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Uncertainty varies over time
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Understanding uncertainties in climate and
streamflow projections (BAMS, 2014)
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Current global climate model (GCM) projection list

Model Center Atmospheric Number of model Reference
Horizontal Resolution levels
(lon. x lat.)
ACCESS1-0 Commonwealth Scientific and Industrial Research 1.875x1.25 38 Bi et al. (2012)
Organization/Bureau of Meteorology, Australia
BCC-CSM1.1* Beijing Climate Center, China Meteorological 2.8x28 26 Xin et al. (2012)
Administration, China
CanCM4 Canadian Centre for Climate Modelling and Analysis, 28x2.8 35 Chylek etal. (2011)
Canada
CanESM2* Canadian Center for Climate Modeling and Analysis, 2.8x28 35 Arora et al. (2011)
Canada
CCSM4* National Center for Atmospheric Research, USA 1.25x0.94 26 Gent et al. (2011)
CESM1-CAM5-1-  |Community Earth System Model Contributors (NSF- 14x14 26 Gent et al. (2011)
FVv2 DOE-
NCAR)
CNRM-CM5.1* National Centre for Meteorological Research, France 14x14 31 Voldoire et al. (2011)
CSIRO-MK3.6* Commonwealth Scientific and Industrial Research 1.8x1.8 18 Rotstayn et al. (2010)

Organization/Queensland Climate Change Centre of
Excellence, AUS

EC-EARTH EC-EARTH consortium 1.125x1.12 62 Hazeleger et al. (2010)
FGOALS-S2.0 LASG, Institute of Atmospheric Physics, Chinese 28x1.6 26 Bao et al. (2012)
Academy of Sciences
GFDL-CM3* NOAA Geophysical Fluid Dynamics Laboratory, USA 25x2.0 48 Donner et al. (2011)
GFDL-ESM2G/M* |NOAA Geophysical Fluid Dynamics Laboratory, USA 25x2.0 48 Donner et al. (2011)
GISS-E2-H/R* NASA Goddard Institute for Space Studies, USA 25x20 40 Kim et al. (2012)
HadCM3* Met Office Hadley Centre, UK 3.75x25 19 Collins et al. (2001)
HADGEM2-CC Met Office Hadley Centre, UK 1.875x1.25 60 Jones et al. (2011)
(Chemistry coupled)
HadGEM2-ES* Met Office Hadley Centre, UK 1.875x1.25 60 Jones et al. (2011)
INMCM4* Institute for Numerical Mathematics, Russia 2x15 21 Volodin et al. (2010)
IPSL-CM5A-LR* Institut Pierre Simon Laplace, France 3.75x1.8 39 Dufresne et al. (2012)
IPSL-CM5A-MR Institut Pierre Simon Laplace, France 25x1.25 39 Dufresne et al. (2012)
MIROC4h Atmosphere and Ocean Research Institute (The 0.56 x 0.56 56 Sakamoto et al. (2012)

University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology, Japan

MIROC5* Atmosphere and Ocean Research Institute (The University 14x14 40 Watanabe et al. (2010)
of Tokyo), National Institute for Environmental Studies,
and Japan Agency for Marine-Earth Science and
Technology, Japan

MIROC-ESM* Japan Agency for Marine-Earth Science and Technology, 28x2.8 80 Watanabe et al. (2010)
Atmosphere and Ocean Research Institute (The
University of Tokyo), and National Institute for
Environmental Studies

MIROC-ESM- Japan Agency for Marine-Earth Science and Technology, 28x2.8 80 Watanabe et al. (2010)
CHEM Atmosphere and Ocean Research Institute (The
University of Tokyo), and National Institute for
Environmental Studies

MPI-ESM-LR* Max Planck Institute for Meteorology, Germany 19x19 47 Zanchettin et al. (2012)
MRI-CGCM3* Meteorological Research Institute, Japan 11x11 48 Yukimoto et al. (2011)
NorESM1-M* Norwegian Climate Center, Norway 25x19 26 Zhang et al. (2012)




Not all GCM tells the same story
Southwest/Mexico precipitation (1980-1999)
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We selected GCMs that has good historic climate results

for the Southwest and Mexico
Cook and Seager (2013, J. Geophys. Res.)



Multi-model schematic:
Translating IPCC climate signals to basin-scale
hydroclimate projections
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Spatial and temporal
resolution suited for
basin-scale

One of the most debated tables by the
authors in writing of the DOD report...

TABLE 4 Recommendation Table on the Use of Climate Datasets based on Regional Features*

Scale

Dynamic
Statistical Downscaling Methods Downscaling GCM
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Global scale: ~3 000 km or more,
weeks to months (zeneral circulation
struchure, jet stream posiion)

Synoptic scale: 100-3,000 km,
days to weeks (highs and lows,
midlatude cyvelones, monsoons,
atmosphene telecormechons)

Course mesoscale-u,
10-100 ko, hours to days
{katabatic winds, weather fronts,
mwsoscale convective systerns,
tropical cvelones, sea breeze

hydroclimate studies

crrenlations )

Fme mesoscale-y: 1-10 km, hours
to mimmtes

{supercell thunderstorms, tomadoss,
gust fronfs, ar mass thunderstorms,
monmtam-valley winds, mountain
snowfall)




Regional Climate Modeling
with Dynamical Downscaling



From Global scale to Regional Scale:
Monsoon vs. No Monsoon for the Southwest

Observation CPJJ(precip climotoogyﬁj(mm, 1959—2010)
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Performance of Regional Climate Model:

60-year Winter Precipitation
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Performance of Regional Climate Modeling:
60-year Summer Precipitation

Observation Dynamical Downscaling
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Mean and extreme precipitation difference:

Trend of future extreme precipitation does not follow the mean
precipitation ([2011-2040]-[1950-2010]).

Mean Precipitation Difference
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Monsoon season:
Mean precipitation decreasing in
Southwest, increasing in Mexico

Extreme Precipitation Difference
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Downscaled Regional Climate
to Streamflow Projections over
Colorado River Basins



Study Region: Upper and Lower Colorado River Basins

] Locagion
Cokonis Bver & Genwood Springa. CO
Cokonde 25 a7 rear Camac, CO

Ty lor Rivar Sakow Tay kot Park Rasars ofr, 0O
Gurnacn River e Diue Veas Reasvalr, CO
Gurninon Riv ec &t Cryatel Reaaxck, GO
Guraacn B8y e rew Gand Jaxton CO
Doloma Ry e raar Snco, UT

Colede Rivas near Clace UT

Grwan, Piis o besow Tontunaile Rlasery o WY
Grean, P ar nea Gosar Rivar, WY

Grwan Tl ar rweat Gosmndiale, LT

12 Yamps B e near Vay el OO0

13 Lite Sraks Rver e Ly OO

14 Cucheans River war Randes UT

15 White River sear Watsen, UT

0 Gowen, Fw e ot Green Ry UT

1T Gan Rafas River near Goses R UT

0 Gan Jaan River near Axchoets, WM
19 Gan Jaan Rive rear DR UT

20 Coomdo Rhar ot Laas Fary A2

lBoovuonaun -

VL
NERE

Las
R
-
-
>
o s
- (5 4]
- ¥ =TS (3
-
(2]
o
L9
-
»

(== AP Harding et al. (HESSD, 2012) 14




Current operational streamflow projection products:

Upper Colorado River basin at Lees Ferry gauge
Full 112-Member BCSD CMIP3 Ensemble Projection

(a)

BCM

5 { Model Mean
Obs Mean

1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year

Flow (BCM)
n w N W

—_

Flg. 6. (a) Simulated 30-yr average streamflows of the Colorado River at Lees Ferry AZ, 1979
through 2099. (b) The mean monthly average streamflows for the three future projection peri-
ods, compared with the historical 30-yr period flow ending in 1999.

Harding et al. (2012, HESSD)

Assumptions

Greater reduction in uncertainty
with more ensemble members, or
the “bigger cloud”

Mean of the multi-model
ensemble is our most confident
metric because of cancellation of
model error

But what should Bureau of
Reclamation do if dynamical
downscaling would yield a
different result than BCSD, but
with far fewer members??



Multi-model schematic:
Translating IPCC climate signals to basin-scale
hydroclimate projections
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Monthly precipitation and streamflow at Upper
Colorado Basin (Lees Ferry): 1971-2000
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(a) Upper Colorado 30 (d) Upper Colorado
60 1
50 25 |
E E
Edﬂ: E2¢
® s
= E
= £
% 20 S0t
= =
10} 5

=

! ! ! 1 ! 1 1 ] 0 1 1 1 1 1 1 L 1 1 1 I
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Months Months

)
a9

Blue: Statistical Downscaling
Red: Dynamical Downscaling
Black: Observation



Upper Colorado Streamflow Bias at Lees Ferry:
1971-2000
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Dynamical downscaling leads to reduced bias in representation of historical
streamflow, generally independent of high and low flows. The regional modeling
component is main reason why, not choice of bias correction technique.




Upper Colorado River Monthly Precipitation and Streamflow:
(2041-2070) minus (1971-2000)
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Upper Colorado River Streamflow Percentage Change:
(2041-2070) minus (1971-2000)
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Greatest difference between a statistically vs. dynamically downscaled stream
flow projection occurs for highest flows.

On order of 10-20% lower streamflow during peak flows with
dynamical downscaling!



Salt and Verde Basin Streamflow Percentage Change:
(2041-2070) minus (1971-2000)
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The potential decreases on the smaller rivers that are the lifeblood of the SRP
system may be even more dramatic than for the Upper Basin!

Blue: Statistical Downscaling
Red: Dynamical Downscaling
Black: Observation



Summary for Upper Colorado Basin
Streamflow

* Dynamically downscaled streamflow has comparatively
less bias in the historical period.

* Both statistical and dynamical downscaling show a shift
of the hydrograph to an earlier period of peak flow.

* Dynamical downscaling projects lower peak streamflow
than statistical downscaling, on the order of 10-20%
additional decline in the mid 215 century.

* The range of simulated streamflow with dynamical
downscaling is outside the range of statistical
downscaling ensembles with BCSD challenging the
paradigm of the cloud of points.
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Climate projection products under different
greenhouse gas emission scenarios:

Future Scenarios
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Why are projections uncertain?

* SCIENTIFIC

We don’t know what future
emissions from human activities
will be

We don’t know how sensitive the
planet is, and our ability to
simulate the climate system is
limited and incomplete,
particularly at the local to
regional scale

Continuous natural variations in
climate make it difficult to predict
conditions over shorter time
scales



Improved North American monsoon
precipitation in CMIP5 models: SW only

Some has lagged peak monsoon
season

Many don’t capture the monsoon
retreat

@@ | grge spread in model results from
=== summer to early fall

Geil et al (2013, J. Climate)




NARCCAP (CMIP3) Winter precipitation
(1979-1999):

a] OO Wimer Chmasiotxgy b NARER Warde: Orradoiogy o} Trserisin Wirder Ciradoiogy

Observation NARR Multi-Model Ensemble
Mean

Dominguez et al. (2012, JGR)



Snowfall performance
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Figure 4. Comparison of model-denved snow fall for the period 19812005 winter (December—March)
to observed snowfall for three different latitudinal bands and seven altitudinal bands. Each period is
averaged in space, and shows total snowfall for the winter (December—March) season,




NARCCAP (CMIP3)
July/Aug Precipitation
for Southwest

Sometimes,
driving GCM is not the
problem

I. RCM3-gfdl
T

0 A
S o

Figure 3: JA average precipitation change (%) from the baseline period. Hatching indicates where the change
is statistically significant at the 0.1 level.

Bukovsky et al. (2014, J. Climate)



Statistical or Dynamical Downscaling
Which is “right” way to go?

Statistical Downscaling

Dynamical Downscaling

Pros Simple and inexpensive Represents physical processes
Many realizations Lots of variables available
Relatively easy to apply | Characterize extremes

Cons Stationarity problem Lesser scenario simulations

Underestimates extremes
No physical process basis

Computationally expensive
Requires training, experience

Reduce statistical
uncertainty

Reduce physical process
uncertainty




North American Regional Climate Assessment Program
(NARCCAP, dynamically downscaling IPCC CMIP3 products)

NARCCAP PLAN - Phase I N

( A2 Emissions Scenario >

/ | | \

GFDL
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N e

1971-2000 current Provide boundary conditions 2041-2070 future

. |\ U

MMS RegCM3|| CRCM |[HADRM3|| RSM WRF

lowa State/ UC Santa Cruz Quebec, Hadley Centre Scripps NCAR/
PNNL ICTP Ouranos PNNL

Courtesy Dr. Linda Mearns, National Center for Atmospheric Research



CORDEX_NAMERICA

g Experiment

¥ou have the HadRM3FP model and the MOSESZ land surface scheme selected.
Mews soil and land use overrides are incompatible with MOSESZ.2 and have been disabled.

Existing soil and land use overrides will be ignored in this experiment.

B Ole Ch i R
- - i -
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Extreme precipitation rate (top 10%):
June/lJuly vs Aug/Sep (WRF-CMIP5)
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Summary for Regional Climate Modeling:

* Value added using dynamical downscaling technique:
Precipitation distribution better represented in WRF
regional climate model, as compared to raw IPCC
global climate datasets.

* Performance in seasonal mean climatology: WRF
simulations wusing IPCC climate projections have
reasonable 20t century precipitation climatology for
both summer and winter seasons.

* Regional climatology from different generation of IPCC
projections: improvements In mean precipitation
climatology are found in downscaled WRF-CMIP5
simulations, as compared to the WRF-CMIP3 runs.




-5% = M difference
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FiGc. 6. Comparison of BC5D downscaling from C&L with a delta-
method downscaling approach for Lees Ferry in the 204069 future

period for Al emission scenarios. On average, the BC5D approach has
a decline in streamflow of 7% (average values of 93%), whereas with the

delta method, declines are 13% (average values of 87%). Differences
are the BCSD approach minus the delta-method approach.

Vano et al. (2014, BAMS)
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Statistical NARCCAP GCMs Dynamical

Downscaling UA: MPI-ECHAMS5 Downscaling
and HadCM3

Bias Correction and Regional Climate Model
Spatial Disaggregation NARCCAP
(BCSD) UA-WRF: MPI, HadCM3

Non Parametric Bias
Correction (NP-BC) of
BCSD

New Parametric Bias
Correction (BC-UA)

BOR Calibrated VIC
hydrologic model

BOR Calibrated VIC BOR Calibrated VIC
hydrologic model hydrologic model

Statistically Downscaled Dynamically Downscaled Dynamically Downscaled
Streamflow using BCSD Streamflow using BC-UA Streamflow using NP-BC
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