Appendix A: Cost Analysis Data

Cost Analysis Data

Two different concentrate volumes were examined; the year 2020 volume of 10 mgd and the year 2035 volume of 30 mgd . The cost estimates are considered "planning level." The estimates give an order of magnitude and do not give construction costs. Tools developed during CASS Phase II were used for estimates of the RO facilities, pipelines and evaporation ponds. Other costs were fond on the Web, by direct contact and other listed sources including Mike Mickley’s Report \#69. All costs are in 2008 dollars.

Evaporation ponds	CASS II "Design\&BuildROwithEvapPonds" Excel spread sheet*
RO \& MF facilities	CASS II "Design\&BuildROwithEvapPonds" Excel spread sheet*
Pipelines	CASS II "Design\&BuildROwithEvapPonds" Excel spread sheet*
Wetlands	CH2MHill Technical Memorandum**
Brine Concentrator	Report No. 69, Mike Mickley***
Lime Softening	PBS\&J, 1991 Water Supply Cost Estimates****
Deep Well Disposal	PBS\&J, 1991 Water Supply Cost Estimates****
VSEP	Personal E-Mail, Josh Miller sales, New Logic Research, Inc.
O\&M Costs:	
Pump Plant	3\% of plant cost + electricity
Concentrator	6% of plant cost + electricity
Pipe line	0.5% of pipeline cost
Evap pond	0.5% of pond cost + replacement
Soften Plant	3\% of plant cost + chemicals
RO/MF	CASS II "Design\&BuildROwithEvapPonds" Excel spread sheet*

Electricity $\quad \$.077$ kilowatt/hr

Chemicals Lime $\mathrm{Ca}(\mathrm{OH})^{2} \$ 150.00$ ton (www.exporters.sg) Soda $\mathrm{Na}^{2} \mathrm{CO}^{3} \$ 150.00$ ton estimated
Removal \& hauling \$9.62 ton
Land Costs CASS II "Design\&BuildROwithEvapPonds" Excel spread sheet*
Interest Rate $\quad 4.875 \%$ Reclamations construction interest rate for 2008
Cost Index Reclamation Construction Cost Trends (composite rate1 ${ }^{\text {st }} \mathrm{Qtr} / 2008$)

* Information for spread sheet came from; "Membrane Concentrate Disposal: Practices and Regulation - Program Report No. 69", Michael Mickley, September 2001 and "Reverse Osmosis Treatment of Central Arizona Project Water for the City of Tucson", Reclamation, January 2004
** "Preliminary Analysis of a Conceptual Wetland System for Managing Membran Concentrate", CH2M Hill, March 2008
*** "Membrane Concentrate Disposal: Practices and Regulation - Program Report No. 69", Michael Mickley, September 2001
**** UEC Water Supply Plan - Support Document, Chapter 9 Water Quality and Treatment, 2004
***** Land Costs research done by Steve Augustine, Economist, Reclamation

Regional Plan 1. Pipeline to Yuma

Regional Plan 1. Pipeline to Yuma

Regional Plan 2. Evaporation Ponds East of Gila Bend

10 MGD Evap Pond					
Concentrate	Miles of 24"				
10 mgd	pipeline	Cost per mile			
uncongested	45	\$943,976	\$42,478,929		
Pumping Plant		Lump Sum	\$1,100,000		
Easement	feet	acres	cost per acre	total cost	
Farm land	83,107	95	\$24,770	\$2,362,865	
West Desert	153,384	176	\$2,477	\$436,094	
		easement		\$2,798,959	Note: easement is assumed to be 50 feet wide

$\frac{2}{2}$ Evaporation Ponds	
$\frac{\text { Size }\left(\text { miles }^{2}\right)}{3.63}$	Total Land
4.94	

	Total Capital Costs

Annualized replacement liner***		$\$ 1,758,919$
O\&M	$\$ 3,496,884$	
		4.875%
	Interest Rate	50
	Years	$\$$
	$(35,010,163)$	
Annualized Capital	$\$$	$(5,255,803)$
Annual O\&M	$\$$	$(40,265,966)$

Regional Plan 2. Evaporation Ponds East of Gila Bend

Regional Plan 3. Brine Concentrator/Evaporation Pond

10 MGD pipeline to Brine Concentrator

$\begin{aligned} & \text { Concentrate } \\ & 10 \mathrm{mgd} \end{aligned}$	Miles of $24{ }^{\prime \prime}$ pipeline	Cost per mile	
uncongested	28.11	\$943,976	\$26,535,171
Pipeline costs			\$26,535,171

Brine Concentrator Costs				
3 mgd 2001*	3 mgd 2008	\# of BC's**	10 mgd	* Mike Mickly's Report No. 69
\$20,000,000	\$27,179,487	10	\$90,598,291	**Each BC is 700 gpm or 1 mgd
Brine Concentrator Costs			\$90,598,291	
land	acres	cost per acre	total cost	
BC Facilities	30	\$16,195	\$485,864	

Evaporation Ponds				
Size (acres^{2})	Total Land			
140	190			
	acre	$\underline{\text { liner*** }}$		***Liner thickness is 120 mill
Land cost	\$16,195		\$3,083,618	
Earthwork	\$12,385		\$1,733,868	
Liner		\$0.0136	\$9,945,083	
Other****			\$1,476,257	****Monitoring wells, etc.
Sub-total Evap	onds		\$16,238,826	

Easement feet	acres		cost per acre
Farm land 108,293	124		\$38,107
West Desert 40,128	46		\$16,195
	easement		
Sub-total Pipe, BC \& Pond			\$133,372,288
NEPA		10\%	\$13,337,229
Engineering		20\%	\$26,674,458
Mobilization		5\%	\$6,668,614
Construction Management		25\%	\$33,343,072
Contingencies		40\%	\$53,348,915
Total Pipe, BC \& Pond			\$267,230,441
Total Capital Costs			\$272,713,229

Energy Costs		kw-hr per 1000 gal of feed water	
Day (kw-hrs)	electricity (kw-hr)		Yearly cost
850,000	0.077	$\$ 65,450$	$\$ 23,889,250$

| | Annualized replacement liner ${ }^{* * *}$ |
| :--- | ---: | | $\$ 105,995$ |
| ---: |
| $\$ 5,755,762$ |$\quad * *$ **Liner is replaced after 25 years

Interest Rate		4.875%
Years		50
Annualized Capital	$\$$	$(14,650,777)$
Annual O\&M	$\$$	$(29,751,007)$
Annualized Costs	$\$$	$(44,401,784)$

Regional Plan 3. Brine Concentrator/Evaporation Pond

30 MGD pipeline to Brine Concentrator			
Concentrate Miles of 42"			
10 mgd	pipeline	Cost per mile	
uncongested	28.11	\$1,573,294	\$44,225,298
Pipeline costs			\$44,225,298

Brine Concentrator Costs			
$3 \mathrm{mgd} 2001 * 3 \mathrm{mgd} 2007$	$\#$ of $\mathrm{BC}^{\prime} \mathrm{s}^{* *}$	10 mgd	* Mike Mickly's Report No. 69
\$20,000,000 \$26,949,153	30	\$269,491,525	**Each BC is 700 gpm or 1 mgd
Brine Concentrator Costs		\$269,491,525	
land acres	cost per acre	total cost	
BC Facilities 50	\$16,195	\$809,774	

Evaporation Ponds				
Size (acres ${ }^{2}$)	Total Land			
419	570			
	acre	$\underline{\text { liner*** }}$		***Liner thickness is 120 mill
Land cost	\$16,195		\$9,228,828	
Earthwork	\$5,716		\$2,395,025	
Liner		\$0.0136	\$29,764,213	
Other****			\$4,138,807	****Monitoring wells, etc.
Sub-total Evap Ponds			\$45,526,873	

Easement feet	acres		cost per acre
Farm land 108,293	124		\$38,107
West Desert 40,128	46		\$16,195
	easement		
Sub-total Pipe, BC \& Pond			\$359,243,696
NEPA		10\%	\$35,924,370
Engineering		20\%	\$71,848,739
Mobilization		5\%	\$17,962,185
Construction Management		25\%	\$89,810,924
Contingencies		40\%	\$143,697,478
Total Pipe, BC \& Pond			\$719,297,166
Total Capital Costs			\$724,779,954

Energy Costs		kw-hr per 1000 gal of feed water	
Day (kw-hrs)	electricity (kw-hr)		Yearly cost
$2,550,000$	0.077	$\$ 196,350$	$\$ 71,667,750$

| | Annualized replacement liner***** |
| :--- | ---: | | $\$ 317,229$ |
| ---: |
| O\&M |
| |
| Total O\&M |

Interest Rate		4.875%
Years		50
Annualized Capital	$\$$	$(38,936,833)$
Annual O\&M	$\$$	$(88,692,828)$
Annualized Costs	$\$$	$(127,629,661)$

Regional Plan 4. Softening/RO/VSEP/Evap Ponds

Regional Plan 4. Softening/RO/VSEP/Evap Ponds

Regional Plan 5. Wetlands Treatment - Surface Discharge into Gila River

10 MGD Wetlands with pipeline to Gila River

Concentrate Miles of $24^{\prime \prime}$

$10 \mathrm{mgd}$	pipeline	Cost per mile			
uncongested	5	\$943,976	\$4,719,881		
Pipeline costs			\$4,719,881		
Easement	feet	acres	cost per acre	$\underline{\text { total cost }}$	
Farm land	26,400	30	\$38,107	\$1,154,757	
		easement		\$1,154,757	Note: easement is assumed to be 50 feet wide

Regional Plan 5. Wetlands Treatment - Surface Discharge into Gila River

30 MGD Wetlands with pipeline to Gila River

Concentrate 30 mgd	Miles of 42" pipeline	Cost per mile	
uncongested	5	\$1,573,294	\$7,866,471
Pipeline costs			\$7,866,471

Easement		acres	cost per acre	total cost	
Farm land	26,400	30	\$38,107	\$1,154,757	
		easement		\$1,154,757	Note: easement is assumed to be 50 feet wide

Wetland for . 5 mgd*		Wetland for 30 mgd	*Preliminary Analysis of a Conceptual Wetland System(CH2M Hill March 7, 2008)
Construction \$2,900,000		\$174,000,000	
Startup \$100,000		\$6,000,000	
Other**		\$18,000,000	**monitoring wells, etc.
Wetland costs		\$180,000,000	
Land Costs	acres	cost per acre	Total Cost
Farm land	600	\$38,107	\$22,864,198
	land costs		\$22,864,198
Subtotal wetlands \& pipe		\$187,866,471	
NEPA	10\%	\$18,786,647	
Engineering	20\%	\$37,573,294	
Mobilization	5\%	\$9,393,324	
Construction Management	25\%	\$46,966,618	
Contingencies	40\%	\$75,146,588	
Total wetlands \& pipe		\$375,732,941	
Total Capital Costs		\$399,751,896	

	Annual cost removal wetlands	\$530,358	$1 / 3$ wetland removed at 12,24 \& 36 years as heavy metals saturate media
	Annual cost replacement wetlands	\$3,670,321	$1 / 3$ wetland replaced at 12,24 \& 36 years
	Normal: O\&M Pipeline \& Wetlands	\$939,332	
Total O\&M		\$5,140,011	

Interest Rate		4.875%
Years		50
Annualized Capital	$\$$	$(21,475,584)$
Annual O\&M	$\$$	$(5,140,011)$
Annualized Costs	$\$$	$(26,615,595)$

Regional Plan 6. Deep well Injection Site

10 MGD Pipeline to Injection Well

Injection Well

Cost per gal/day capacity	size (gal/day)	
$\$ 0.69$	$10,000,000$	costs $\$ 6,875,676$
		$\$ 6,875,676$

Land Costs	acres	cost per acre	Total Cost
West Desert	5	\$16,195	\$80,977
	land costs		\$80,977

	Subtotal Capital costs injection well \& pipe

Energy Costs						Annual	
Flow (gal/d)	Head (ft)	Q (gpm)	Horse Power	Kilowatts	Cost kw-hr	Kilowatt-hours	Yearly cost
10,000,000			22000	16412	0.077	143,769,120	\$11,070,222

NEPA	10\%	\$5,407,449
Engineering	20\%	\$10,814,897
Mobilization	5\%	\$2,703,724
Construction Management	25\%	\$13,518,621
Contingencies	40\%	\$21,629,794
Total injection well \& pipe		\$108,148,972
Total Capital Costs		\$114,465,639
Total O\&M Costs		\$11,306,216
Interest Rate		4.875\%
Years		50
Annualized Capital		$(6,149,355)$
Annual O\&M		$(11,306,216)$
Annualized Costs		$(17,455,572)$

Regional Plan 6. Deep well Injection Site

30 MGD Pipeline to Injection Well

Injection Well

Cost per gal/day capacity	size (gal/day)	costs
\$0.69	30,000,000	\$20,627,027
Injection Well costs		\$20,627,027

Land Costs West Desert	$\frac{\text { acres }}{10}$	$\frac{\text { cost per acre }}{\$ 16,195}$		$\frac{\text { Total Cost }}{\$ 161,955}$
	land costs		$\$ 161,955$	

	Subtotal Capital costs injection well \& pipe

Energy Costs						Annual	
Flow (gal/d)	Head (ft)	Q (gpm)	Horse Power	Kilowatts	Cost kw-hr	Kilowatt-hours	Yearly cost
30,000,000			66000	49236	0.077	431,307,360	\$33,210,667

NEPA	10\%	\$9,929,173
Engineering	20\%	\$19,858,347
Mobilization	5\%	\$4,964,587
Construction Management	25\%	\$24,822,933
Contingencies	40\%	\$39,716,693
Total injection well \& pipe		\$198,583,467
Total Capital Costs		\$204,981,112
Total O\&M Costs		\$33,603,990
Interest Rate		4.875\%
Years		50
Annualized Capital		$(11,012,053)$
Annual O\&M		$(33,603,990)$
Annualized Costs		$(44,616,043)$

