

Lower Santa Cruz River Basin Study

Recap of Key Decisions, Progress Review and Next Steps

Eve Halper
Water Resources Planner
Reclamation Phoenix Area Office
Project Team and Sub –Teams Meeting
May 23, 2019

Tucson Basin Water Level Changes

LSCR Basin Study Objectives

1950 - 2000

2) Develop Strategies to Improve Water Reliability for Municipal, Industrial, Agricultural and Environmental Sectors

LSCR Basin Study Overview

Four Required Elements

Step 1

Step 2

Step 3

Input:

Adaptation

Strategies

Input: Trade-off Analysis

Step 4

Project
future supply
& demand
imbalances
(without

(without adaptation measures)

Evaluate
risks to
infrastructure
and other
systems

Develop and investigate adaptation strategies

(structural and non-structural)

Perform trade-off analysis of strategies

WE ARE

HERE

Simplified Modeling Overview

Climate
Driving Forces
(Precipitation,
Temperature)

GLOBAL CLIMATE MODELS

SURFACE HYDROLOGY MODEL

Tucson AMA Groundwater Model

Socio-Economic Driving Forces

(Demographics, Economics, Technological, Regulatory)

CAP SERVICE AREA MODEL

Recap of Key Climate Decisions - 1

- Include Dynamically Downscaled (DD)
 Climate Projections in Analysis
 - Physics based model of medium-scale atmospheric processes, especially monsoon
 - Not constrained by historical data
 - Limited in spatial resolution
 - High emissions scenario (RCP 8.5) only ("Worse Case")
- Contrast with Lower Emission (RCP 4.5)
 "Best Case" Scenario
 - Only Statistically Downscaled projections available
 - Constrained by historical data
 - Higher spatial resolution available

RCP = Representative Concentration Pathways From CMIP5 climate model intercomparison

Recap of Key Climate Decisions - 2

- Develop Climate Metrics to Evaluate Appropriate DD Climate Model
- Model(s) should simulate seasonal precipitation patterns, esp. monsoon
- Project Team and other sub-teams identified key metrics:
 - Change in intensity of extreme events (precipitation and temperature)
 - Change in monsoon timing
 - Change in dry period timing
- MPI and HadGEM models selected
- Hadley model eliminated due to inconsistency in seasonal changes
- MPI climate model selected

Recap of Key Climate Decisions - 3

- Variability is a defining characteristic of area precipitation patterns
- Climate model projections do not reproduce this variability
- "Weather Generator" a technique to generate large numbers of plausible time series while preserving statistical properties of a distribution
- Use of Weather Generator recommended to produce probability distribution of future streamflow discharges

Other Progress – Modeling Future Demands

CAP Service Area Model Demand Scenarios

Scenario Description	Official/Baseline Values	Slow Compact Growth	Slow Outward Growth	Rapid Outward Growth	Rapid Outward Growth Plus Mining without Replenishment
Demand Scenarios Summary	Growth rate: Medium series from ADOA Growth pattern: PAG CAP-SAM: standard assumptions	Growth rate: Low series from ADOA CAP-SAM: Condensed growth pattern No additional mines Green Valley area eliminates overdraft	replenishment in	Growth rate: High series from ADOA CAP:SAM Outward growth pattern Expected mine development with replenishment in Green Valley	Growth rate: High series from DOA CAP:SAM Outward growth pattern Mining growth w/o replenishment in Green Valley
Population Growth Rate	Medium	Low Series	Medium Series	High Series	High Series
Growth Pattern - Infill vs. Outward Growth	Baseline	In- Fill/Redevelopment	Slow Outward	Rapid Outward	Rapid Outward

Supply-Demand Scenarios

- A. Official Projections: Medium, mixed-density growth and Current climate
- B. Slow, compact growth and Best Case climate
- C. Rapid, outward growth and *Best*Case climate
- D. Slow, compact growth and Worse Case climate
- E. Official Projections and Worse Case climate
- F. Rapid, outward growth and Worse Case climate

2018-05-08

CAP-SAM Status

Model Runs Complete for six Climate-Growth scenarios

Translating Provider Demands to Modflow Input

Figure 24. Pumping Distribution - 2010 in the Tucson Model area.

Individual Provider Pumping by Well

What's Next?

 Project Supply/Demand **Imbalances**

 Run Groundwater Model under Six Scenarios

 Identify Where Imbalances Occur

Scenario A

Scenario B

Scenario C

Scenario D

Scenario E

Scenario F

- Budget increase (\$325,000) and due date extension (February 2019 to September 2020) requested in March 2018
- Reclamation Policy Office granted request in June 2018
- Amendment to Memorandum of Agreement and Revised Plan of Study
- All required partner signatures have been collected
- Documents being prepared for Regional Director signature