alternatives would affect wetlands. Because wetlands are rare and represent an important habitat type in Arizona, the Corps generally requires the development and implementation of a rigorous habitat mitigation and monitoring plan as a condition of issuing a 404 permit. Typically, an acceptable plan consists of replacement, rehabilitation or enhancement of wetlands within the project area in an amount equal to or greater than the acreage being impacted by the project, and monitoring by the permittee for 5 years afterwards to determine whether or not the targeted number of acres have been adequately replaced or restored (the increased acreage is meant to mitigate for the temporary loss of the habitat during the restoration period). Contingency measures must be included that the permittee would implement if the targeted success rate has not been achieved within the 5-year period. Replacing or rehabilitating wetlands is generally expensive and requires an extensive effort.

Chapter 6 Consultation and Coordination

6-5

To provide a more accurate estimate of the cost of complying with the anticipated requirements of a 404 permit for this project, a person qualified in delineating wetlands would need to conduct a site visit of all portions of the project area that could contain wetlands to better estimate the potentially affected acreage. This person could also determine the likelihood of achieving success in re-establishing an adequate amount of wetlands within the general project area (generally along every stream channel that would be impacted as a result of the project, and at construction site locations). If "in-kind and on-site" mitigation of wetland impacts appears infeasible, another measure that could be proposed in the habitat mitigation and monitoring plan would be to purchase land where there is existing wetland habitat that is subject to impending destruction, which the permittee would be required to manage in perpetuity for habitat preservation. In Reclamation's experience, Corps acceptance of land acquisition as adequate mitigation is difficult to obtain unless the land is clearly threatened with immediate loss of wetland habitat.

At this time, it is not possible to identify the 404 permit requirements associated with diverting Colorado River water. If, for any reason, however, a 404 permit would be needed to address a loss in flow, it is possible that the Corps could attribute any wetland impacts resulting from changes in flows downstream of the existing pipe outlet, to the proposed project, which would also require mitigation.

It is anticipated a 404 permit for the construction of pipelines through typical washes and streams would not require an extensive effort; however, an on-the-ground survey of the proposed pipeline alignments would be needed to confirm this preliminary conclusion.

Reclamation estimates the cost of process the 404 permit for this project would be about \$100,000, which is comparable to the processing costs associated with the reservoirs in the Central Arizona Project (CAP). This cost estimate does not include mitigation to compensate for loss of wetlands habitat whose acreage cannot be determined at this time. According to the Corps, the basic rate to replace wetlands habitat range from \$25,000 to \$50,000 per acre. The higher amount is based on wetlands that require irrigation the first to year to help establish the habitat.

Chapter 6 Consultation and Coordination

6-6

6.4 State Historic Preservation Officer (Section 106 Compliance)

Before constructing pumping plants, settling ponds, pipelines, sluice channel, etc., Class III (intensive) cultural resource surveys would be required. Some level of mitigation effort would be required, including but not limited to avoidance, excavation, Historic American Engineering Record (HAER) documentation, and public education. A Programmatic Agreement (PA) must be developed between the NPS, the Advisory Council on Historic Preservation, the State Historic Preservation Officer and affected land managing agencies (e.g., BLM, Kaibab National Forest), and other interested parties (i.e., the Havasupai, Hualapai, Hopi, Paiute, and San Juan Southern Paiute Tribes and the Navajo Nation).

Preparation of a PA and associated review and consultation with all parties to the PA, as well as consultation with all affected Indian Tribes and other interested parties concerning TCPs and sacred sites, would require considerable effort and time. The PA must be signed and in place before beginning planned mitigation.

Mitigation costs cannot be determined until the cultural resource surveys are completed and consultation with the SHPO and the NHPO has determined the number of significant cultural resource sites (including traditional cultural properties) affected by the project. Consultation with interested or affected tribes or other parties, or both, also would be necessary to assess the effects on traditional cultural properties and sacred sites, as well as identify appropriate forms of mitigation. While it is highly unlikely that previously unknown ruins would be identified as being affected by the project, a number of archaeological sites would be affected and would require some level of investigation. Incorporating a proactive approach to cultural resource consultations and investigations early in the project planning process can reduce cultural resource mitigation costs.

A cultural resources program that is reactive and initiated late in the planning process can result in project delays and often results in higher project costs. This may be particularly true in the case of a project in which considerable consultation can be anticipated with interested and affected tribes concerning traditional cultural properties and sacred sites.

Chapter 6 Consultation and Coordination

6-7

Furthermore, development of a PA would require time to complete the necessary reviews and consultations. The sooner these initiatives can begin, the less likely the possibility of project delays and possible higher costs.

CHAPTER 7

Conclusions and Recommendations

In conclusion, alternatives 1 through 5 appear to be viable alternatives, but a number of environmental issues for each would need to be resolved. Alternative 6 would have a significant effect on a designated Wilderness area. Alternatives 7 and 8 could significantly affect springs and seeps both inside and outside the Park.

Based on the potentially viable alternatives identified in this appraisal study, it is recommended to proceed to feasibility study. The focus of the feasibility study would be investigate the potentially viable alternatives in detail and to develop a preferred plan that would meet the water supply needs of the Grand Canyon National Park through the year 2050. National Environmental Policy Act compliance would be completed in conjunction with the feasibility study.

Preparers

Name	Contribution	Title/Office
Kevin Black, Sr.	Study Manager	Native American Affairs Office, Phoenix Area Office
Jon Czaplicki	Archaeologist	Environmental Division, Phoenix Area Office
Deborah Garey	Contract Specialist	Native American Affairs Office, Phoenix Area Office
Rich Dent	Civil Engineer	Manager, Native American Affairs Office, Phoenix Area Office
John McGlothlen	Biologist	Environmental Resource Specialist, Phoenix Area Office
Henry Messing	Biologist	Lead General Biologist, Phoenix Area Office
Bradley Prudhom	GeoHydrologist	Engineering Division, Phoenix Area Office
Mike Pryor	Geologist	Chief Engineering Division, Phoenix Area Office
Vivian Sasser	Cartographer	Technical Services Division, Phoenix Area Office
Bob Black	TSC Study Coordinator	Technical Service Center, Denver
Del Holz	TSC Study Coordinator	Technical Service Center, Denver
Richard Fuerst	Engineer	Manager, Water Conveyance Group, Technical Service Center

P-2 Grand Canyon National Park Water Supply Appraisal Study Preparers

Tom Johnson	Materials Engineer	Technical Service Center, Denver
Dianne Clark	Editor	Technical Service Center, Denver
Patricia Alexander	Editorial Assistant	Technical Service Center, Denver
Susan Ward	Editorial Assistant	Technical Service Center, Denver

Bibliography

- Arber, R.P. and Associates, 1993. Corrosion Assessment of the Transcanyon Pipeline, Grand Canyon National Park. Final.
- Arizona Game and Fish Department, 1996. Ecology of Grand Canyon Backwaters. Final report to Glen Canyon Environmental Studies, Flagstaff, Arizona. Cooperative Agreement 9-FC-40-07940. Arizona Game and Fish Department, Phoenix, Arizona. 155 pp.

Bashears, J., 2001. Personal Communication. National Park Service.

- Beus, S.S., 1989. Devonian and Mississippian Geology of Arizona <u>in</u> Geologic
 Evolution of Arizona: Tucson, Arizona Geological Society Digest 17, editors
 J.P. Jenney, and S.J. Reynolds, figure 2, p. 289, pp. 287-311.
- Brook, R.A.,1974. Archaeological Investigations, National Park Service, Grand Canyon National Park, Grand Canyon Cross Canyon Corridor Survey, Coconino County, Arizona, Arizona Archaeological Center Contract No. CX800040018. Unpublished MS. On file at Grand Canyon National Park, Flagstaff: Museum of Northern Arizona.
- Coulam, N.J., 1980. An Archeological Survey of Indian Gardens, Grand Canyon National Park, Arizona. Unpublished MS. on file at Grand Canyon National Park. National Park Service.

Delorme, 1996. Arizona Atlas & Gazetter, 2nd edition, Freeport, Maine.

- Douglas, M.E. and P.C. Marsh, 1998. Population and survival estimates of *Catostomus latipinnis* in northern Grand Canyon, with distribution and abundance of hybrids of *Xyrauchen texanus*, Copeia 1998:915-925.
- Euler, R.C. and S.M. Chandler, 1978. Aspects of Prehistoric Settlement Patterns in Grand Canyon in Investigations of the Southwestern Anthropological Research Group: An Experiment in Cooperation, edited by Robert C. Euler and George J. Gumerman. Flagstaff: Museum of Northern Arizona, pp. 73-86.
- Fairley, H.C., n.d. Archaeological Survey of the Mather Point Orientation Project Area. Unpublished MS on file at Grand Canyon National Park, National Park Service.
- Fairley, H.C., et al., 1994. The Grand Canyon River Corridor Survey Project: Archaeological Survey Along the Colorado River Between Glen Canyon Dam and Separation Canyon. National Park Service. Prepared in Cooperation with the Glen Canyon Environmental Studies. Cooperative Agreement No. 9AA-40-07920.
- Ferguson, T.J., 1998. Öngtupoqa Niqw Pisisvayu (Salt Canyon and the Colorado River), The Hopi People and the Grand Canyon. Anthropological Research, Tucson.
- Fitzgerald, J., 1996. Residence Time of Groundwater Issuing from the South Rim Aquifer in the Eastern Grand Canyon. M.S. Thesis, University of Nevada at Las Vegas, May 1996.
- Hart, E.R., 1995. Zuni GCES Ethnohistorical Report. MS. Seattle: The Institute of the North American West.
- Huntoon, P.W., 2000. Variability of Karstic Permeability Between Unconfined and Confined Aquifers, Grand Canyon Region, Arizona *in* Environmental and Engineering Geoscience, Vol. VI, No. 2, May 2000 (Spring), pp. 155-170.
- Huntoon, P.W., 1982. The Groundwater Systems that Drain to the Grand Canyon of Arizona: unpublished.

- Jensen, M.E., ed., 1983. Design and Operation of Farm Irrigation Systems. American Society of Agricultural Engineers, St. Joseph, Michigan. September 1983.
- Miller, R.R., 1959. Origins and affinities of the freshwater fish fauna of western North America. <u>in</u> Zoogeography: Publication 51, C.L. Hubbs, editor. American Association for the Advancement of Science, Washington, DC, pp 187-222.
- Moffitt, S.A. et. al., 1998. The Mather Point Orientation Center Project Supplement Mitigation Plan. Unpublished MS on file at Grand Canyon National Park. National Park Service.
- Montgomery, E.L., 2000. Results of Groundwater Flow Modeling for the Tusayan Growth Environmental Impact Statement. Coconino Plateau Hydrology Workshop, Northern Arizona University, Flagstaff, Arizona. October 27, 2000
- Montgomery, 1996. Assessment of Hydrogeologic Conditions and Potential Effects of Proposed Groundwater Withdrawal for Canyon Forest Village, Coconino County, Arizona, and Assessment of Hydrogeologic Conditions and Potential Effects of Proposed Groundwater Withdrawal for Canyon Forest Village, Coconino County, Arizona <u>in</u> Appendix of the Final Environmental Impact Statement for Tusayan Growth, August 1999, Errol L. Montgomery & Associates, Inc. for Kaibab National Forest, United States Department of Agriculture, Forest Service, Southwestern Region.
- National Park Service, 2000. Estimation of Future Water Use for Grand Canyon National Park. Prepared by William R. Hansen, reviewed by C. Pettee. March 7, 2000.
- Northern Arizona University, 2000. Arizona Earthquake Information Center website, Summary of Earthquake Activity 1997.
- Parker, P.L. and T.F. King, 1990. Guidelines for Evaluating and Documenting Traditional Cultural Properties <u>in</u> National Register Bulletin 38. Washington, DC, National Park Service.

B-3

Reclamation, 2000a. Water Delivery System Analysis, Appraisal Level Peer Review Study of the ADWR Phase 1, North Central Arizona Water Supply Study.

_____, 2000b. Appraisal Investigation, Surface Water Treatment-Rio Grande (San Juan Water Right) City of Espanola, New Mexico. Technical Service Center. September 28, 2000.

_____, 1965. Pumping Plant Operation and Maintenance Costs. By John M. Eyer.

- Stevens, R.H., 1998. Hualapai Tribe's Traditional Cultural Properties in Relation to the Colorado River, Grand Canyon, Arizona Final Report. Peach Springs, Arizona, Hualapai Tribe, Office of Cultural Resources.
- Stoffle, R.W., 1994. PIAPAXA 'UIPI (Big River Canyon). Southern Paiute Ethnographic Resource Inventory and Assessment for Colorado River Corridor, Glen Canyon National Recreation Area, Utah and Arizona, and Grand Canyon National Park, Arizona. Denver, National Park Service.
- Trotta, P., 2000. Technical Assessment. W. Staudenmaier and M. Brophy, Attorney's at Law, Ryley, Carlock and Applewhite, Legal Assessment, 2000. Two Assessments of the Canyon Forest Village Water System: Technical and Legal.
- U.S. Department of Agriculture, 1999. Final Environmental Impact Statement for Tusayan Growth, Coconino County, Arizona. Forest Service, Southwestern Region.
- U.S. Department of Interior, National Park Service, 1979. Final Environmental Impact Statement, Grand Canyon Colorado River Management Plan.

_____, General Management Plan, 1995. General Management Plan Grand Canyon National Park, Arizona.

Bibliography

B-5

_____, 2000. 2000 Grand Canyon National Park Profile, National Park Service Grand Canyon website.

_____, 2000. Grand Canyon National Park Recreation Activities website.

- Valdez, R.A., and R.J. Ryel, 1997. Life history and ecology of the humpback chub in the Colorado River in Grand Canyon, Arizona <u>in</u> Proceedings of the Third Biennial Conference of Research on the Colorado Plateau, C. van Riper III and E.T. Deshler (editors). National Park Service Transactions and Proceedings Series NPS/NRNAU/NRTP-97/12, pp 3-31.
- Wilson, E., 2000. Geological Framework and Numerical Groundwater Models of the South Rim of the Grand Canyon. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, Northern Arizona University.
- Wilson, P.W., 1999. Archaeological Documentation of Prehistoric Routes and Trails in the Grand Canyon: A Pilot Study. MS. Unpublished Master of Arts Thesis. Department of Anthropology, Northern Arizona University.

Appendices

Appendix 1	Cost Estimates
Appendix 2	Field Report and Cathodic
	Protection Recommendations
Appendix 3	Hydraulic Design Notes
Appendix 4	Cultural Resources

APPENDIX 1

Cost Estimates

This appendix includes cost estimate worksheets for the construction alternatives, alternatives 1-8. The following miscellaneous components are typical items not included in the estimated costs:

- •. Switchyard for electrical powerlines
- Environmental surveys/clearance/mitigation
- Design and investigations
- Security, fencing, etc.
- SCADA system
- Additional storage tank(s) at wellhead and/or at the North or South Rim
- Drainage facilities/culverts

CODE: D-8140	:			ATE WORKSHEET 1-Aug-2001	PROJE	СТ	* <u>10</u>		SHEET 2
				~					
		peline Proj	ject		DIVIDIO				
Replace P Alternativo		OFICP			DIVISIO	N			
Allemativ	6 2				UNIT				
filename:	C:\123R5	W/WORK/Gra	nd Canyon\[hydrgc1.xls]Estin	nates					
PLANT	PAY		DESCRIPTION		CODE	UNIT	QUANTITY	UNIT	AMOUNT
ACCOUNT	ITEM							PRICE	
			0 foot section of existing T						
		Remove exis	sting aluminum pipe and re	place with steel.					
	•	Dipoline Eve	avatian			·····			
		Pipeline Exc Assume	100% rock, trail width 3 feet	1.000 ft long		cy	216	\$110	\$23,760
			ver 8" pipe - 2ft.	, i jooo it long					
				<u> </u>					
	2	Pipeline Bac	;kfill			су	124	\$95	\$11,780
	3	Pipeline Sel		wad to alte		cy	76	\$650	\$49,400
		Assume	material would be helicopte		+ +		+		
	4	Steel Pipe	· · · ·			•M.0			
							†		
			8A4000 t=.416			ft	1,000	\$135	\$135,000
					-				
		Total replace	ement will be 10,000 ft. in 10	0 yrs.	+				
	5	Cost for rem	naining 9,000 ft over 9 years		++	is	1	\$1,979,460	£1.070.460
	J		laining 5,000 it over 5 years	· · · · ·	+ +	15	┢────┤	\$1,979,400	\$1,979,460
		Replace 200	0 foot section of existing Tr	rans Canyon Pipeline.					
		Remove exis	sting aluminum pipe and re	place with steel.					
	6	Pipeline Exc				су	432	\$110	\$47,520
			100% rock, trail width 8 feet /er 8" pipe - 2ft.	, 2,000 ft long	+ +				
		Coverov			+				
	7	Pipeline Bac	:kfill		+ +	су	248	\$95	\$23,560
	8	Pipeline Sek				cy	152	\$650	\$98,800
		Assume	material would be helicopte	red to site			ļļ		
		Steel Pipe	···· • ···						
			8A3000 t=.305			ft	2,000	\$113	\$226,000
							_,		
		Total replace	ement will be 26,000 ft. in 13	3 yrs.					
					+				
	10	Cost for rem	naining 24,000 ft over 12 yea	ars		is	1	\$4,750,560	\$4,750,560
		Mobilizatio	n		╉┈╌┼	ls	1	\$8,350,000	\$8,350,000
	-		Subtotal		+	<u></u>	<u> </u>	<i>40,000,000</i>	\$15,695,840
		Unlisted Iten	ns= 5%	· · · · · · · · · · · · · · · · · · ·		·			\$804,160
			Contract Cost						\$16,500,000
		Contingency			+		L		\$4,500,000
			Field Cost		+				\$21,000,000
					┼──┼				
		QUANTITIES	3	<u> </u>		PRICES			
зү			APPROVED	BY	<u></u>	i niceð	L	10 1	9/20/2001
Richard Fuers	st			Daniel L. Maag	DLM		CHECKED	Lunh	1/20/0001
	RED		DATE	DATE			PRICELEVEL		

CODE: D-8140			ESTIMA	TE WORKSHEET					SHEET 1
FEATURE	:			1-Aug-2001	PROJE	СТ			
Grand Ca	nvon Di	peline Proj	iect						
No Action	i - Add S	storage at l	Phantom Ranch		DIVISIC)N			
Alternativ		¹							
i					UNIT				
filename: PLANT	C:\123R5 PAY		nd Canyon\[hydrgc1.xls]Estima DESCRIPTION	ates	0005	LINUT		LINUT	41401117
ACCOUNT	ITEM		DESCRIPTION		CODE	UNIT	QUANTITY	UNIT PRICE	AMOUNT
								TROL	
	1	Concrete St	orage Tank			LS	1	\$200,000	\$200,000
		Dia. = 65,00	00 gal. , Ht. = 23 ft, dia = 22 f	t					
			·						
	2	Pipeline Exc	cavation			су	216	\$140	\$30,240
		Assume 100	0% rock, trail width 8 ft, cove	r over pipe - 3 ft.					
	3	Pipeline Bac	ckfill			су	124	\$95	\$11,780
	4	Pipeline Sel	ect Backfill material would be helicopter	ad to site		cy	76	\$650	\$49,400
		Assume	material would be hencopter				1		
•	5	Steel Pipe							
			4B200 t=.0747			ft	1,000	\$25	\$25,000
	6	Pumping Pla	ant			LS	1	\$200,000	\$200,000
			cfs, H = 120 ft , HP = 2, one j	pump				+200,000	+200,000
		· · · · · · · · · · · · · · · · · · ·	t. pressure tank, 2 isolation	on valves					
		Concrete	e slab, concrete building						
	-								
							†		
					+				
			· · · · · · · · · · · · · · · · · · ·						
			· · ·						
					+		<u> </u>		· · · · · · · · ·
		Mobilization				LS	1	\$510,000	\$510,000
			Subtotal		T				\$1,026,420
		Unlisted Iter	ns= 5% Contract Cost				<u>+</u>		\$73,580
		Contingency							\$1,100,000 \$250,000
			Field Cost	· · · · · · · · · · · · · · · · · · ·					\$1,350,000
							┼───┤		
			· · · · · · · · · · · · · · · · · · ·						
						001000			
BY		QUANTITIES		BY	0	PRICES			glada
Richard Fuer	st			Daniel L. Maag	Dcm		Cang (1. Luch	9/20/2001
DATE PREP	ARED		DATE	DATE			PRICE		
9/17/01				9/19/)1		[

ODE: D-8140		E	STIM	IATE WO	ORKSHEET					SHEET 3
EATURE:					1-Aug-2001	PROJE	СТ			
irand Canyon eplace entire Iternative 3	Pipeline Proj ICP pipeline	ect (Roaring Spr	rings to	o Colorado	River)	DIVISIO	N		* *: .	
filename: C:\123	35W\WORK\Gra	nd Canyon\[hydrgc	c1.xls]Es	timates						
PLANT PAY ACCOUNT ITEM		DESCRIPTION				CODE	UNIT	QUANTITY	UNIT PRICE	AMOUNT
	1 Pipeline Exc	avation					cy	6,580	\$110	\$723,825
		i replace 6" alumi								
	Assume 100	% rock, trail widt	th 3 feet,	cover over pi	pe - 2 ft.	<u> </u>	***			
	2 Pipeline Exc	avation				+		4 205	6110	£460.550
		l replace 8" alumi	inum nin	e sta 459+64	to sta 654+30	+ +	cy	4,205	\$110	\$462,550
		% rock, trail widt								
	3 Pipeline Bac	:kfill					су	6,191	\$95	\$588,145
	4 Pipeline Sel					\downarrow	су	3,795	\$630	\$2,390,850
	Assume	material would be	e helicop	tered to site		+				
	5 Steel Pipe					+		├		
	5 Steel Pipe									
		8A1000 t=	.097	Area 2			ft	9,733	\$92	\$895,436
			.199	Area 2			ft	9,733	\$99	\$963,567
		8A3000 t=	.305	Area 1			ft	15,964	\$113	\$1,803,932
		8A4000 t=	.416	Area 1			ft	14,500	\$135	\$1,957,500
						+				
						+				
						1 1				
	_				<u>.</u>					
			· · ·			+				
					•					
						+				
	Mobilization					+	ls		\$8,500,000	\$8,500,000
	Unlisted Iter	Subtotal				╉╌╌╌╂		┨────┨─		\$18,285,80 \$714,19
		Contract Cost				+		<u>├</u>		\$714,19 \$19,000,00
	Contingenc					1 1				\$5,000,00
		Field Cost								\$24,000,00
<u> </u>						4		ļ		
						╉╍╌╴┤		↓		
						++		├ ─── ├		
I							DDICES		<u>=</u>	
Y	QUANTITIES	APPROVED			BY		PRICES		. 0 1	9/20/-
ichard Fuerst					Daniel L. Maag	DLM		CHECKED	Jul	9/20/200
ATE PREPARED		DATE			DATE			PRICELEVEL	·····	
					9/19/0					

CODE: D-8140			ESTIM	ATE WORKSHEET					SHEET 4
EATURE	:			1-Aug-2001	PROJE	СТ			
right An	gel Cree	oeline Proj ek Infiltratio			DIVISIC	DN	····		
lternativ	e 4								
filonamo	C-\12205\		nd Canyon\[hydrgc1.xls]Est	imatos	UNIT				
PLANT	PAY		DESCRIPTION	indles	CODE	UNIT	QUANTITY	UNIT	AMOUNT
ACCOUNT	ITEM							PRICE	
	1	Pipeline Exc	avation			су	1,858	\$140	\$260,120
		Assume 1	100% rock, trail 5 ft wide	(cover = 3 ft over pipe)					
	2	Pipeline Bac	kfill			Cy	1,752	\$95	\$166,440
	3	Pipeline Sele	ect Backfill			су	96	\$650	\$62,400
			naterial would be helicop	tered to site				\$050	302,400
	4	Power Cable	Excavation			cy	574	\$470	\$269,780
	_	<u> </u>	· · · · · · · · · · · · · · · · · · ·						
	5	Power Cable	Select Backfill			cy	546	\$750	\$409,500
	6	Steel Pipe							
		ottoor ripo	12B100 t=.125			ft	1,500	\$70	\$105,000
			4B200 t=.0747			ft	4,000	\$25	\$100,000
	7		- medium voltage 5 Kv li			ft	15,500	\$20	\$310,000
			in pipe trench and along e						
		Irenchic	μερτή = 2 π. & Width = 6", 1	backfill with select backfill	++				
	8	Pumping Pla	Int		+ -	LS	1	\$1,400,000	\$1,400,000
		Concrete						*.,	*1,100,000
		Excavatio	on = 726 cy						
			ed Backfill = 504 cy						
		2 pumps:	Q=2.16 cfs, H= 4938 ft						
	9	Infiltration G	allerv			LS	1	\$500,000	\$500,000
			ncrete pipe = 55 ft.					\$300,000	\$500,000
		Concrete	= 6 cy						
		-	graded gravel = 58 cy						
			on = 185 cy						
		Compacte Riprap = 1	ed Backfill = 30 cy						
		niprap –	105 Cy		+ +		+ +		
	10	Conventiona	I Treatment Plant at Sout	h Rim		LS	\$1	\$3,600,000	\$3,600,000
	11		atment Plant @ Phantom	Ranch		LS	1	\$25,000	\$25,000
		Q = 14,000) gal/day				<u> </u>		
	12	Concrete Ste	orage Tank (65,000 gal, 23	' high, 22' dia.)	+	LS	1	\$200,000	\$200,000
				······································		~~		42.00,000	+200,000
		Mobilization				LS	1	\$3,400,000	\$3,400,000
			Subtotal		+				\$10,808,24
		Unlisted Iten			+ +				\$691,76
		Contingency	Contract Cost		┼──┤		<u> </u>		\$11,500,00
		Somingeney	Field Cost		+ +				\$2,500,00 \$14,000,00
		QUANTITIES				PRICES	<u> </u>		Ψ1 4 ,000,00
BY			APPROVED	BY	D: A -				9/20/2001
Richard Fuers	st			Daniel L. Maag	DCM		Cruig O	. Lush	1 -01 -000 (
DATE PREP	ARED		DATE	DATE			PRICE LEVEL		

CODE: D-8140			ESTIMAT	E WORKSHE					SHEET 5
EATURE	:			1-Aug-2001	PROJEC	T			
Grand Car	nyon Pipe	line Projec	t						
	Direction				DIVISIO	N			
Alternative					UNIT			***	
filename: (PLANT		VORK\Grand C	Canyon\[hydrgc1.xls]North Rim				1		
ACCOUNT	PAY ITEM		DESCRIPTION		CODE	UNIT	QUANTITY	UNIT PRICE	AMOUNT
		1							
	•		vertical turbine pump			LS	1	\$50,000	\$50,000
		П = 3500	It., Q= 0.54 cfs, HP =214						
	:	Power Cable	- medium voltage 5 Kv line			ft	1,000	\$54	\$54,000
			n new trench with select backfil	1					
		Trench o	lepth = 2 ft. & width = 6"						
		Pump house	on North Rim			LS	1	\$50,000	\$50,000
		Assume me	etal building on flat slab						
			1				<u> </u>		
		Steel Pipe (c	asing) 8B3000 t=.305			ft	11,300	\$32	\$361,600
							,	ΨVL	4001,000
	5	Directional D				LS	1	\$6,650,000	\$6,650,000
		Assume Length =	1 - 8 3/4" hole						
		Lengar =	3,000 IL						
1									
		Mobilization	Subtotal			LS	1	\$360,000	\$360,000
		Unlisted Iten							\$7,525,600 \$774,400
		[Contract Cost						\$8,300,000
		Contingency							\$2,200,000
			Field Cost						\$10,500,000
							+ +		
		.							
		1					+ +		
		<u> </u>					┼──┼		
			********			<u>.</u>	 		
		QUANTITIES				PRICES	<u> </u>		
BY			APPROVED	ВҮ	DCM		CHECKED	AI	9/20/2001
Richard Fuers			DATE	Daniel L. Maag	VUN		any a	.Juch	., -,
DATE PREPA	KED		DATE	DATE 9/17/01			PRICELEVEL		

CODE: D-8140				ESTIMATE V						SHEET 6
FEATURE					1-Aug-2001	PROJEC	T			
Grand Car North Rim		line Projec	t			DIVISIO	<u></u>			
One Hole							۱ 			
Alternative			anvon\[hvdra	c1.xls]North Rim		UNIT				
PLANT	PAY		DESCRIPTIC		•	CODE	UNIT	QUANTITY	UNIT	AMOUNT
ACCOUNT	ITEM								PRICE	
	1	Pipeline Exc					cy	344	\$160	\$55,040
				llow existing trail, 1800	ft long					
		Cover ov	er 4* pipe - 2	2ft.						
		2 Pipeline Bac	kfill				cy	223	\$120	\$26,760
		B Pipeline Sele	ect Backfill		<u></u>		cy	121	\$750	\$90,750
				d be helicoptered to site	e					
		Steel Pipe								
			4B3000	t=.15 (Install in dir	rectional drill ho	le)	ft	4,000	\$32	\$128,000
			4B4000	t=.20			ft	1,800	\$40	\$72,000
	Ę	Directional D	Prilling		**		LS	1	\$2,800,000	\$2,800,000
		Assume	1 - 8 3/4" hole)						
		Length =	4,000 ft							
		Mobilization					LS		A700.000	4700.000
		MODITZACION	Subtotal		n		13	1	\$760,000	\$760,000 \$3,932,550
		Unlisted Iten								\$167,450
		0	Contract Cos	it			-			\$4,100,000
		Contingency	Field Cost					+		\$1,100,000 \$5,200,000
										\$3,200,000
				······						
		+								
·····										
					,			<u>├</u>		
		<u> </u>								
					4					
		QUANTITIES			BV		PRICES	T	1 1	
BY Richard Fuers	t		APPROVED		BY Daniel L. Maag	DUN	\	CHECKED	7. Kush	9/20/2001
DATE PREPA			DATE		DATE			PRICE		

CODE: D-8140		ESTIMATE WORK					SHEET 7
EATURE	:	1-Au	g-2001 PROJEC	СТ			
Grand Car	nyon Pipe	eline Project					
North Rim Two Holes	Direction		DIVISIO	N			
Alterative	5B2	WORK\Grand Canyon\[hydrgc1.xls]North Rim	UNIT			······	
PLANT	PAY	DESCRIPTION	CODE	UNIT	QUANTITY	UNIT	AMOUNT
ACCOUNT	ITEM					PRICE	
		1 Pipeline Excavation Assume 100% rock, follow existing trail, 1800 ft long		cy	344	\$160	\$55,040
		Cover over 4" pipe - 2ft.					
	:	2 Pipeline Backfill		cy	223	\$120	\$26,760
			n				
		3 Pipeline Select Backfill Assume material would be helicoptered to site		cy	121	\$750	\$90,750
		Assume material would be helicoptered to site					
		4 Steel Pipe					
		4B3000 t=.15 (Install in directional	drill hole)	ft	4,000	\$32	\$128,000
		4B4000 t=.20		ft	1,800	\$40	\$72,000
		6 Directional Drilling		LS	1	\$5,600,000	\$5,600,000
		Assume 2 - 8 3/4" holes					++,,
		length =4,000 ft					
		7 Deves Ochie medium velkese 5 Kuline			0.000		A100.000
		7 Power Cable - medium voltage 5 Kv line Installed in pipe trench and		ft	9,800	\$20	\$196,000
		two in the 8-inch drill hole.					
		Mobilization		LS	1	\$1,000,000	\$1,000,000
		Subtotal					\$7,168,550
		Unlisted Items= 5% Contract Cost					\$331,450 \$7,500,000
		Contingency = 25%			<u>-</u>		\$1,900,000
		Field Cost					\$9,400,000
						·····	
					\downarrow		
						a, aa	
	a			001055			
BY		QUANTITIES BY	<u> </u>	PRICES		<u></u> +	9/2 1-
Richard Fuers	st	Daniel L	Maag DCM	1	and 1	2. Lush	1/20/2001
DATE PREPA		DATE DATE			PRICE		
9/17/01			9/17/01		1		

ODE: D-8140			ESTIM	IATE WO	RKSHEET					SHEET 8
EATURE	:				1-Aug-2001	PROJE	СТ			
irand Ca anner A		peline Proj	ect			DIVISIO				
anner A		IL .				DIVISIC	/N			
						UNIT				·
filename:	C:\123R5	W\WORK\Gra	nd Canyon\[hydrgc1.xls]Est	timates						
PLANT	PAY ITEM		DESCRIPTION			CODE	UNIT	QUANTITY	UNIT PRICE	AMOUNT
	1	Pipeline Exc	avation				cy	7,128	\$140	\$997,920
	<u> </u>		100% rock, trail width 3 fe	et, 31,000 ft ion	g		• • •	1,120	ψ1τυ	\$331,320
			/er 8" pipe - 2ft.		-					
	2	Pipeline Bac	ckfill		·	+	cy	4,092	\$95	\$388,740
	3	Pipeline Sek	ect Backfill				cy	2,508	\$650	\$1,630,200
		1	material would be helicop	tered to site				2,000		\$1,030,200
	4	Steel Pipe								
			8A1000 t=.097			+				
	<u> </u>	<u> </u>	8A2000 t=.199		<u>.</u>		ft ft	2,400 15,500	\$62 \$69	\$148,800 \$1,069,500
			8A3000 t=.305				ft	6,500	\$83	\$539,500
			8A4000 t=.416				ft	5,500	\$105	\$577,500
			8A5000 t=.532				ft	3,100	\$140	\$434,000
						<u> </u>				
	5	1	e - medium voltage 5 Kv li	ne		+	ft	33,000	\$20	\$660,000
		installed	in pipe trench.			+ +				····
	6	Pumping Pla	ant				LS	1	\$1,600,000	\$1,600,000
		Concrete								
			on = 2328 cy							
	-		ed Backfill = 2124 cy							
		2 pumps:	Q=2.16 cfs, H= 4938 ft							
						+ +			- · · · · ·	• •
	7	Infiltration G	iallery		3 - 1	11	LS	1	\$600,000	\$600,000
		36D25 co	ncrete pipe = 55 ft.							
			ncrete pipe = 122 ft.							
		Concrete	= 6 cy y graded gravel = 58 cy			┦ ┤				
			on = 1950 cy							
			ed Backfill = 30 cy			+		I		
		Riprap =	105 cy							
		-								
	9	Conventiona	al Treatment Plant at Sout	th Rim			LS	1	\$3,600,000	\$3,600,000
		Mobilization				╂╂	LS	1	\$5,600,000	\$5,600,000
			· · · · · · · · · · · · · · · · · · ·							+0,000,000
										·
						+				
			Subtotal			┼──┤				6470/010
		Unlisted Iten			· · · · -	+				\$17,846,160 \$653,840
			Contract Cost							\$18,500,000
		Contingency								\$4,500,000
			Field Cost							\$23,000,000
		QUANTITIES					PRICES			
Y ichard Fuer	rot .		APPROVED		BY Daniel I. Maga	DLM		CHECKED	\mathcal{H}	9/20/2001
ATE PREP			DATE		Daniel L. Maag DATE	*		PRICE CEVEL	. funct	
9/17/01					9/19/01	f		-	Appraisal	

EATURE	:				1-Aug-2001	PROJE	CT			SHEET 9
ardenas	and Canyon Pipeline Project rdenas Alignment ernative 6b						ON			
Alternativ	filename: C:\123R5W\WORK\Grand Canyon\[hydrgc1.xls]Estimates PLANT PAY DESCRIPTION									
filename:	C:\123R5\	M/WORK\Gra	nd Canyon\[hydrgc1.xls]Es	timates						
PLANT ACCOUNT			DESCRIPTION			CODE	UNIT	QUANTITY	UNIT PRICE	AMOUNT
	. 1	Pipeline Exc	avation				cy	2,052	\$140	\$287,280
				6,500 ft long						
		Cover ov	/er 8" pipe - 2ft.							
	2	Pipeline Bac	:kfill		···-		су	1,178	\$95	\$111,910
	3	Pipeline Sel	ect Backfill				су	228	\$650	\$148,200
				tered to site			•,	220	\$030	\$140,200
	4	Steel Pipe	8A3000 t=.305	lastall in dim	ation duil bata			44.000		
			8A4000 t=.305	instan in dire	ection drill hole	+	ft ft	11,000 6,500	\$32 \$105	\$352,000 \$682,500
			8A5000 t=.532				ft	3,000	\$105	\$420,000
	5		e - medium voltage 5 Kv li	ine			ft	31,500	\$20	\$630,000
			in pipe trench and ne 8-inch drill hole.							
	6	Pumping Pla					LS	1	\$1,600,000	\$1,600,000
		Concrete	= 64 cy on = 2878 cy							
			ed Backfill = 2320 cy							
			Q=2.16 cfs, H= 4938 ft							
	7	Infiltration G	allery				LS	1	\$600,000	\$600,000
	,		ncrete pipe = 55 ft.				-5		\$000,000	\$600,000
			ncrete pipe = 122 ft.							
		Concrete			. <u> </u>					
			y graded gravel = 58 cy on = 1950 cy							
			ed Backfill = 30 cy							
		Riprap =	105 cy							
		Directional [Drilling				LS		****	
	0	· · · · · · · · · · · · · · · · · · ·	1 -12 3/4" hole and 1 - 8 3	/4" hole			19	1	\$19,800,000	\$19,800,000
		length =	11,000 ft							
	9	Conventiona	al Treatment Plant at Sout	th Rim			LS	1	\$3,600,000	\$3,600,000
	_									
		Mobilization	Subtotal			+	LS	1	\$2,500,000	\$2,500,000 \$30,731,890
		Unlisted Iter								\$1,268,110
			Contract Cost							\$32,000,000
		Contingency								\$7,000,000
			Field Cost							\$39,000,000
		QUANTITIES	3				PRICES	I		
3Y			APPROVED		вү	ħ		CHECKED	<u> </u>	9/20/2001
Richard Fuer			· .		Daniel L. Maag	Dr		Cing a.	Kuch	
DATE PREP	ARED		DATE		DATE			PRICE		

ODE: D-8140	:	ESTIMATE WORKSHEET 1-Aug-2001	PROJECT				SHEET 10		
		-		••					
arand Ca Comanch		peline Project nent	DIVISION						
Alternative 6c									
filename	C·\12385\	VWORK\Grand Canyon\[hydrgc1.xls]Estimates	UNIT						
PLANT	PAY	DESCRIPTION	CODE	UNIT	QUANTITY	UNIT	AMOUNT		
ACCOUNT	ITEM	7+6				PRICE	· · · .		
	1	Pipeline Excavation	+	су	9,202	\$140	\$1,288,280		
		Assume 100% rock, pioneer trail 5,600 ft long in canyon							
		Follow new road on Rim. Cover over 8" pipe - 2ft.							
	2	Pipeline Backfill		су	5,282	\$95	\$501,790		
						+			
	3	Pipeline Select Backfill	-	cy	3,238	\$200	\$647,600		
		Assume 800 cy of material would be helicoptered to site in canyon	+				<u>.</u>		
	4	Steel Pipe							
		8A4000 t=.416 Install in direction drill hole		ft	5,500	\$40	\$220,000		
		8A5000 t=.532		ft	5,600	\$140	\$784,000		
		8A500 t=.0747		ft	31,500	\$62	\$1,953,000		
	5	Power Cable - medium voltage 5 Kv line		ft	48,100	\$20	\$962,000		
		Installed in pipe trench and							
		two in the 8-inch drill hole.	┥───┤						
	6	Pumping Plant		LS	1	\$1,600,000	\$1,600,000		
		Concrete = 64 cy				*1,000,000	\$1,000,000		
		Excavation = 2878 cy							
		Compacted Backfill = 2320 cy							
		2 pumps: Q=2.16 cfs, H= 4938 ft							
	7	Infiltration Gallery		LS	1	\$600,000	\$600,000		
		36D25 concrete pipe = 55 ft.							
		30D25 concrete pipe = 122 ft.							
		Concrete = 6 cy Uniformly graded gravel = 58 cy							
		Excavation = 1950 cy							
		Compacted Backfill = 30 cy							
		Riprap = 105 cy							
		Discales - I Dellis -							
	8	Directional Drilling Assume 1 -12 3/4" hole and 1 - 8 3/4" hole		LS	1	\$9,900,000	\$9,900,000		
		Length = 5500 ft							
	9	Conventional Treatment Plant at South Rim		LS	1	\$3,600,000	\$3,600,000		
	10	Pioneer new access road		LF	21,120	\$20	\$422,400		
		Four miles long, 16 ft. wide, 4" gravel surfacing				+=+			
		Mobilization		LS	\$1	\$4,000,000	\$4,000,000		
		Subtotal Unlisted Items= 5%	┼──┼				\$26,479,070		
		Contract Cost	<u>├</u> ──- <u></u>				\$1,520,930 \$28,000,000		
		Contingency = 20%					\$5,000,000		
		Field Cost					\$33,000,000		
		QUANTITIES		PRICES	T				
IY lichard Fuer	st	APPROVED BY Daniel L. Maag	DLM		CHECKED	1. Lush	9/20/200		
					PRICE LEVEL				

CODE: D-8140			ESTIMAT	E WORKSHEET					SHEET 11		
FEATURE: 1-Aug-2001					1 PROJE	PROJECT					
Grand Co	nvon Di	nolino Droi	ect								
Grand Canyon Pipeline Project Wellfield Inside Park					DIVISI	ON	- <u> </u>				
Long Jim Canyon Site Alternative 7					UNIT						
				UNIT							
	C:\123R5WWORK\Grand Canyon\[hydrgc1.xls]Estimates										
PLANT ACCOUNT	PAY ITEM	1	DESCRIPTION		CODE		QUANTITY	UNIT PRICE	AMOUNT		
ACCOUNT								PHILE			
	1	Submersible	vertical turbine pump			pumps	15	\$30,000	\$450,000		
		H = 3500 1	ft., Q= 0.144 cfs, HP =100								
	2		- medium voltage 5 Kv line			ft	9,000	\$54	\$486,000		
		+·	in new trench with select backf lepth = 2 ft. & width = 6"	11							
		Trencing	ieptii = 2 it. & widtii = 0								
	3	Access Road	1			LF	9,000	\$24	\$216,000		
		Assume 24	foot wide, 9000 ft long road pic	oneered to site							
		4-inch grav	/el surfacing								
	<u> </u>										
	4	Steel Pipe (c		wells		ft	45,000	\$50	\$2,250,000		
					- 	<u>†"</u>	-0,000	4JU	Ψ Δ, ΔΟ υ, ΟΟΟ		
	5	Wellfield Dril	lling			LS	1	\$19,312,500	\$19,312,500		
		Assume	15 wells, 3250 ft deep and 16" i	n diameter							
		÷	en = 100 feet/well.								
<u>_</u>		Gravel pa	ack = 400 feet/well								
	6	4" Discharge	Dining			ft	45,000	\$30	\$1,350,000		
		la Discharge	t=0.14 15 wells				45,000	\$ 30	\$1,350,000		
						1					
	7	Forebay Tan	k (5000 gal steel)								
	8	Pipeline Exc	avation (100%rock)			су	19,244	\$20	\$384,880		
	9	Pipeline Sele	ect material			су	2,077	\$60	\$124,620		
						,	_,,,,,		•121,020		
	10	Pipeline Bac	kfill			cy	17,310	\$5	\$86,550		
	11	PVC pipe	Rinch DD41						A105 000		
			8-inch DR41 12-inch DR41			ft ft	9,000 32,000	\$15 \$25	\$135,000 \$800,000		
							02,000	ΨLJ	\$000,000		
	12	Pumping Pla	nt			LS	1	\$700,000	\$700,000		
			Q= 2.16 cfs, H = 50 ft, HP =25								
			Flat slab plant								
		<u> </u>									
		<u> </u>									
		1									
	-	Mobilization				LS	1	\$1,300,000	\$1,300,000		
		Subtotal							\$27,595,550		
		Unlisted Items = 10% Contract Cost							\$2,404,450 \$30,000,000		
		Contingency							\$8,000,000		
			Field Cost						\$38,000,000		
		QUANTITIES				PRICES					
BY			APPROVED	вү	7.40			A. Lush	9/20/2001		
Richard Fuer				Daniel L. Maag	DCM		(ruf (1. Aush			
	ARED		DATE	DATE			PRICE				

CODE: D-8140 ESTIMATE WORKSHEET					SHEET 12					
FEATURE: 1-Aug-2001				PROJECT						
Frand Ca	nvon Pi	neline Proi	iect							
Markham Dam Alternative 8					DIVISIO	ON				
					UNIT					
PLANT	PAY		DESCRIPTION		CODE	UNIT	QUANTITY	UNIT	AMOUNT	
ACCOUNT	ITEM				-			PRICE		
	1	Submersible	e vertical turbine pump			pumps	15	\$30,000	\$450,000	
	· ·	<u>}</u>	ft., Q= 0.144 cfs, HP =100			pumps	15	\$30,000	\$450,000	
	2	Power Cable	e - medium voltage 5 Kv line			ft	10,000	\$54	\$540,000	
			in new trench with select backfill							
		Trench	depth = 2 ft. & width = 6"							
		Access Dec					40.000			
	3	Access Roa	l foot wide, 10,000 ft long road pioneere	d to site		LF	10,000	\$24	\$240,000	
			vel surfacing							
			······································							
	4	Steel Pipe (o								
			10B3000 t=.350 15 wells			ft	45,000	\$50	\$2,250,000	
					+					
	5	Wellfield Dri	illing 15 wells, 3250 ft deep and 16" in diamet			LS	1	\$19,312,500	\$19,312,500	
			en = 100 feet/well.							
		h	ack = 400 feet/well							
	6	4" Discharge	e Piping			ft	45,000	\$30	\$1,350,000	
			t = 0.14 15 wells							
					-					
	<u> </u>	Forebay Tar	nk (5000 gal steel)							
	8	Pipeline Exc	cavation (100 % rock)			cy	93,265	\$20	\$1,865,300	
							50,200	\$20	¥1,003,300	
	9	Pipeline Sel	ect Backfill			cy	12,007	\$60	\$720,420	
	9	Pipeline Bac	ckfill		_	cy	83,345	\$5	\$416,725	
	10	PVC pipe			+					
	10	PVC pipe	8-inch DR41			ft	10,000	\$15	\$150,000	
			16-inch DR41		+	ft	185,000	\$15	\$4,625,000	
	-						,	,	()]==))==	
	11	Pumping Pla				Each	3	\$1,000,000	\$3,000,000	
			Q= 2.16 cfs, H = 500 ft, HP = 125							
			Flat slab plant Assume 200 cu. ft. air chamber at each	niant						
			Assume 200 cu. II. air champer at each	i piant.	+ +					
					+ +					
·										
		Mobilization				LS	1	\$1,600,000	\$1,600,000	
		Subtotal							\$36,519,94	
		Unlisted Iter	ns = 10% Contract Cost	+				\$3,480,05		
		Contingency = 25%							\$40,000,00	
			Field Cost		+				\$10,000,00	
	•	QUANTITIES				PRICES			+30,000,000	
BY			APPROVED	вү	6 / · · ·		CHECKED	2 0 1	9/70/201	
Richard Fuer	st			Daniel L. Maag	DUM		hing /	. Lush	1 00/001	
DATE PREP	ARED		DATE	DATE			PRICE LEVEL			
9/17/01			l	9/19/0	1					

APPENDIX 2

Field Report and Cathodic Protection Recommendations

A2.1 Introduction

The transcanyon pipeline (TCP) is approximately 12.5 miles long. The pipeline was originally constructed of 6- and 8-inch diameter, dielectric coated, aluminum (alloy 6061 and 6070). In 1986 a section of pipeline was replace with 8-inch diameter steel pipe (64+00 to 77+00). The aluminum pipeline was installed with in-line, cast iron valves. The cast iron valves were electrically isolated from the aluminum pipeline using isolating flange kits on each side of the valve (figure 1) and as a result the pipeline is divided into electrically isolated sections. Cathodic protection was installed on the pipeline in 1972 and consisted of magnesium anodes, rheostats, shunts, anode bonding boxes, and insulator bonding boxes. The cathodic protection design included 16 magnesium anodes which were buried in creek or river beds. The anode bonding boxes contain a rheostat and shunt to adjust and determine the current output of the anode, and a test cable for pipe-tosoil potential measurements. The insulator bonding boxes (figure 2) are installed at inline, cast iron valves and contain a rheostat and shunt to adjust and determine the current flow between the two adjacent electrically isolated pipeline sections.

The cathodic protection system was abandoned in the mid 1970's; however, no specific measures were taken to physically disconnect the anodes from the pipeline. Apparently the cathodic protection system was abandoned because numerous failures were reportedly caused by internal corrosion on the pipeline. It should be noted that the type of cathodic protection system installed on the TCP, anodes buried in the earth, will only provide cathodic protection to the pipeline surfaces in contact with the earth, i.e. the outside diameter of the pipeline. The inside diameter of the pipeline will not be effected by this

type of cathodic protection system. For a cathodic protection system to provide corrosion protection to the inside diameter of a pipeline the anodes must be installed within the pipeline.

A2.2 Testing and Data Analysis

Corrosion testing planned as part of this investigation were a close interval potential survey within the area of reported external corrosion failures (Phantom Ranch area, stations 167+33 to 189+75), pipe-to-soil potentials at in-line insulators and anode locations, current across in-line insulators, and current output of anodes. The close interval potential survey is capable of identifying areas on the pipeline that are actively corroding. The remaining tests evaluate the operation of the cathodic protection system, although, if the tests were conducted periodically (once a year for multiple years) and compared to one another they could give an indication of corrosion activity.

The close interval potential survey within the Phantom Ranch area could not be conducted because the correct key for the lock of the valve vault at station 189+75 was not available and other methods to remove the lock failed. Therefore, the portion of this investigation which would identify actively corroding areas on the pipeline could not be conducted.

The data collected to evaluate the operation of the cathodic protection system are presented in the table at the end of this report. Of the sixteen anodes originally installed on the pipeline only eight could be directly tested (anodes 5, 7, 8, 10, 12, 14, 15, and 16). Anodes 1, 2, 3, 4, 6, 9, 11, and 13 could not be directly tested because their anode bonding box was not located or could not be accessed.

For the sections of pipeline protected by the anodes that were not directly tested pipe-tosoil potentials indicate that anodes 1, 6, 9, 11, and 13 are not providing adequate cathodic protection to their respective section of the pipeline. Pipe-to-soil potentials were not obtained from pipeline sections for which anodes 2 and 4 were designed to protect. Pipeto-soil potentials indicate a protective potential on the upstream section on the pipeline at station 97+15 and, as such, anode 3 may be providing adequate cathodic protection to the section of pipeline to which it is attached (station 97+15 to 123+52).

Anodes 5 and 7 are not providing cathodic protection to the pipeline. The anode cables for anodes 5 and 7 were visually inspected and found to be severed (figure 3). The ends of the cables appeared to have been severed for some time. It is speculated that the anode cables were severed by the buildup of debris on the cables during flash floods. Several other anode cables were exposed within the creek beds and are likely severed.

Anode 8 had no measurable current output, although, the pipe-to-soil potential using the anode cable indicates that the anode is intact. Pipe-to-soil potentials for the section of pipeline for which anode 8 was designed to protect do not indicate adequate cathodic protection.

Anode 10 had a measurable current output of 2 milliamps, although, pipe-to-soil potentials do not indicate adequate cathodic protection. Anode 10 was disconnected from the pipeline during testing without a significant change in pipe-to-soil potential, this indicates that the anode is not providing adequate cathodic protection.

Anode 12 had a measurable current output of 1 milliamp, although, pipe-to-soil potentials do not indicate adequate cathodic protection. Anode 12 was disconnected from the pipeline during testing without a significant change in pipe-to-soil potential, this indicates that the anode is not providing adequate cathodic protection.

Anode 14 had no measurable current output and pipe-to-soil potentials do not indicate adequate cathodic protection.

Anode 15 had no measurable current output, although, pipe-to-soil potentials at this location indicate excessive levels cathodic protection. Pipe-to-soil potentials at this location are similar to that of the open circuit potential for a high potential magnesium anode (the open circuit potential of an anode is the "pipe-to-soil" potential of the anode when it is disconnected from pipeline). Other pipe-to-soil potentials for the section of pipeline for which anode 15 was designed to protect do not indicate excessive or adequate cathodic protection. The data indicates a possible high resistance in the circuit between

A2-4 Grand Canyon National Park Water Supply Appraisal Study Appendix 2

the test station and pipeline, possibly severed cables or high resistance at the pipe clampto-pipeline connection used in the cathodic protection system design. Although the potentials measured within the anode bonding box indicate excessive levels of cathodic protection it is unlikely that these are representative of the pipeline potentials at this location.

Anode 16 had no measurable current output and pipe-to-soil potentials do not indicate adequate cathodic protection.

Two additional test stations, of different design and materials than the original cathodic protection system, were located on the pipeline at stations 563+03 (figure 4) and $\sim 613+00$ (bridge over Bright Angel Creek at confluence of Manzanita Creek). These additional test stations do not have a shunt or rheostat. It appears that the test stations are used to connect anodes to the pipeline. Pipe-to-soil potentials at both locations do not indicate adequate cathodic protection.

In summary, the test data indicates that the cathodic protection system for the TCP is not providing adequate cathodic protection and from a practical standpoint is essentially non-functional. The majority of pipe-to-soil potentials determined are typical of native pipe-to-soil potentials for buried aluminum (the potential of buried aluminum without or prior to cathodic protection) and current output of the anodes are non-measurable or minimal.

It should be noted that there is the possibility that the cathodic protection system is providing very minimal levels of protection on portions of the pipeline. This should be taken into consideration during any future corrosion related testing on the pipeline.

A2.3 Miscellaneous

The 1993 Arber Corrosion Assessment report identified corrosion on the exterior of the pipeline. Without further investigations it can only be assumed that there is active corrosion occurring on the pipeline and, as such, corrosion failures of the pipeline are expected. Corrosion failure rates on pipelines increase with time if corrosion mitigation techniques are not implemented. If the existing pipeline is to provide long term service

without corrosion related failures reestablishment of cathodic protection on the pipeline should be considered. Because of the cathodic protection characteristics of aluminum and the unique site specific conditions extensive field testing of the existing pipeline is required to properly and adequately design a cathodic protection system, including determining the type of cathodic protection system (impressed or galvanic) most suited for this particular application. Cathodic protection on this pipeline must be implemented carefully and regular monitoring of the cathodic protection system is essential.

Apparently numerous pipeline failures have occurred on cold bent sections of the pipeline. The cold bent sections have higher residual stresses than the remainder of the pipeline. Corrosion has been reported on internal and external surfaces of the pipeline. Because of higher residual stresses of the bends and experienced corrosion, stress corrosion cracking as an operative failure mechanism is surmised. For stress corrosion cracking to be operative the following conditions are required: a susceptible material, presence of tensile stress, and specific environmental exposure. Metallurgical analysis is required to identify stress corrosion cracking failures. Visual corrosion products may not be present with stress corrosion cracking failures and pipe-to-soil potentials surveys conducted on pipelines are not capable of identifying areas of stress corrosion cracking. If stress corrosion cracking is operative cathodic protection is a method of mitigation.

To determine the extent of pipeline corrosion activity and pipeline failure mechanisms extensive investigations are required. To determine the extent of corrosion activity field testing is required on multiple sections of the pipeline. In addition, the field testing should be verified by physical examination of the pipeline at selected locations. To identify failure mechanisms a failure investigation is required on pipeline failures. The failure investigation should, as a minimum, document date, location, and cause of failure, including a metallurgical evaluation of the failed pipe section and fracture surfaces.

An impressed current, cathodic protection system rectifier was noted at Indian Gardens Pumping Plant. Park personnel indicated that the impressed current cathodic protection system was installed on the pipeline between the pumping plant and South Rim. Reportedly there are test stations along the pipeline between the pumping plant and portal of the directional drill hole, and the cathodic protection system has not been monitored. Although the rectifier was energized its voltage and current outputs were minimal and it

A2-6 Grand Canyon National Park Water Supply Appraisal Study Appendix 2

is questioned if the system is providing adequate cathodic protection to the pipeline. Typical monitoring requirements for this type of impressed current cathodic protection system includes monthly monitoring of the rectifier outputs and yearly pipe-to-soil potentials at all test stations.

A2.4 Conclusions and Recommendations

1. The test data indicates that the cathodic protection system for the TCP is not providing adequate cathodic protection and from a practical standpoint is essential non-functional.

2. The pipeline section that anode 3 was designed to protect appears to be receiving adequate cathodic protection.

3. Although the cathodic protection system was abandoned in the mid 1970's no physical means of abandonment were undertaken, i.e., disconnecting the anodes from the pipeline. It is possible that the cathodic protection system could have provided adequate cathodic protection to the pipeline for a period of time after is was abandoned.

4. If the existing pipeline is to provide long term service without corrosion related failures reestablishment of cathodic protection on the pipeline should be considered. Cathodic protection of the pipeline must be implemented carefully and regular monitoring of the cathodic protection system is essential.

5. To date pipeline failures have not been consistently documented. It is recommended that a failure investigation be conducted on pipeline failures. The failure investigation should, as a minimum, document date, location, and cause of failure, including a metallurgical evaluation of the failed pipe section and fracture surfaces.

6. To determine the extent of corrosion activity on the pipeline field testing is required, including physical examination of the pipeline at selected locations.

7. It is recommended that the impressed current cathodic protection system installed at the Indian Gardens Pumping Plant be tested to determine if it is providing adequate cathodic protection and adjusted as required. Once it is verified that the cathodic protection system is providing adequate cathodic protection is it recommended that it be monitored on a regular basis.

Appendix 2

Figure 1. Typical valve box. Cast iron valve is electrically isolated from aluminum pipeline by insulated flange kits on each side of the valve. Cables are attached to the pipeline flanges and terminate in insulator bonding box (lower portion of figure). Isolation of the valve from the pipeline results in the aluminum pipeline being divided into electrically isolated sections.

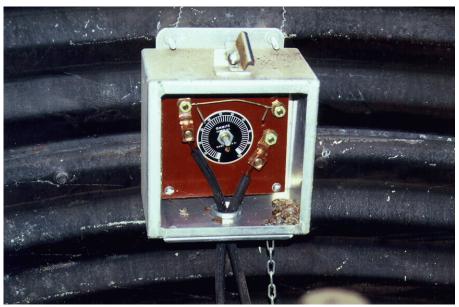


Figure 2. Typical insulator bonding box. Cables originate from the upstream and downstream pipeline sections at cast iron valves (see figure 1). Bonding box contains a rheostat (black circular faceplate, knob is missing) and shunt (wire above rheostat) to adjust and determine the current flow between the two adjacent electrically isolated pipeline sections. Anode bonding boxes are similar except they have an addition cable which freely terminates in the box and is used for measuring pipe-to-soil potentials.

A2-7

A2-8 Grand Canyon National Park Water Supply Appraisal Study

Appendix 2

Figure 3. Anode 7 at pipeline stationing 242+30. Anode cable has been severed (arrow) and appeared to have been severed for some time. It is speculated that the anode cable was severed by the buildup of debris on the cables during flash flooding.

Figure 4. Test station at pipeline station 563+03. The test station (top arrow) is of a different design and materials than the original cathodic protection system materials. The test station does not have a rheostat or shunt and appears to connect an anode to the pipeline. The anode cable is exposed between test station and lower arrow, and is susceptible to damage.

A2-9

Appendix 2

GRAND CANYON NATIONAL PARK TCP								
Cathodic Protection System Pipe-to-Soil Potentials and Shunt Measurements March 1 and 2, 2001								
Station	Description	Pipe-to- Soil ¹ (mV)	Shunt (mA)	Comments				
~23+80		-876		Pipe exposed at Garden Creek Crossing.				
24+52	Corrugated valve box with: Insulator bonding box Anode 1 bonding box Anode 2 bonding box			Wrong keys, could not access interior of vault.				
82+90	Corrugated valve box with: Insulator bonding box			Not located.				
97+15	Corrugated valve box with: Insulator bonding box	-850 -1050	1	Downstream pipe. Upstream pipe. Across insulators, rheostat 100%.				
123+52	Corrugated valve box with: Insulator bonding box Anode 3 bonding box			Not located.				
145+25	Corrugated valve box with: Insulator bonding box Anode 4 bonding box			Not located.				
163+90	Anode 5 bonding box			Box located under bridge, not accessed. Anode cable severed.				
189+75	Corrugated valve box with: Insulator bonding box			Wrong keys, could not access interior of vault.				

Appendix 2

GRAND CANYON NATIONAL PARK TCP									
Cathodic Protection System Pipe-to-Soil Potentials and Shunt Measurements March 1 and 2, 2001									
Station	Description	Pipe-to- Soil ¹ (mV)	Shunt (mA)	Comments					
228+98	Anode 6 bonding box			New bridge, could not locate anode box.					
	Corrugated valve box	-779		Pipe downstream.					
240+90	with:	-764		Pipe upstream.					
	Insulator bonding box		2	Across insulators, rheostat 100%.					
242+30	Anode 7 bonding box			Anode box under bridge, but could not open. Anode cable severed.					
	Corrugated valve box with:	-800		Pipe downstream.					
280+67		-787		Pipe upstream.					
	Insulator bonding box		4	Across insulators, rheostat 100%.					
287+65	Anode 8 bonding box	-1172	0	Rheostat 100%.					
287+03		-800							
	Corrugated valve box	-781		Pipe downstream.					
326+63	with: Insulator bonding box	-778		Pipe upstream.					
	Insulator bonding box		5	Across insulators, rheostat 100%.					
345+00	Anode 9 bonding box			New bridge, could not locate anode box.					
	Corrugated valve box with:	-729		Pipe downstream.					
362+63		-702		Pipe upstream.					
	Insulator bonding box		3	Across insulators, rheostat 100%.					
	Anode 10 bonding box		2	Rheostat 100%.					
372+00		-706		#12 white, as found.					
		-703		#12 white, anode disconnected.					

January 2002

A2-11

	GRAND (CANYON N TCP		JAL PARK
	Cat	hodic Protec		stem
			-	Measurements
	-	March 1 and		
Station	Description	Pipe-to- Soil ¹ (mV)	Shunt (mA)	Comments
		-702		#12 white, anode reconnected.
	Corrugated valve box	-768		Pipe downstream.
386+12	with: Insulator bonding box	-755		Pipe upstream.
	Insulator bonding box		5	Across insulators, rheostat 100%.
401+53	Anode 11 bonding box			Not found.
	Corrugated valve box	-757		Pipe downstream.
445+00	with:	-755		Pipe upstream.
	Insulator bonding box		3	Across insulators, rheostat 100%.
	Corrugated valve box	-760		Pipe downstream, as found
	with:	-760		Pipe downstream, anode disconnected.
493+13	Insulator bonding box	-761		Pipe upstream.
			3	Across insulators, rheostat 100%.
	Anode 12 bonding box	-760	1	#12 white.
510+21	Anode 13 bonding box and manual air relief valve			Located air relief valve, but could not locate anode bonding box. New rock wall installed along trail.
563+03	Anode ??	-770		Test station without a shunt or rheostat.
	Corrugated valve box	-790		Pipe downstream.
542+58	with:	-780		Pipe upstream.
	Insulator bonding box		0	Across insulators, rheostat 100%.
579+00	Anode 14 bonding box	-791	0	# 12 white, rheostat 100%.

Appendix 2

	GRAND (C ANYON N TCP	_	NAL PARK
		thodic Protec Potentials and March 1 and	l Shunt	Measurements
Station	Description	Pipe-to- Soil ¹ (mV)	Shunt (mA)	Comments
	Corrugated valve box	-790		Pipe downstream.
583+00	with: Insulator bonding box	-788		Pipe upstream.
	Insulator bonding box		1	Across insulators, rheostat 100%.
	Anode 15 bonding box	-1795		# 6 AWG with white tape.
		-1795		# 12 AWG blue.
591+00		-1713		# 6 AWG.
		-60		#12 AWG white.
			0	Knob of rheostat removed.
~ 613+00	Anode ??	-835		Test station without a shunt or rheostat. Test station at bridge over Bright Angel Creek at confluence of Manzanita Creek.
	Corrugated valve box	-775		Pipe downstream.
619+24	with:	-801		Pipe upstream.
	Insulator bonding box			Across insulators, rheostat 100%.
	Corrugated valve box	-565		Pipe downstream.
647+90	with: Insulator bonding box		0	Across insulators, rheostat 0%.
	Anode 16 bonding box		0	Anode 16 rheostat 100%.

1. Pipe-to-soil potentials determined with a copper/copper sulfate reference electrode.

A2.5 Projected Cathodic Protection Investigation Costs

These cost estimates assumes two Reclamation employees onsite for each task, with transportation modes of walking and helicopter. Two options relating to tasks 1 and 2 are presented. Option 1 includes evaluating the entire cathodic protection system for the aluminum TCP (Roaring Springs to Indian Gardens). Option 2 includes evaluating the cathodic protection system on the aluminum portion of the pipeline between Phantom Ranch and Indian Gardens.

Task 1. In-depth evaluation of existing galvanic anode cathodic protection system on the aluminum TCP, including report. Evaluating the existing galvanic anode cathodic protection system will consist of the following sequential steps (each step must be completed prior to conducting the next step):

1) Determine "As Found" conditions.

a. Protective pipe-to-soil potentials at anode locations and at each end of electrically isolated sections.

- b. Current outputs of all anodes.
- c. Current flow across all insulators.

2) Disconnect all anodes from pipeline by disconnecting anode cable from terminal in anode bonding box

3) Determine "Off" conditions:

a. Pipe-to-soil potential at anode locations and at each end of electrically isolated sections.

- b. Anode-to-soil potential of disconnected anodes.
- c. Current flow across all insulators.
- 4) Reconnect anodes as required.

Task 2. Collect design data required to design cathodic protection system for aluminum TCP, including conceptual design(s) of cathodic protection system. Testing at selected locations may include, but not limited to, the following:

- 1) Current requirement testing.
- 2) Coating resistance testing.
- 3) Span resistance testing.
- 4) Laboratory testing for soil chemistry and resistivity.

Task 3. Evaluate and adjust existing impressed current cathodic protection system on the buried steel pipeline between Indian Gardens Pumping Plant and lower portal of the South Rim bore hole. Task 3 will be accomplished during Task 1 activities and reported in Task 1 report.

The above tasks require access to valve boxes, anode bonding boxes, and insulator bonding boxes. Prior to initial onsite work the Park Service is to locate and verify access to interior of the applicable valve boxes, anode bonding boxes, and insulator bonding boxes. In addition, the Park Service is to provide accommodations within the Canyon; helicopter service for individuals, equipment, and supplies; and a minimum of one individual to serve as a guide and to assist with testing.

The following two tables provide the estimated cost per option. The tables in the appendix were used to estimate the staff days related to onsite visits and also to provide insight into logistics and scheduling.

Opt	tion 1 - Estimated Cost	
 Task 1 and 2 - Roaring Sprin Task 3 	ngs to Indian Gardens	
Evaluation of Existing (Cathodic Protection Systems (Task 1 a	and 3)
Travel - Labor (Skill Level 3)	170 hrs @ \$100/hr	\$17,000
Travel - Labor (Skill Level 2)	170 hrs @ \$90/hr	\$15,300
Travel - Non-labor	\$4000	\$4,000
Non-labor equipment	\$500	\$500
Report (Skill Level 3)	80 hrs @ \$100/hr	\$8,000
	Subtotal	\$44,800
Cathodic Protect	ion Design Data Collection (Task 2)	
Travel - Labor (Skill Level 3)	182 hrs @ \$100/hr	\$18,200
Travel - Labor (Skill Level 2)	182 hrs @ \$90/hr	\$16,380
Travel - Non-labor	\$4000	\$4,000
Non-labor equipment	\$1500	\$1,500
Soil Chemistry	\$1500	\$1,500
Data analysis and conceptual design	80 hrs. @ \$100/hr	\$8,000
	Subtotal	\$49,580

10% (Contingency)

Estimated Cost

Total

1. Task 1 a

A2-15

\$94,380

\$9,438

\$103,818

\$104,000

Option 2 - Estimated Cost

1. Task 1 and 2 - Phantom Ranch to Indian Gardens

2. Task 3

Evaluation of Existing (Cathodic Protection Systems (Task 1	and 3)
Travel - Labor (Skill Level 3)	88 hrs @ \$100/hr	\$8,800
Travel - Labor (Skill Level 2)	88 hrs @ \$90/hr	\$7,920
Travel - Non-labor	\$2000	\$2,000
Non-labor equipment	\$500	\$500
Report (Skill Level 3)	80 hrs @ \$100/hr	\$8,000
	Subtotal	\$27,220
Cathodic Protect	ion Design Data Collection (Task 2)	
Travel - Labor (Skill Level 3)	106 hrs @ \$100/hr	\$10,600
Travel - Labor (Skill Level 2)	106 hrs @ \$90/hr	\$9,540
Travel - Non-labor	\$2000	\$2,000
Non-labor equipment	\$1500	\$1,500
Soil Chemistry	\$1000	\$1,000
Data analysis and conceptual design	80 hrs. @ \$100/hr	\$8,000
	Subtotal	\$32,640
		\$59,860
	10% (Contingency)	\$5,986
	Total	\$65,846
	Estimated Cost	\$66,000

A2-16

Attachment Task Details

	Option 1 Evaluation of Existing Cathodic Protection Systems Task 1 - Roaring Springs to Indian Gardens Task 3	
Day (Trip/Day)	Activities	Hours
Preparation	Trip preparation.	32
1/1	Travel - Denver to South Rim.	8
1/2	Helicopter to Roaring Springs. Roaring Springs to Anode 9, testing. Night at Phantom Ranch.	10
1/3	Anode 9 to Pipe Creek, testing. Night at Indian Gardens.	10
1/4	Indian Gardens to Plateau Point, testing. Discount Anodes 1 and 2. Evaluate Impressed System. Night at Indian Gardens.	10
1/5	Helicopter from Indian Gardens to Roaring Springs. Disconnect anodes 16 thru 6. Night at Phantom Ranch.	10
1/6	Disconnect anodes 5 thru 3. Helicopter from Indian Gardens to South Rim. Night on South Rim.	10
1/7	Travel - South Rim to Denver.	8
Preparation	Trip preparation.	16
2/1	Travel - Denver to South Rim.	8
2/2	Helicopter to Roaring Springs. Roaring Springs to Anode 9, testing. Night at Phantom Ranch.	10
2/3	Anode 9 to Pipe Creek, testing. Night at Indian Gardens.	10
2/4	Indian Gardens to Plateau Point, testing. Indian Gardens to Phantom Ranch, reconnecting anodes as required. Night at Phantom Ranch.	10
2/5	Phantom Ranch to Roaring Springs, reconnecting anodes as required. Helicopter from Roaring Springs to South Rim. Night at South Rim.	10
2/6	Travel - South Rim to Denver.	8
	Total hours per individual	170

A2-17

A2-18

Appendix 2

	Option 1 Cathodic Protection Design Data Collection Task 2 - Roaring Springs to Indian Gardens	
Day		
(Trip/Day)	Activities	Hours
Preparation	Trip preparation.	40
3/1	Travel - Denver to South Rim.	8
3/2	Helicopter to Indian Gardens. Testing Indian Gardens/Plateau Point area.	10
- /-	Night at Indian Gardens.	
3/3	Testing Indian Gardens/Plateau Point area. Night at Indian Gardens.	10
3/4	Helicopter between Indian Gardens and Phantom Ranch. Testing Phantom Ranch/Colorado River area. Night at Phantom Ranch.	10
3/5	Testing Phantom Ranch/Colorado River area. Night At Phantom Ranch	10
3/6	Testing Phantom Ranch/Colorado River area. Helicopter between Phantom Ranch and South Rim.	10
3/7	Travel - South Rim to Denver.	8
Preparation	Trip preparation.	20
4/1	Travel - Denver to South Rim.	8
4/2	Helicopter to north portion of pipeline? Testing north portion of pipeline. Night at ?	10
4/3	Testing north portion of pipeline. Night at ?	10
4/4	Testing north portion of pipeline. Night at ?	10
4/5	Testing north portion of pipeline. Helicopter to South Rim. Night at South Rim.	10
4/6	Travel - South Rim to Denver.	8
	Total hours per individual	182

Appendix 2 L

Option 2 Evaluation of Existing Cathodic Protection Systems Task 1 - Phantom Ranch to Indian Gardens Task 3					
Day (Trip/Day)	Activities	Hours			
Preparation	Trip preparation.	32			
1/1	Travel - Denver to South Rim.	8			
1/2	Helicopter to Indian Gardens. Indian Gardens to Phantom Ranch, testing. Night at Phantom Ranch.	10			
1/3	Phantom Ranch to Indian Gardens, disconnecting anodes. Evaluate impressed current system at Indian Gardens. Night at Indian Gardens.	10			
1/4	Evaluate impressed current system Indian Gardens. Indian Gardens to Phantom Ranch, testing. Night at Phantom Ranch.	10			
1/5	Phantom Ranch to Indian Gardens, reconnecting anodes as required. Helicopter from Indian Gardens to South Rim. Night at South Rim.	10			
1/6	Travel - South Rim to Denver.	8			
	Total hours per individual	88			

A2-19

A2-20 Grand Canyon National Park Water Supply Appraisal Study

Appendix 2

	Option 2 Cathodic Protection Design Data Collection Task 2 - Phantom Ranch to Indian Gardens					
Day (Trip/Day)	Activities	Hours				
Preparation	Trip preparation.	40				
2/1	Travel - Denver to South Rim.	8				
2/2	Helicopter to Indian Gardens. Testing Indian Gardens/Plateau Point area. Night at Indian Gardens.	10				
2/3	Testing Indian Gardens/Plateau Point area. Night at Indian Gardens.	10				
2/4	Helicopter between Indian Gardens and Phantom Ranch. Testing Phantom Ranch/Colorado River area. Night at Phantom Ranch.	10				
2/5	Testing Phantom Ranch/Colorado River area. Night at Phantom Ranch.	10				
2/6	Testing Phantom Ranch/Colorado River area. Helicopter between Phantom Ranch and South Rim.	10				
2/7	Travel - South Rim to Denver.	8				
	Total hours per individual	106				

APPENDIX 3

Hydraulic Design Notes

	Grand Canyon	National Par	k Water Supp	,	I Study endix 3 A3-1
	Annual flow	Average Flow (cfs)	Peaking Factor	Pump Factor*	Maximum Flow (cfs)
Current Demand AF	800	1.11	1.3	1.2	1.72
Current Max. Delivery					1.56
2050 Demand AF	1255	1.73	1.3	1.2	2.70
2050 Demand South Rim	1004	1.39	1.3	1.2	2.16

0.35

1.3

1.2

0.54

Assume North rim is 20% of peak flow during summer

251

* Pump 20 hours out of 24

2050 Demand North Rim

A3-2

ALUMINUM - EXISTING PIPE -	CURRENT	DEMAND							
Pipe dia. (in)	8	6	8	6	8	Totals			
Q(CFS) 700 gpm	1.56	1.56	1.56	1.56	1.56				
Velocity Station	4.471 65430	7.949 42010	4.471 7700	7.949 2454	4.471 1203				
Station	42010	7700	2454	1203	5				
Length (ft)	23420	34310	5246	1251	1198	65425.0			
Head Loss / 1000 ft Scobey's	12.472	56.484	12.472	56.484	12.472				
Friction Loss (ft) Head Loss R = .003 Darcy's	292.1	1938.0 1139.19	65.4 30.18	70.7	14.9				
Head Loss R = .003 Darcy's Hazen-Williams 143	174.82 185.20	1101.32	39.16 41.48	41.54 40.16	8.94 9.47				
Head Loss R = .0005 Dercy's	132.94	832.85	29.78	30.37	6.80				
Begin El	5206	3380	2250	3600	3700				
End El.	3380	2250	3600	3700	3767		Plus	Total Loss	
Begin HGL	5206	5021	3919	3878	3838		Bend Losses		Indian Gardens
End HGL	5021	3919	3878	3838	3828		LUSSES		CHai Geris
			liams (143)		AL LOSS =	1378	21.6	1399	3807
					Annual flow	Aurora 00	Peaking	Pump	
Roaring Springs El. 5206	5				AF	Average Flow (cfs)	Factor	Factor*	Maximum Flow (cfs)
Indian Gardens El. 3767	,	Current To	ital Park Dem	and	800	1.11	1.3	1.2	1.72
1439)		ax. Delivery to						1.56
		2050 Dem	and (South Ri	im only)	1004	1.39	1.3	1.2	2.16
						- Pump	20 hours o	XIII OT 24	
ALUMINUM - EXISTING PIPE	2050 DEM/					_			
Pipe dia. (in)	8	6	8	6	8	Totals			
Q(CFS) Velocity	2.16	2.16	2.16	2.16	2.16				
Velocity Station	6.201 65430	11.024 42010	6.201 7700	11.024 2454	6.201 1203				
Station	42010	7700	2454	<u>∠</u> 454 1203	1203				
Length (ft)	23420	34310	5246	1251	1198	65425.0			
Head Loss R = .003 Darcy's	336.23	2190.91	75.31	79.88	17.20	2699.5	2753.5		
Hazen-Williams 143	339.34	2018.03	76.01	73.58	17.36	2524.3	2574.8		
Begin HGL End HGL	5206	4867	2849	2773	2699				
EIGHGL	4867	2849	2773	2699	2682 AL LOSS =	2524	37.9	2562	2644
						2021	01.0	2002	2044
STEEL PIPE - MORTAR LINED	_								
Pipe dia. (in)	8	8	6	6	6				
Q(CFS) Velocity	2.16 6.201	2.16 6.201	2.16 11.024	2.16 11.024	2.16 11.024				
Station	65430	42010	7700	2454	1203				
Station	42010	7700	2454	1203	5				
Length (ft)	23420	34310	5246	1251	1198	65425.0			
Head Loss R = .003 Darcy's	336.23	519.91	317.37	79.88	72.48	1325.9	1352.4		
Hazen-Williams 140	352.93	517.04	320.91	76.53	73.29	1340.7	1367.5		
Begin HGL End HGL	5206 4853	4853 4336	4336 4015	4015 3939					
ENTIGE	4000	4000	4015		AL LOSS =	1267	19.0	1286	3920
	~		•	-	-				
Pipe dia. (in) Q(CFS)	8 2.16	8 2.16	6 2.16	6 2.16	6 2.16	Totals			
Velocity	6.201	6,201	11.024	11.024	11.024				
Station	65430	42010	7700	2454	1203				
Station	42010	7700	2454	1203	5				
Length (ft)	23420	34310	5246	1251	1198	65425.0			
Head Loss R = .0005 Darcy's	255.68	380.10	241.34 282.42	58.40	55.11 64.49	990.6	1010.5		
Head Loss Hazen-Williams(150) Begin HGL	310.60 5206	455.03 4895	282.42 4440	67.35 4158	64.49	1179.9	1203.5		
End HGL	4895	4440	4158	4091					
					AL LOSS =	1115	16.7	1132	4074
ALUMINUM - EXISTING PIPE	2050 DEM/		REPAIR SE	CTIONS -					
Pipe dia. (in)	8	8	8	6	8	Totals			
Q(CFS)	2.16	2.16	2.16	2.16	2.16				
Velocity	6.201	6.201	6.201	11.024	6.201				
Station Station	65430	42010	7700	2454	1203				
Station Length (ft)	42010 23420	7700 34310	2454 5246	1203 1251	5 1198	65425.0			
Head Loss R = .003 Darcy's	336.23	519.91	75.31	79.88	17.20	1028.5	1049.1		
Hazen-Williams 143	339.34	497.14	76.01	73.58	17.36	1003.4	1023.5		
Begin HGL	5206	4867	4370	4294	4220				
End HGL	4867	4370	4294	4220	4203	4000	45.4	4040	4400
				101	AL LOSS =	1003	15.1	1018	4188
Long Jim Canyon									
Pipe dia. (in)	16	12	16						
Operana. (m) Q(CFS)	2.16	2.16	2.16						
Velocity	1.548	2.752							
-									
	405005	32000	62000						
Length (ft)									
	185000 82 74								
Head Loss R = .003 Darcy's Hazen-Williams 143	82.74 91.40	60.31 64.18	27.73						
	82.74	60.31							
Hazen-Williams 143	82.74 91.40	60.31 64.18	27.73 30.63						

Grand Canyon Na	ational Park Water	· Supply A	ppraisal Study
-----------------	--------------------	------------	----------------

Appendix 3 A3-3

NORTH RIM DIRECTIONAL DRILL

Current North Rim Demand	Annual flow AF 160	Average Flow (cfs) 0.22	eaking Factor 1.3	Pump Factor* 1.2	Maximum Flow (cfs) 0.34	
North Rim 2050 demand	251	0.35	1.3	1.2	0.54	
Pipe dia. (in)	4	4				
Q(CFS) 700 gpm	0.54	0.54				
Velocity	6.191	6.191				
Station	5000	6800				
Station	1000	5000				
Length (ft)	4000	1800				
Hazen-Williams 143	129.67	58.35				
Begin El	5067	3950				
End El.	8262	5067				
Total Head feet	3195	4312				
psi	1383	1867				
Thickness in	0.15	0.20				
Begin HGL	8262	8132				
End HGL	8132	8074				
		Hazen-Willi	iams (143)) то	TAL LOSS =	188
North Rim El 8262	>					
Roaring Springs El. 3950	_					
4312						

A3-4 Grand Canyon National Park Water Supply Appraisal Study

Appendix 3

OPERATIN	G COSTS					TOTAL Q =	2.16	CFS		
Site			CARDENAS	TANNER	COMANCHE	Bright Ang		Bright Ange		
	on Method		Drill + Overland	Overland	Drill + Overland	Overi		Overlar	nd	
Pipe dia. (i			8	8	8	8	6		6	
	700 gpm		2.16	2.16	2.16	2.16	2.16		2.16	
Velocity			6.2	6.2	6.2	6.2	11.0		11.0	
Total Leng	th		21000	31000	10000	14145		20345		
Overland			9000	31000	4600	5094	9051	11294	9051	
Drill			12000	0	5400	0		0		
lazen-Will	liams	143	173.37	447.86	78.01	73.59	530.80	163.17	530.80	
Begin El			2560	2560	2600	2450		2450		
End El.			7050	7050	7050	3767		7050		
Static Head			4490	4490	4450	1317		4600		
Begin HGL			4663	4938	4528	1921		5294		
End HGL			4490	4490	4450	1848		5131		
Pump Lift			4663	4938	4528	1921		5294		
HP			1143	1210	1110	471		1297		
(WH			1187	1257	1152	489		1347		
Friction/Sta			4%	10%	2%	46%		15%		
Total Head		feet	4663	4938	4528	1921		5294		
		psi	2019	2138	1960	832		2292		
Thickness		in	0.44	0.47	0.43	0.18		0.50		
Pipe Excav			3303	11377	1688	1869		4145		
Pipe Backf	i ll		2943	10137	1504	1666		3693		
ONSTRU	ICTION CO	STS								
Pumping P			\$200,000	\$200,000	\$200,000	\$150,000				
Survey Cos			\$34,839	\$120,000	\$55,200	\$0				
Power Line			\$630,000	\$930,000	\$300,000	\$200,000				
Pipe Cost		\$2.00	\$1,868,732	\$2,929,019	\$862,872	\$0				
Pipe Excav	ation/	\$20.00	\$66,060	\$227,540	\$33,764	\$37,390				
Pipe Backf		\$15.00	\$44,145	\$152,055	\$22,563	\$24,986				
	Drill Costs		\$3,500,000	\$0	\$1,200,000	\$0		Note: 2 Holes P	ower + Wa	ter
	atment Pian	t Cost								
Pioneer Ro					\$100,000					
Storage Ta										
Total Cons	truction Cos	its	\$6,343,776	\$4,558,614	\$2,774,399	\$412,376				
ANNUAL C	COSTS									
Demand C	harge	0.000	\$0	\$ 0	\$0	\$0				
Service pas		0.000	\$0	\$0	\$0	\$0				
Energy Ch	arge	0.052	\$450,466	\$476,981	\$437,391	\$185,600	-			
Cost of Po	wer (\$/vr)	0.002	\$450,466	\$476,981	\$437,391	\$185,600			1	
Annual Cos	st of Pump	Sta.								
over 20 yrs	. @ 6%(.08	71)(\$)	\$17,420	\$17,420	\$17,420	\$13,065				
Total annua	al cost of							1		
pumping (\$467,886	\$494,401	\$454,811	\$198,665				
Annual cos	t of pipeline	over								
40 yrs 🙋 🤅	8%(.0664)(\$	i)	\$124,084	\$194,487	\$57,295	\$0				
Vater Trea	atment									
			\$504 000	1000 000	\$E40.400	\$109 PPF				
oca: annu:	al costs (\$)		\$591,969	\$688,888	\$512,106	\$198,665				
	ļ									
	I									1

Grand Canyon National Park Water Supply Appraisal Study

Appendix 3 A3-5

EXISTING PIPE SIZES

LENGTH	SIZE	STATION	STATION	
1198	8	0+05	12+03	Indian Gardens
1251	6	12+03	24+54	
5246	8	24+54	77+00	
2190	6	77+00	98+90	Pipe Creek
32210	6	98+00	420+10	
23420	8	420+10	654+30	Roaring Springs

nd Station	Bend angle 51.5	22	R. 0.0559	Q = 1.56	265+39	25.75	
21200 214+00 215+42	54.75	•*	0.0595	V = 4.47 R/s	266+78	66.9	
216+30	52.75 21		0.0573 0.0228	4.47	267+20 267+75	32.6 23	
217+21 217+86	21.75 33.25		0.0236		268+37 268+71	24 21.8	
218+23	26.8		0.0291		269+94	11.1	27
218+99 219+49	34.8 55.7	22	0.0378 0.0605		270+96 271+67	14 6.8	28
220+57 221+44	21 31,8	23	0.0228 0.0345		272+18 273+43	long radius? long radius?	
221+98	49.9		0.0542		273+55	25.5	
223+53 224+03	15.15		0.0165 0.0289		273+95 274+39	38.3 16.3	
225+47 225+97	16 29.5		0.0174		275+79 276+59	39.9	
227+30	66 75		0.0725		277+64	6.9 30.5	
228+09 229+03	14.5 52		0.0157 0.0565		278+83 279+70	59 21	28
229+32 230+48	56.8 17.4	23 24	0.0617		280+12 280+82	22.5	29
232+15	24	24	0.0261		281+25	17.8 long radius?	
232+53 233+52	39.6 4		0.0430 0.0043		281+90 284+00	long radius? 18	
234+48 234+83	10.3 13.2		0.0112		284+97 286+30	13	
236+14	19.25		0.0143 0.0209		286+92	21.75 64.5	
237+52 238+01	47.6 54.2		0.0517 0.0589		287+30 288+14	9.7 16 8	
238+72	18	~~	0.0195		288+85	42.4	
239+41 240+27	22 14.75	24 25	0.0239 0.0160		289+42 290+01	24.6 32.7	29 30
241+47 241+83	20.1 29.5		0.0218 0.0320		290+84 291+42	16.25 8.5	
243+94	30.5		0.0331		291+96	6.5	
245+04 245+60	18.5 20.5		0.0201 0.0223		292+84 294+67	26.75 14.35	
246+10 246+91	43.4 27.1		0.0471 0.0294		294+93 295+25	25.75 46	
248+91	long radius?	~~	0.0000		295+41	40	
249+55 250+80	11.6 9.5	25 26	0.0126 0.0103		295+83 296+12	27.25 23.9	
251+53 251+89	11.6 Iong radius?		0.0126		296+62 297+95	long radius? long radius?	
252+60	long radius?		0.0000		298+45	20.65	
252+73 253+47	30.8 46.5		0.0334 0.0505		298+88 299+72	25.75 10	30
255+17 255+58	16.4 13.5		0.0178		300+09 300+78	27.8 11.8	31
256+65	59.4		0.0645		301+21	41	
257+16 257+94	49.9 46.4		0.0542 0.0504		301+81 303+64	7.9 kong radius?	
258+22	45.7 21.4		0.0496		306+00 307+23	long radius? 18.1	
259+28	72.6	26	0.0788		308+21	long radius?	_
260+36 261+58	15 51.9	27	0.0163 0.0564		30990	long radius?	31
262+11 262+59	59.3 46		0.0644				
262+86	long radius?		0.0000				
263+65 264+03	long radius? 30.8		0.0000				
265+39	25.75		0.0280				
267+20	66.9 32.6		0.0726 0.0354				
267+75 268+37	23 24		0.0250 0.0261				
268+71	21.8		0.0237				
269+94 270+96	11.1 14	27 28	0.0121 0.0152				
271+87 272+18	6.8 long radius?		0.0074				
273+43	long radius?		0.0000				
273+55 273+95	25.5 38.3		0.0277 0.0416				
274+39 275+79	16.3 39.9		0.0177 0.0433				
276+59	6.9		0.0075				
278+83	30.5 59		0.0331 0.0641				
279+70 280+12	21 22.5	28 29	0.0228				
280+82	17.8		0.0193				
281+25 281+90	long radius? long radius?		0.0000 0.0000				
284+00 284+97	18 13		0.0195				
286+30	21.75		0.0236				
286+92 287+30	64.5 9.7		0.0700				
288+14 288+85	16.8 42.4		0.0182				
289+42	24.6	29	0.0267				
290+01 290+84	32.7 16.25	30	0.0355 0.0176				
291+42	8.5		0.0092				
291+96 292+84	6.5 26.75		0.0071 0.0290				
294+67 294+93	14.35 25.75		0.0156 0.0280				
295+25	46		0.0500				
295+41 295+83	40 27.25		0.0434 0.0296				
296+12 296+62	23.9 long redius?		0.0260				
297+95	long radius?		0.0000				
298+45 298+88	20.65 25.75		0.0224 0.0280				
299+72 300+09	10 27.8	30 31	0.0109				
300+78	11.8	31	0.0128				
301+21 301+81	41 7.9		0.0445				
303+64	long radius?		0.0000				
306+00 307+23	long redius? 18.1		0.0000				
308+21 30990	long redius? long redius?	31	0.0000				
			3.2467	Length =	9701		
					Bend loss per foot =	0.00033468	
					Total Loss =	21.59524484	

				_
Crand Canvan	National Dark	Water Cumply	Approximal Study	
C7 (0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(woier Subbiv	ADDIDISOL SIUOV	
			Appraisal Study	

Appendix 3 A3-7

RIVER MILE STATIONING

	River Mile	Thalwag Elevation	5000 cfs Elevation	97000 cfs Elevation	Elevation Difference
Tanner Canyon	68.47	2645	2648	2666	18
Tanner Canyon Site	70	2604	2624	2643	19
Cardenas Creek Site	70.75	2607	2620	2640.7	20.7
Unkar Rapids	72.36	2606	2612	2627.4	15.4
Grand Canyon Gage	87.37	2406	2424	2449.4	25.4
Pipe Creek Site	89.2				

APPENDIX 4

Cultural Resources

Human Occupation at the Grand Canyon

Humans have been experiencing the grandeur and using the resources of the Grand Canyon for thousands of years. Native Americans hunted game, gathered wild foods, and farmed in Grand Canyon and on the South and North Rims off and on for at least 10,000 years. In order to appreciate how these hunters, gatherers, and horticulturalists lived at Grand Canyon and to better understand some of the delemmas archaeologists face when studying their remains, the following summary is excerpted from Christopher M. Coder's *An Introduction to Grand Canyon Prehistory* (2000).

Paleo-Indian Hunters

...It is now accepted by all except the most conservative researchers that human beings have been in the New World much longer than previously recognized—in small numbers, perhaps as long as 30,000 years.

The Clovis and subsequent Folsom were sophisticated big-game-hunting people. Evidence of their success and passing appears throughout the United States. The Colorado River Basin contains evidence aplenty of the paleohunters. Camps have been found along the San Juan and Green Rivers, as well as on the rocky benches of the Little Colorado River, but at the Grand Canyon the traces are confined to a few spear points. They were here, but most of their goods have been ground into dust by the elements, covered over by flood, or scavenged by those who came along later.

Paleo-Indian people were few in number, a small group here, a small group there. They lived life on the go, moving from camp to camp, searching for or following big game. The paleohunters of Grand

Canyon country were walking the tightrope of changing times. The world was warming up. Analysis of Antarctic ice cores and deep-ocean sediments conducted during the 1990s indicated a radical change in global climate right around 11,000 years ago. . .. Pleistocene megafauna — camels, mammoths, giant sloths, short-faced bears, and wolves — were slowly passing away with the glaciers.

Groups of hunters living on the Colorado Plateau changed with their world They fine tuned their hunting strategies to acquire deer, bighorn sheep, and smaller, quicker animals Folsom, Humboldt, Jay, Mohave Lake, and Pinto style blades and projectile points belonging to the Late Paleo-Indian and Early Archaic stone tool traditions are found across the uplands of Grand Canyon National Park. This indicates that small groups of people remained in the region even as big game died out. Their low population and light hand on the landscape did not generate enough material to be easily recognized or discovered.

The Archaic Period

...By 9000 years ago, more people had entered the Grand Canyon region from the Basin and Range Province to the northwest with all the trappings of Archaic culture: atlatl and darts, open-weave sandals, seasonal habitations, groundstone tools. Indication of human settlement in Grand Canyon country during the long centuries of the Archaic is extensive. The Archaic period in the American Southwest is such an expanse of human history that it has been divided into three parts: Early, Middle, and Late. These broad divisions are based on several factors: changes in projectile point technology, alterations in climate, and regional shifts in population.

Early Archaic culture is transitional from paleoculture reflecting the loss of the large Pleistocene game animals and a drier climate. Despite these seemingly major inconveniences, the human population on the plateau increased during this period. People slowed down a notch. The pace of life and drier climate were conducive to preserving what the human experience

A4-3

chose to offer up. So the record from these times is more complete and a little less mysterious than the Paleo-Indian. About 6,500 years ago the climate became drier still, signaling the beginning of the Middle-Archaic drought that would last off and on for almost 2,000 years

...Over the period of a person's lifetime the environment went through a perceptible change. Over three lifetimes it changed dramatically The groups that remained to weather it out with the landscape refocused their efforts on the shriveling resource base with which they were confronted.

... By 4,500 years ago the severe dry times were waning and populations were flowing back. There is a good deal of Late Archaic evidence found at Grand Canyon. The Gypsum points these people used are commonly found in the park north of the river. ... The Late Archaic people of Grand Canyon acquired life's necessities from the stacked resources between the river and rim country Like the paleohunters before them, their goods were mostly perishable. So we are — again — faced with defining an entire people by a few tools, some figurines, and an occasional thought-provoking pictograph panel

The Basketmakers

... The earliest corn-growing people at Grand Canyon are commonly known as the Basketmaker culture. They cultivated corn, but still hunted game and gathered wild plant foods. These people were scattered around Grand Canyon in family camps and small villages They lived in rock shelters where available and otherwise in pithouses, underground homes that were entered through a hole in the roof

By 1,100 years ago most of the farmers had traded the pithouse for the above-ground stone roomblock. In the centuries to come, some of the Basketmaker groups that would become known as the prehistoric Pueblo retained the pithouse design as the ceremonial kiva.

Items that set the Basketmakers apart from other cultures were cradleboards with soft headrests, squaretoed sandals, beautiful woven bags, subterranean slab-lined storage cists, intricate baskets, and curved throwing sticks for hunting small game They did not begin to make pottery until about 1,700 years ago. About that same time, the bow and arrow were replacing the atlatl and dart

The Prehistoric Puebloans

...By 1,250 years ago what is today recognized as Basketmaker culture was all but replaced by the lifestyle of the pueblo. Like the evolution of the thirteen original European colonies into the European-American United States, it was a process, not an event . . ., we can say Basketmaker culture grades into Pueblo culture.

Anasazi is the popular term used to describe various maize-dependent prehistoric Puebloan cultures inhabiting the southern portions of the Colorado Plateau and the Four Corners regions from Late Basketmaker times until about seven hundred years ago

...The prehistoric Puebloans were not a homogenous people. Archaeologists have differentiated them roughly into eastern and western divisions and further into several traditions based on location, social organization, ceramic styles, and architecture. The traditions are Chacoan, Mesa Verde, Kayenta, Virgin River, Little Colorado River, Cohonina, and to a lesser degree, the Sinagua. At Grand Canyon the Kayenta and Virgin traditions blend and merge on the north side of the Colorado River, just as the Kayenta and Cohonina intermingle in time and space on the south side....

...Prior to a thousand years ago isolated settlements of Puebloans lived in the uplands along the rims and farmed in the river corridor, tending small plots of corn, squash, and cotton as conditions would allow Around 1,000 years ago the climate began to shift once again, this time to the

A4-5

advantage of farmers. A slight increase in the amount of seasonal precipitation allowed corn, beans, squash, and cotton to be grown with reliability in more places. This change in the rain belt temporarily allowed Kayenta farmers to expand across the Colorado Plateau wherever a crop could be coaxed from the soil It also allowed the Cohonina already established along the south rim to expand and flourish

...Farmers are always thinking ahead and taking advantage of subtle changes in the environment. This is what happened at Grand Canyon. Farmers recognized an opportunity and expanded into the canyon like water pouring into a dry stream channel. Carrying their infants, bows, water jugs and seed, small children and dogs in tow, they moved westward from their old homes. Within a generation they had occupied virtually every delta and quarter-acre of arable land in Grand Canyon. . ..

But the people could not afford to be just farmers. The climate at Grand Canyon would not allow it. Even with broad alluvial terraces, increased precipitation, and a higher water table, which are all gone today, farming was still risky business. So in addition to farming they capitalized on the natural resources available to them Useful things were stacked one on top of the other for a verticle mile, from the river to the rim. There were in this vast arid country edible cactus, mesquite beans, yucca, agave (mescal), grass seeds, acorns, walnut and pinyon nuts, wild fruit, greens and herbs, and plants used as medicines, dyes, and for ceremony. . .. Animals utilized included bighorn sheep, deer, bear, bobcat, mountain lion, rock squirrel, mice, packrats, woodrats, eagles and hawks, waterfowl, chuckwalla, and small lizards. Like the later Hualapai, the farmers were apparently, by choice, not fishermen. . ..

The Delta Puebloans

In the eastern Grand Canyon there is a series of large side canyons that drain into the Colorado River. These tributaries breech the incredibly rugged terrain existing between the forested rims and the seemingly desolate inner canyon. Acting as the routes of daily life, the side canyons were the highways by which the inhabitants accessed the stair-step ecology of Grand Canyon.

Each of these side-canyon systems creates a large delta at river level suitable for farming. The deltas focused settlement. The big canyons, Nankoweap, Kwagunt, and Unkar, drain into the Colorado from the north, the Palisades-Tanner-Cardenas systems from the south. Several secondary side canyons such as South Canyon, Basalt Canyon, Sixty-Mile Canyon, Chuar Canyon, and Fossil Creek had small workable deltas occupied by the prehistoric Pueblo. In those days an extensive system of alluvial terraces also existed in the river corridor adding considerable ground that could be cultivated.

The delta farmers of Grand Canyon were double cropping, farming both the inner canyon and the rims while taking advantage of naturally occurring calories throughout the system. They stored food to use as needed through the winter. Below the rims in the lower elevations of the canyon's western reaches, agave (mescal) was available in the early spring, greens would be popping up along the river, and by April people could gather a variety of edible plants. As soon as the time was deemed proper, corn, beans, squash, and cotton were planted along the river. On the rims, crops planted in late spring matured through the early fall and the upland harvest would dovetail nicely with the ripening pinyon nuts and the best months for deer hunting. . ..

Puebloan Exit

By 850 years ago the cycle of increased rainfall that had instigated the Puebloans cultural flourish was reversing itself. The dry times were coming back By 750 years ago there was not enough rain to support a tenable crop on the rims. The northwestern fringes of Pueblo civilization precariously situated at Grand Canyon were the first to fold under the early stages of the regional drought which ultimately affected all of the farming people of the Southwest. . ..

A4-7

The Kayenta villagers hung on in dwindling numbers for a few generations, until about A.D. 1230. During this final Puebloan phase at Grand Canyon they constructed several thick-walled, seemingly defensive fortlike structures along the south rim between Zuni Point and the Great Thumb. So there could well have been considerable tension and fear brought by the hunger accompanying the drought. Was the caution prompted by the ancestral Hualapai/Havasupai moving upstream, or advance parties of Southern Paiute on the north rim or other displaced Puebloans? We can't really say. . ..

...At some point around 775 years ago (A.D. 1225), village life on the deltas in eastern Grand Canyon and on the forested rims became untenable and the final Puebloan families moved out of the canyon Throughout the last millennium and into modern times the Hopi have maintained their ancient connections to the canyon, ritually in the kivas on the Hopi mesas and physically by trekking to the canyon to collect salt and visit the Sipapuni, an elevated hot spring sacred to specific clans of Hopi, representing their point of origin into this world and their destination when they depart. ...

Newcomers to the Canyon

As Puebloan populations dwindled between 700 and 850 years ago, other cultures were moving to the canyon. From the Mohave Desert came the Cerbat/Pai to inhabit the western end on the canyon, south of the Colorado River. Paiute migrated southward from the Great Basin of Nevada and Utah and stopped north of the Colorado. Though the two cultures arrived at the canyon at about the same time, they were unrelated.

The Cerbat/Pai

The Cerbat/Pai, direct ancestors of the Hualapai and Havasupai, arrived at the canyon with low-desert skills that would allow them to flourish where the farmers could no longer be sustained. For two hundred years, from their home territory to the west, they had traded to some degree with the Puebloans, but the archaeological record does not clearly reveal when they arrived in Grand Canyon as permanent residents.

Some scholars believe the Cerbat/Pai entered the canyon a century after the prehistoric Pueblo left, but the Cerbat were moving up-canyon in reaction to the same drought that was plaguing the Puebloan farmers and were probably on the move even before the Puebloan withdrawal. Other researchers believe the newcomers pushed the prehistoric Pueblo out by force. Scattered warfare and raids were inevitable. The Kayenta Puebloans built enigmatic defensive structures along the south rim during the period of flux. Conflict, when it took place, would have been on a limited scale.... It is most plausable the majority of Puebloans were not driven out at the tip of an arrow, but prodded by an empty fork.

Cerbat/Pai archaeological sites are very different from prehistoric Puebloan sites. Yet, in the canyon's west end there is amalgamation of the old and the new.... Artifacts blend together on the surface causing anxiety for the archaeologist. Tizon Brownware pottery is a trait of the Cerbat, originating at sites on the lower Colorado River and produced with little change between 1,200 and 250 years ago....

The Cerbat/Pai moved in an established rhythm from water source to water source, hunting deer and bighorn sheep, gathering mesquite, prickly pear, their staple agave (mescal), and other plant foods. Barely discernable short-term camps typically would consist of very few artifacts: a cleared circular area and rock ring where a *gowa*, a brush shelter, had stood, a small roasting pit some hand-held tools, a grinding slab or anvil stone, a few scattered flakes, an occasional Tizon sherd.

More complex, long-term camps existed under the shelter of the rims and down along the river where side canyons open into the gorge... overlapping conical roasting pits twenty feet in diameter and seven feet

high, pictographs, digging sticks, broken pots, quids of chewed-and-spatout mescal fibers, all the debris of daily life that time has not engulfed.

Six hundred years ago the Cerbat/Pai were the dominant tribe along the south rim of Grand Canyon from the mouth of Bill Williams River below Hoover Dam, up to the confluence of the Little Colorado. Divided into eleven or twelve geographically determined bands including the Havasupai, they represented a confederation that spoke the same language, shared a heritage and an inherited landscape, and lived in what eminent Grand Canyon archaeologists Dr. Robert Euler aptly describes as territorial equilibrium.

The Southern Paiute

The Paiute hunter-gatherers entered into a country on the north side of the Colorado River that had been the sparsely populated home of the Virgin Puebloans. . .. It is from these residual groups of Puebloans that the first wave of Paiute learned how to supplement their wild foods with corn and squash grown around springs and down in the side canyons.

Southern Paiute and Cerbat/Pai sites are often hard to differentiate based solely on artifacts. A rule of thumb for the Grand Canyon is "Paiute north bank, Cerbat/Pai south bank," but this only works in general. The Southern Paiute cultural landscape was held together by a complex system of trails connecting the far-flung water sources in Grand Canyon. The Southern Paiute efficiently gleaned a living from the spare land. It was not a shift in the climate or ecological catastrophe that pushed the Paiute out of the canyon, but the expansion of European-American culture into the region from 1850 to 1880. A lifestyle that existed for more than six hundred years in a true balance with the available resources was exterminated in a single generation. Several hundred archaeological sites at Grand Canyon mark its passing. . ..

January 2002

European-American History at Grand Canyon

The following discussion is taken from "The Mather Point Orientation Center Project Supplemental Mitigation Plan" by Steven A. Moffitt and others (1998:21-23).

The historic period begins with the first contact and written documentation of contact between the Spanish and American Indian groups inhabiting the Grand Canyon area in AD 1540. ... In AD 1540, García López de Cárdenas, under orders from Francsco Vásquez de Coronado led a party to find the river that might serve as a waterway for transportation to the Gulf of California (Bannon 1970). With the assistance of Hopi guides, Cárdenas and the members of his party arrived at the South Rim of the Grand Canyon; this first known European people to visit the area . . . At the time of their visit the Hopi, Navajo, Havasupai, Hualapai, and Southern Paiute groups inhabited GRCA The Spanish expeditions were followed by visitations by trappers in the late 1820s (Hughes 1978; Batman 1986). Upon ratification of the Treaty of Guadalupe Hildalgo in 1848, ending the Mexican-American War, U.S. army expeditions entered the region to survey newly acquired lands and find an expedient route of travel for those seeking gold in the West (Sitgreaves 1953; Ives 1861: Powell 1875: Jackson 1964).

Two scientific expeditions led by John Wesley Powell resulted in the successful navigation of the Colorado River through the Grand Canyon in 1869 and 1877-72 Tourists began visiting the Grand Canyon in the 1880s, often staying at miner's camps, some arriving by stagecoach, and many using established trails to access the inner canyon (Wahmann 1975; Alhstrom et al 1993:85). In 1883, the transcontinental railroad was completed with the line running approximately 25 miles south of GRCA (Janus Associates 1981; Babbitt 1981) By the turn of the century, tourist facilities were operating on the South Rim, ranching was in operation, and tourists were able to access the South Rim of the Grand Canyon by train (Ahlstrom et al. 1993:85; Richmond 1985).

As visitation increased to Grand Canyon efforts to regulate the area as public domain resulted in setting aside lands as Grand Canyon Forest Reserve in 1893...establishment of Grand Canyon National Monument was initiated by President Theodore Roosevelt in 1908, and National Park status was acquired...in 1919.... During the years of federal control, many changes occurred at Grand Canyon as the construction, maintenance, and destruction of buildings, facilities, and roads transpired over time.

Acronyms and Abbreviations

ACHP	Advisory Council on Historic Preservation	NEPA	National Environmental Policy Act
ADEQ	Arizona Department of Environmental	NF	National Forest
	Quality	NMFS	National Marine Fisheries Service
ADWR	Arizona Department of Water Resources	NOI	Notice of Intent
af	acre-feet	NPDES	National Pollutant Discharge
amsl	above mean sea level		Elimination System
AWWA	American Water Works Association	NPS	National Park Service
AZSITE	Arizona State Historic Preservation Office	OHWM	ordinary high water mark
BA	biological assessment	OMR&E	operation, maintenance, replacement,
bgs	below ground surface		and engergy
BLM	Bureau of Land Management	O&M	operation and maintenance
BO	biological opinion	PA	Programmatic Agreement
Canyon	Grand Canyon	Park	Grand Canyon National Park
CAP	Central Arizona Project	PG&E	Pacific Gas and Electric
cfs	cubic feet per second	P.L.	Public Law
Corps	U.S. Army Corps of Engineers	ppm	parts per million
CWA	Clean Water Act	PVC	polyvinyl chloride
EIS	environmental impact statement	Reclamation	U.S. Bureau of Reclamation
ESA	Endangered Species Act	ROW	right-of-way
FERC	Federal Energy Regulatory Commission	RPA	reasonable and prudent alternative
FWCA	Fish and Wildlife Coordination Act	RPM	reasonable and prudent measures
FWS	Fish and Wildlife Service	SDWA	Safe Drinking Water Act
GIS	Geographic Information System	SWPPP	stormwater pollution prevention plan
gpd	gallons per day	SWTR	Surface Water Treatment Rule
gpm	gallons per minute	TDS	total dissolved solids
HDD	horizontal directional drilling	ТСР	transcanyon pipeline
HP	horsepower	THPO	Tribal Historic Preservation Office
kV	kilovolts	U.S.C.	United States Code
LJC	Long Jim Canyon	USDA	U.S. Department of Agriculture
MDFZ	Markham Dam fracture zone	USFS	U.S. Forest Service
MGD	million gallons per day	uv	ultraviolet
mg/L	milligrams per liter	vpd	vehicles per day
msl	mean sea level	WWTP	wastewater treatment plant
		°C	degrees Centigrade