Lower Santa Cruz River Basin Study

Recap of Key Decisions, Progress Review and Next Steps

Eve Halper
Water Resources Planner
Reclamation Phoenix Area Office
Project Team and Sub-Teams Meeting
May 23, 2019
LSCR Basin Study Objectives

1) Identify Where Physical Water Resources are Needed to Mitigate Supply-Demand Imbalances

2) Develop Strategies to Improve Water Reliability for Municipal, Industrial, Agricultural and Environmental Sectors
LSCR Basin Study Overview

Four Required Elements:

1. Project future supply & demand imbalances (without adaptation measures)
2. Evaluate risks to infrastructure and other systems
3. Develop and investigate adaptation strategies (structural and non-structural)
4. Perform trade-off analysis of strategies
Recap of Key Climate Decisions - 1

- **Include Dynamically Downscaled (DD) Climate Projections in Analysis**
 - Physics based model of medium-scale atmospheric processes, especially monsoon
 - Not constrained by historical data
 - Limited in spatial resolution
 - High emissions scenario (RCP 8.5) only ("Worse Case")

- **Contrast with Lower Emission (RCP 4.5) “Best Case” Scenario**
 - Only Statistically Downscaled projections available
 - Constrained by historical data
 - Higher spatial resolution available

Emissions Scenarios

- RCP 8.5
- RCP 4.5

RCP = Representative Concentration Pathways
From CMIP5 climate model intercomparison
Recap of Key Climate Decisions - 2

• Develop Climate Metrics to Evaluate Appropriate DD Climate Model

• Model(s) should simulate seasonal precipitation patterns, esp. monsoon

• Project Team and other sub-teams identified key metrics:
 – Change in intensity of extreme events (precipitation and temperature)
 – Change in monsoon timing
 – Change in dry period timing

• MPI and HadGEM models selected

• Hadley model eliminated due to inconsistency in seasonal changes

• MPI climate model selected
Recap of Key Climate Decisions - 3

- Variability is a defining characteristic of area precipitation patterns

- Climate model projections do not reproduce this variability

- “Weather Generator” - a technique to generate large numbers of plausible time series while preserving statistical properties of a distribution

- Use of Weather Generator recommended to produce probability distribution of future streamflow discharges
Other Progress – Modeling Future Demands

Simplified Modeling Overview

- Climate Driving Forces
 (Precipitation, Temperature)
 - GLOBAL CLIMATE MODELS
 - SURFACE HYDROLOGY MODEL

Tucson AMA Groundwater Model

Socio-Economic Driving Forces
(Demographics, Economics, Technological, Regulatory)

CAP SERVICE AREA MODEL
<table>
<thead>
<tr>
<th>Scenario Description</th>
<th>Official/Baseline Values</th>
<th>Slow Compact Growth</th>
<th>Slow Outward Growth</th>
<th>Rapid Outward Growth</th>
<th>Rapid Outward Growth Plus Mining without Replenishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Growth Rate</td>
<td>Medium</td>
<td>Low Series</td>
<td>Medium Series</td>
<td>High Series</td>
<td>High Series</td>
</tr>
<tr>
<td>Growth Pattern - Infill vs. Outward Growth</td>
<td>Baseline</td>
<td>In-Fill/Redevelopment</td>
<td>Slow Outward</td>
<td>Rapid Outward</td>
<td>Rapid Outward</td>
</tr>
</tbody>
</table>
Supply-Demand Scenarios

A. Official Projections
- Medium, mixed-density growth and Current climate

B. Slow, compact growth and Best Case climate

C. Rapid, outward growth and Best Case climate

D. Slow, compact growth and Worse Case climate

E. Official Projections and Worse Case climate

F. Rapid, outward growth and Worse Case climate

<table>
<thead>
<tr>
<th>Climate Emissions</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow, Compact</td>
</tr>
<tr>
<td>Worst Case</td>
<td>D</td>
</tr>
<tr>
<td>Best Case</td>
<td>B</td>
</tr>
<tr>
<td>Current Climate</td>
<td>A</td>
</tr>
</tbody>
</table>

2018-05-08

RECLAMATION
CAP-SAM Status

• Model Runs Complete for six Climate-Growth scenarios
Translating Provider Demands to Modflow Input

Individual Provider Demand by Water Type

Individual Provider Pumping by Well
What’s Next?

• Project Supply/Demand Imbalances

• Run Groundwater Model under Six Scenarios

• Identify Where Imbalances Occur
Changes in timing and funding

• Budget increase ($325,000) and due date extension (February 2019 to September 2020) requested in March 2018
• Reclamation Policy Office granted request in June 2018
• Amendment to Memorandum of Agreement and Revised Plan of Study
• All required partner signatures have been collected
• Documents being prepared for Regional Director signature