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INTRODUCTION 
 
NATIVE FISHES IN THE SOUTHWEST: STATUS AND TRENDS 
 
Complex geologic, climatic, and evolutionary processes that started more than 100 million of 
years ago resulted in a variety of desert fishes well adapted to extreme conditions of heat and 
water fluctuations during alternating periods of flood and drought.  About 170 species comprise 
the unique and ancient assemblage of western United States native fishes (Downling and Childs 
1992). Comparing ichthyofaunas east and west of the Rocky Mountain axis, western fish fauna is 
characterized as depauperate and presenting a high number of endemic subfaunas, as a result of a 
long history of disruptive geologic and climatic events that substantially reduced the diversity, 
availability, and reliability of aquatic habitats (Minckley and Douglas 1991). In addition to these 
factors, detrimental human activities on aquatic systems -including habitat destruction and 
modification, and introduction of non-native species- have contributed to the rapid and drastic 
decline of desert fishes in the Southwest to the point that most of them are now listed as 
threatened or endangered (Miller 1961, Deacon et al. 1979, Ono et al. 1983, Minckley and 
Deacon 1968, 1991, Minckley 1973, 1985, 1991, Minckley and Brooks 1985, Williams et al. 
1985, 1989, Moyle and Barton 1986, Minckley and Douglas 1991, Douglas et al. 1994). Similar 
declines have been observed in many parts of the world (Miller 1961, Hendrickson 1983, 
Edwards and Contreras-Balderas 1991, Contreras-Balderas 1991, Crivelli 1995, Collares-Pereira 
et al. 1999, Goren and Ortal 1999, Fuller et al. 1999). 
 
Aquatic ecosystems in the world have been invaded successfully by both exotic plants and 
animals. Some of these invasions have been spectacular and have occasioned considerable 
concern because of the profound economic and cultural consequences (Vermeij 1996). An 
important management measure in controlling invading species would be their early detection in 
the ecosystem. The present work develops on the idea that both endangered natives and recently 
introduced non-natives might be studied under the framework of rarity. 
 
SPECIFIC THREATS TO NATIVE FISH: THE CENTRAL ARIZONA PROJECT 
 
In Arizona, a portion of the Colorado River water is now deviated through a series of pipelines 
and aqueducts that begin in Lake Havasu and cross the central and southern portions of the state 
to end at an area near Tucson. This important project is called the Central Arizona Project 
(CAP), completed in 1993 largely by the U.S. Bureau of Reclamation (BOR). In the last decade, 
the CAP has been the subject of debate as a potential corridor leading to transport of non-native 
fishes and other aquatic organisms from the Colorado River to central and southern Arizona. 
After its completion, the Fish and Wildlife Service (FWS) issued a Biological Opinion (BO) on 
transportation and delivery of CAP water to the Gila River Basin and determined that the project 
would jeopardize continued existence of four threatened or endangered fishes: Gila topminnow 
(Poeciliopsis occidentalis), spikedace (Meda fulgida), loach minnow (Tiroga cobitis), and 
razorback sucker (Xyrauchen texanus). One alternative in the BO directed the BOR to develop a 
monitoring plan for implementation in conjunction with FWS and Arizona Game and Fish 
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Department (AGFD). BOR was also directed to determine baseline fish community composition 
and distribution and to monitor impact of non-native fishes on existing fish communities in 
selected waters of the Gila River Basin.  
 
Several species of fish detected in the CAP canals have not been detected during monitoring 
efforts on the Gila or San Pedro rivers since 1995 (Table 1). Any impact of these fishes, as well 
as other organisms not currently found on the two rivers, may manifest itself by changing the 
abundance of fishes (native and non-native) that occur on the San Pedro and Gila Rivers. Fish 
that are currently common and/or widespread on the rivers can be monitored using conventional 
techniques; however; rare species present difficulties in merely determining whether they are 
present, let alone in determining their actual density. 
 
Four species on the Gila and San Pedro River are listed: Gila topminnow, spikedace, loach 
minnow, and razorback sucker. None of these four species has been detected during AGFD 
surveys in 1995 through 1998. Depending on how rarity is defined, Table 2 can be used to 
broadly identify species that are restricted spatially (black bullhead, threadfin shad, bluegill, 
smallmouth bass, black crappie, and flathead catfish) and/or occur at low densities where they 
are found (black bullhead, threadfin shad, green sunfish, bluegill, smallmouth bass, largemouth 
bass, fathead minnow, black crappie, and flathead catfish) on the San Pedro and Gila Rivers.  
 
In addition to following any changes in density of current fish species, BOR wants to track any 
invasion by the non-native species currently found in the canals but not the Gila or San Pedro 
Rivers (Table 1). Agencies monitoring for such an invasion wish to be able to detect the fishes at 
the low densities. 
 
Table 1. Species detected since 1970 in target canals or the Salt River, now with connections 
via the CAP to the San Pedro and Gila Rivers, where these species have not been detected in 
AGFD monitoring. Taken from Clarkson (1999). 
Common name Scientific name 
Oscar Astronotus ocellatus 
Goldfish Carassius auratus 
Grass carp Ctenopharyngodon idella 
Roundtail chub* Gila robusta 
Bigmouth buffalo Ictiobus cyprinellus 
Redear sunfish Lepomis microlophus 
White bass Morone chrysops 
Yellow bass Morone mississippiensis 
Rainbow trout Oncorhynchus mykiss 
Sailfin molly Poecilia latipinna 
Flathead catfish Pylodictis olivaris 
Walleye Stizostedion vitreum 
Blue tilapia Tilapia aurea 
Mossambique tilapia Tilapia mossambica 
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Table 1. Species detected since 1970 in target canals or the Salt River, now with connections 
via the CAP to the San Pedro and Gila Rivers, where these species have not been detected in 
AGFD monitoring. Taken from Clarkson (1999). 
Redbelly tilapia Tilapia zilli 
Razorback sucker* Xyrauchen texanus 
*Native fish, found in the Salt River. 
**Possible observation in the San Pedro River 
***Found in the Salt River, but not in connecting canals to date. 
 
 
Table 2. Density and extent of distribution of species detected in the San Pedro and Gila rivers 
from 1995 to 1998. Summarized from USBR database.  
Common name Scientific name Number of 

reaches 
found in 

Average 
abundance 

in 200 
meters 

Found in 
San 

Pedro? 

Found 
on 

Gila? 

Longfin dace* Agosia chrysogaster 7 7.82 + + 
Black bullhead Ameiurus melas 2 1.61 + - 
Yellow bullhead Ameiurus natalis 7 2.39 + + 
Sonora sucker * Catostomus insignis 5 5.99 + + 
Red shiner Cyprinella lutrensis 5 14.90 + + 
Carp Cyprinus carpio 5 2.88 + + 
Threadfin shad Dorosoma petenense 4 1.05 - + 
Mosquitofish Gambusia affinis 7 5.36 + + 
Channel catfish Ictalurus punctatus 5 2.07 + + 
Green sunfish Lepomis cyanellus 7 1.42 + + 
Bluegill Lepomis macrochirus 2 0.30 + + 
Smallmouth 
bass 

Micropterus dolomieu 1 0.12 - + 

Largemouth 
bass 

Micropterus salmoides 4 1.72 + + 

Desert sucker* Pantosteus clarki 7 7.04 + + 
Fathead 
minnow 

Pimephalies promelas 5 0.71 + + 

Black crappie Pomoxis nigromaculatus 2 0.26 - + 
Flathead catfish Pylodictis olivaris 2 0.68 - + 
 



Issues in defining, detecting and quantifying rare species April 2000 
Francisco J. Abarca and Linda Allison Page 6 
 

RARE SPECIES 
 
WHAT IS A RARE SPECIES? 
 
The causes and consequences of species abundance and distribution have been at the heart of 
many ecologists' discussions over the last few decades. When plotting relative abundance vs. 
number of species a general pattern is found -a bell-shaped curve- (data arranged on a scale of 
logarithms to the base 2) that indicates the communities are dominated by a few common 
species, but also contain many rare species (Dobson 1996) This pattern is repeated even within 
communities with a variety of taxonomic groups in a wide range of habitats (Brown et al. 1995, 
Dobson 1996, Caley and Schluter 1997, Gaston and Kunin 1997). Citing difficulties in 
estimating abundance of rare species, ecological studies have concentrated on common species, 
describing species associations by using the most common members of the association 
(Grossman et al. 1998, Yant et al. 1984, Caley and Schluter 1997). At variance with this stance, 
the concept of rarity and its implications has attracted the attention of many individuals working 
in conservation biology (Arita et al. 1990, Gaston 1994, Kunin 1997, Maitland 1998; Cofré and 
Marquet 1999) and ecology of invasions (Kovalak et al. 1996, Moyle and Light 1996, Mack et 
al. 2000) 
 
DIFFERENT USE OF THE TERM RARITY 
 
Although rare species are regarded as those having low abundance and/or small ranges, a quick 
look at the biological literature dealing with the concept of rarity (and commonness) reveals a 
great variety of view points (Mayr 1963, Margules and Usher 1981, Rabinowitz et al. 1986, 
Soulé 1986, Ferrar 1989, Kunin 1997, Kunin and Gaston 1993, 1997, Rey-Benayas et al. 1999). 
In most cases, the definition of rare species is based on one, two or a few variables at most, 
which may include: abundance, range size, habitat specificity (= habitat occupancy), temporal 
persistence (e.g. taxon age), threat (probability of, or time to, extinction), gene flow, genetic 
diversity, endemism, or taxonomic distinctness. 
 
The definition developed by Rabinowitz (1981; cited in Rabinowitz et al. 1986) is perhaps the 
most widely used for ecological discussions about rarity. She classified species based on three 
criteria: geographic range (large or small), habitat specificity (wide or narrow), and local 
abundance (somewhere large or everywhere small). A comparable analysis of rarity and 
abundance was undertaken by Reed (1992; cited in Dobson 1996), using data for Neotropical 
migrant bird species in North America. 
 

Table 3. Rabinowitz’s  scheme for describing types of commonness and rarity using British 
wild flowers (from Rey-Benayas et al. 1999). 
Geographic range Wide Narrow 
Habitat specificity Broad Restricted Broad Restricted 
Abundance somewhere large Common Predictable Unlikely Endemics 
Abundance everywhere small Sparse Non-existent 
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Rabinowitz indicated that most species are abundant somewhere, and similarly, that most species 
have a wide geographic range. In addition, most species are rare in the sense that they are 
restricted to a single type of habitat. When considering the eight possible combinations of 
categories, only one (wide range, broad habitat specificity, and somewhere large local 
abundance) is classified as common. The other seven each include some form of rarity, and may 
not  exist (Rey-Benayas et al. 1999).  
 
More recently, Rey-Benayas et al. (1999) expanded on Rabinowitz’ scheme for classifying 
species as common or rare by adding a fourth criterion, the ability of that species to occupy a 
larger or smaller fraction of its potential suitable habitats, i.e., habitat occupancy. Under this 
scheme, only one of the 16 combinations of species characteristics would be considered 
common: wide geographic range, broad habitat specificity, large local abundance, and frequent 
habitat occupation (Table 4).  
 
Table 4. An expanded scheme for describing types of commonness and rarity proposed by 
Rey-Benayas et al. (1999). 
Geographic 
range Wide Narrow 

Habitat 
specificity Broad Restricted Broad Restricted 

Abundance Large Small Large Small Large Small Large Small 
Habitat 
occupancy 
high 

Common Widespread Indicator Locally 
common

Non-
existent 

Endemic 
indicator 

Habitat 
occupancy 
low 

Highly 
dispersed Sparse Locally 

endangered 
Potentially 
endangered Endangered 

 
Note that the expansion of categories used adds three categories relating to endangerment. These 
categories arise because species that have narrow geographic and habitat needs are also at risk if 
they do not occupy much of the available habitat. Therefore, the scheme of Rey-Benayas et al. 
(1999) allows us to identify species that might have endangered status. Gaston (1997) argues that 
most operational definitions of rarity can be placed in a three-dimensional space, and a species 
rarity is defined by the existence of “threats” (e.g. risk of extinction, estimated time to 
extinction), “biology factors” (e.g. history, taxonomic isolation, abundance), and “human values” 
(e.g. how special species are).  
 
DEFINITIONS OF RARITY RELYING ON EXISTENCE OF THREAT 
 
Often the term rare is used as a category for species that are perceived in risk of extinction. Many 
natural resources agencies and conservation organizations list rare species within the group of 
species in need of protection as a third level of threat of extinction after endangered and 
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threatened. These species may not be under direct threat, and may not be in decline, but are 
considered vulnerable for reasons described in state laws and lists that address rare species 
(California Department of Fish and Game, Idaho Department of Parks and Recreation, 
Environment Australia, Maine Department of Inland Fisheries and Wildlife, Rare Species 
Conservatory Foundation, South Dakota Department of Game, Fish, and parks, Swedish 
Threatened Species Unit, Texas Parks and Wildlife Department, Virginia Department of 
Conservation and Recreation). 
 
The following are some of the operational definitions of rare: 
 
Ashton (1976; cited in Munton 1987) Endangered and Threatened Amphibians and Reptiles of 
the United States 
Those species that are considered rare throughout the state or are found in environmental 
conditions disjunct from the normal geographic range of the species. 
 
Miller, R.R. (1972) Threatened Freshwater Fishes of the United States 
Not under immediate threat of extinction, but occurring in such small numbers and/or in such a 
restricted or specialized habitat that it could quickly disappear. 
 
Heintzelman, D. S. (1971; cited in Munton 1987) Rare and Endangered Fish and Wildlife of 
New Jersey 
A rare species is not presently threatened with extinction, but it occurs in such small numbers in 
New Jersey that it may become endangered if its environment deteriorates further or other 
limiting factors change. Careful watch of its situation is essential. 
 
Ayensu and De Philipps (1978, cited in Munton 1987) Endangered and Threatened Plants of the 
United States 
A species that has a small population in its range. It may be found in a restricted geographic 
region or it may occur sparsely over a wide area. 
 
Given (1981, cited in Munton 1987) Rare and Endangered Plants of New Zealand 
Only small populations are known or the species is found only in restricted areas where it may be 
locally common. For the most part however the numbers of plants and localities where it is found 
are reasonably stable. 
 
Tanasiyehuk, V.N. (1981; cited in Munton 1987) Data for the 'Red Book' of Insects of the USSR 
Species not yet directly threatened with extinction, but occurring in small numbers or in such 
small areas they may rapidly disappear. 
 
World Conservation Union (IUCN) (1986 Version) 
Taxa that are not at present Endangered or Vulnerable but are at risk because of small total 
populations within the area of concern. 
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Colding and Folke (1997) The relations among threatened species, their protection, and taboos.  
Taxa with small world populations that are not at present "Endangered" or "Vulnerable," but are 
at risk. These taxa are usually localized within restricted geographical areas or habitats, or are 
thinly scattered over a more extensive range.  
 
The definitions above use some of the same characteristics for rare species as described by 
Rabinowitz. The main factor used to classify a species as rare on the above definitions is low 
local abundance that in combination with wide geographic range but restricted habitat specificity 
or narrow geographic range regardless of habitat specificity reflect the types of rare species by 
Rabinowitz. However, this scheme does not discuss the term endangered species using the same 
attributes. 
 
The scheme described by Rey-Benayas et al. (1999) allows for a more complex multi-level 
approach ranging from a common species to a truly endangered species. A rare species may be 
uncommon but able to occupy a large portion of its potential suitable habitat. If the same species 
occupies only  a proportion of suitable habitat, it will be at risk of local extirpation or extinction 
(Table 4). Endangered species often present drastically reduced total number of individuals in 
their remaining populations. These type of populations are more vulnerable to the effects of 
inbreeding, loss of genetic diversity and fitness, which in turn may limit the species ability to 
reproduce and disperse within its potential habitat. This corresponds to the last three categories 
proposed by Rey-Benayas et al. (1999). 
 
DEFINITIONS OF RARITY RELYING ON PARTICULAR BIOLOGICAL CHARACTERISTICS 
 
Many attempts have been made to describe the biological and life history characteristics of rare 
species. It seems logical to think that by developing a framework by which a rare species could 
be defined, we could predict what species would be rare for any given habitat condition. 
However, although some important generalities have been found, many exceptions still occur, 
because rarity is an emergent trait of a species' population and its environment, and not a trait of 
an individual organism (Kunin 1997). 
 
Scientists have explored the differences between rare and common organisms from a variety of 
stand points (breeding systems, reproductive investment, dispersal ability, homozygosity, 
competitive ability, resources usage, trophic status and body size) with a high concentration of 
plant studies, and very little on higher vertebrates (Rabinowitz 1986, Gaston and Lawton 1990a, 
McIntyre 1992, Gaston and Blackburn 1996, Gaston and Kunin 1997).  
 
Conclusions from these studies reveal several important limitations in attributing rarity to 
particular biological characteristics. 1) Definitive reconstruction of a species’ history is not 
possible. 2) Different operational definitions have been used in each study. 3) It is not possible to 
imply causation from association of rarity with one or multiple correlated factors (Gaston 1994, 
Gaston and Kunin 1997). 
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Despite careful development of theory for classifying species distributions, local abundance 
remains a ubiquitous but innocuous descriptor in scientific studies. Gaston (1994) compiled the 
criteria by which rare species have been delineated based on a great number of studies. These 
criteria could be quantitative (e.g. less than a thousand plants in any locality) or qualitative (e.g. 
recorded only occasionally) so that the proportion of species that are considered rare in a given 
community and/or study varies enormously (Gaston and Lawton 1990b, Kunin and Gaston 
1993).  
 
Although other elements of their biology may better characterize the condition of the species, 
when we set out to monitor rare species, the usual approach will focus on the low abundance of 
many rare species.. Thus, papers have been written on designing sampling strategies to detect 
rare species (Green and Young 1993, Kovalak et al. 1986). This approach represents the first 
step. Detection of a species allows us to answer questions about whether the spatial distribution 
is changing, or whether habitat use is shifting, for instance. 
 
Trends in diversity of species may vary depending on the spatial scale being used. A basic and 
popular approach of assessing rarity is by developing distribution maps at different scales, 
although units of 10 km X 10 km are the standard (Spellerberg 1992). Different spatial scales in 
evaluating a community may produce different results. The abundances and range sizes of 
species are dynamic both in space and in time. This means that rarity is a scale-dependent 
concept. Species that may be rare in one area may not be so in another, and species which may 
be rare over an area of a particular size may not be rare over a larger or smaller area. Likewise, 
species which are rare in one time period may not be so in another, so our perception of a 
species’ abundance may change when their abundances or range sizes are averaged over periods 
of differing duration (Kunin and Gaston 1997). 
 
Similarly, different levels in the intensity of monitoring may provide different observations. 
Menges and Gordon (1996) examined three different levels of increasing intensity for monitoring 
rare plant species. Level 1 referred to species occurrence by mapping distributions of species and 
identifying the presence/absence or spatial extent of each population. Level 2 involves a 
quantitative assessment of abundance, often expressed as density, percent cover, or frequency. 
Level 3 was demographic monitoring of marked individuals, allowing quantitative assessments 
of demographic parameters, such as survivorship, growth and fecundity. While level 2 allows the 
analysis of population trends and hypothesizing about demographic mechanisms, level 3 allows 
modeling and population viability analysis. Depending upon conservation objectives, the three 
levels could be mixed in a study. For example a few populations of a species receives intensive 
level 3, while all populations receive a lower intensity of monitoring. 
 
Probably the most comprehensive analyses on the attributes of rare and common species have 
been conducted by Gaston (1994 and 1997), Gaston and Kunin (1997), Kunin (1997), and Kunin 
and Gaston (1993 and 1997), who concluded that a rare species will usually present the 
following characteristics:  
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• Have breeding systems biased from outcrossing and sexual reproduction. 
• Have lower reproductive investment 
• Have poorer dispersal abilities 
• Have higher levels of homozygosity 
• Use less common resources and/or a narrower range of resources 
• Have, for abundances, a greater probability of belonging to groups at higher levels of a 

trophic hierarchy 
• Have, for abundances, under some circumstances, a greater probability of a larger body size, 

and for geographical range sizes, a greater probability of a smaller body size. 
 
These attributes represent broad generalizations and should be carefully considered when 
attempting to identify rare species in a ecosystem. In the case of freshwater native fishes, Gaston 
and Lawton (1990a) indicated that the relationships between body size, geographic range size, 
and population density are weak and often non-existent. However, some North American desert 
fishes may exhibit a trend of small size and high abundance in isolated locations (Minckley and 
Deacon 1991). 
 
In general, species with large geographic ranges have greater local abundances than those of 
restricted ranges. For some examples of benthic marine fishes, this pattern persists. However, for 
other fishes, small ranges and low abundances are the rule, possibly due to natural causes 
(specialized habitat requirements, trophic position, poor dispersal abilities, and patterns of range 
expansion after speciation) or a product of human activities (Gaston and Lawton 1990a). In their 
analysis of rarity, Gaston and Lawton (1990a) indicate that fish are different from most other 
taxa and may be more like plants by exhibiting three kinds of rarity explained by Rabinowitz: 1) 
widespread but sparce; 2) restricted by locally common; and 3) restricted and locally rare.  
 
ASPECTS OF MONITORING AND ASSESSING RARITY 
 
Any attempt to account for uncommon species in monitoring programs must immediately 
address the finite chance that such a species can go undetected, although it is present. This 
problem may affect whether we act as if the species is extirpated or whether we adequately 
describe the species assemblage at our research site.  
 
Researchers, interested in the latter issue, have focused less on detecting particular species, and 
more on detecting as many species as possible (Lyons 1992, Angermeier and Smogor 1995, 
Paller 1995, Keating et al. 1998). In these cases, there is an assumption that failure to detect a 
specific rare species when it occurs is not necessary, but it is necessary to detect a certain 
proportion of the species that are present. Under these protocols, some less common species will 
be detected at one time, and another set will be detected at a different time. It may be that the 
same rare species go undetected each time, yet a high proportion of all species are, nonetheless, 
detected. This approach does not address monitoring for rare species. Lyons (1992), after finding 
no correlation between stream width and species richness, nonetheless recommended sampling 
35 stream widths, or 3 riffle-pool sequences. Furthermore, Keating et al. (1998) demonstrated 



Issues in defining, detecting and quantifying rare species April 2000 
Francisco J. Abarca and Linda Allison Page 12 
 
that different models for building species richness curves are very sensitive to species evenness 
and richness. Thus, quantitative attempts to include less common species into community 
descriptions are sensitive to the fact that these species are rare. This problem is greater in species 
with lower species diversity. 
 
Other authors have directly addressed detection likelihood for particular species, and suggested 
study designs to detect specific rare species at a given level of probability (Elliot 1971, McArdle 
1990, Green and Young 1993, Nicholson and Barry 1995). Solow (1992) and Nicholson and 
Barry (1995) each developed classical and Bayesian probabilities for concluding a species has 
been extirpated, based on the number of surveys since the species was last detected.  
 
When trying to describe or model the spatial distribution of rare organisms, the negative 
binomial is the correct distribution. This distribution has two parameters, the average density m 
(for instance, the number of fish per sampled length of stream), and k, a measure of aggregation. 
The variance in density for organisms is: 

k
mms

2
2 +=  

McArdle has consistently used the negative binomial in his papers on detection of species 
(McArdle 1990, McArdle et al. 1990).  
 
Other workers regularly use the Poisson distribution, which is appropriate to describe counts of 
organisms that are randomly distributed in space. As the distribution of organisms goes from 
clumped to random, k becomes large, and 

ms =2  
which is the parameter for the Poisson distribution. The more exact negative binomial 
distribution, which describes both random and highly aggregated spatial distributions of 
organisms, requires additional sampling effort in order to estimate the degree of aggregation (k). 
Green has worked with the simpler Poisson distribution, arguing that it adequately replaces the 
negative binomial for very rare species (Green 1977, Green and Young 1993). Adequacy of the 
Poisson distribution means the costs of planning and carrying out a study are reduced. 
 
Using the Poisson distribution, the formula 

βln1
m

n −=  

describes the number of units to sample (n) for average density per unit (m), with probability of 
failure to detect (β).  For instance, if researchers don’t want to miss a particular species more 
than 5% of the time,  

3)ln( ≈− β  
so that 

m
n 3
=  
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Using the above approximation for species occurring at the rate of 0.1 per sampling unit, n=30 
sampling units would be needed to detect the species 95% of the time. There are surely rare 
species for whom such a large sample would be prohibitive. (Green and Young (1993) only 
tested the Poisson distribution against the negative binomial below this density, so this is their 
default definition of rareness.) Taking the liberty of extending the Poisson approach to species at 
higher densities than 0.1 per sampling unit, we may find a target density that is desirable to 
detect; this density must somehow be determined before sampling begins. In other words, even 
qualitative presence/absence information may not be attainable for very rare species.  
 
Green and Young (1993) demonstrate the adequacy of the Poisson approximation for species 
occuring at a density below 0.1 per sample unit. At higher densities, clumping might mean the 
Poisson assumption does not reproduce results that the negative binomial would. In order for the 
Poisson assumption to come within 95% of the estimated sample number using the negative 
binomial, 

107.0≤
k
m . 

Thus, the Poisson distribution describes approximately the same spatial pattern as the negative 
binomial when m is very small (an uncommon species) or if k (a measure of dispersion) is very 
large. 
 
When we discuss the likelihood that we failed to detect a species when it was present, we are 
comparing our count of zero with other counts we could have obtained if the species were 
present. An alternative, Bayesian, approach is offered by Nicholson and Barry (1995), who 
extended McArdle (1990) by incorporating prior probabilities. Their specific example concerned 
detection of an invading species, the Manila clam (Tapes philippinarum). By adjusting their prior 
probability (based on opinions from biologists of the worst-case scenario), they can explore the 
consequences of adding or removing any number of samples from a protocol. Similarly, 
Nicholson and Barry (1995) use this approach to address the likelihood that a species is not 
present after several sampling periods in which the species was not detected.  
 
In order to go beyond detection of species and ask whether the species abundance is stable, we 
will have to quantify how common they are. Kovalak et al. (1986) discuss number of sample 
units needed to obtain specified confidence limits on estimates of mean density. Kovalak et al. 
(1986) provide an estimate for number of samples needed to achieve a given precision in density 
estimate. Their equation is a simplification of the following formula from Zar (1996): 
 

2

22

L
tn σα=  

 
where L is the half-width of the confidence interval. L can be expressed as a certain proportion 
of the mean. For instance, for a rare species of density m = 0.1/m2, assuming the Poisson 
distribution so that σ2=mean, to get a confidence interval that is ±10%,  
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Note that whereas 30 samples would be required to detect the species 95% of the time when it is 
present (see above), almost 4000 samples would be required to describe the density of the 
species with this level of precision.  
 
This point of diminishing returns represents the measure against which a monitoring program 
would set their thresholds. Given that a species might invade a monitored system, a mean density 
must be chosen that represents the minimum detectable limit. Similarly, a monitoring program 
that may subsequently declare a species has been extirpated must first declare the density below 
which that species will be considered vanished; additional effort will not be expended to detect 
the species below this density.  
 
 

BIOLOGICAL INVASION 
 
One of the major phenomenon in our planet that has drastically changed the distribution and 
abundance of living things, and the structure and function of natural ecosystems over the last 200 
years is biological invasion. Biological invasion is defined as the geographic expansion of a 
species into an area not previously occupied by that species (Mack et al. 2000). Invasions may be 
the result of climatic changes and tectonic changes as well as human activities. Alien species 
(a.k.a. non-indigenous, nonnative, exotic, or introduced species in a general sense) come from a 
donor biota or region, and enter a recipient one (Vermeij 1996). The extended and profound 
impacts of some invasive species in the ecosystems and local economies have captured the 
attention of the public. Zebra mussels from Europe cause severe damage to the shipping industry 
and electricity-generating plants around the American Great Lakes, ctenophores from the 
western Atlantic threaten fisheries in the Black Sea, rabbits from Europe and cactuses from 
North America drastically alter the Australian bush, South American fire ants devour native ants 
and affect the gardening practices of home-owners in the southern United States, and the North 
Atlantic sea lampreys decimate lake trout populations in the Great Lakes. Few places on earth 
remain free of species introduced by humans; even fewer could be considered immune from this 
dispersal. From the examples above, we can say that invading species include multiple taxa and 
could come from many geographic regions. In the U.S. alone, millions of dollars have been spent 
in attempting to eradicate some of the most insidious invaders and prompting the creation of 
special eradication programs and guidelines at the regional, national, and international levels 
(Aquatic Nuisance Species Task Force, Federal Interagency Committee for the Management of 
Noxious and Exotic Weeds, Aquatic Nuisance Species Task Force, Precautionary approach to 
the introduction and transfer of aquatic species [Bartley and Minchin 1995], IUCN Guidelines 
for the Prevention of Biodiversity Loss Due to Biological Invasion [IUCN 1999]), or special 
legislation (National Invasive Species Act of 1996 amending the Nonindigenous Aquatic 
Nuisance Prevention and Control Act of 1990, 1999 Presidential Executive Order on Invasive 
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Species, National Strategy for Invasive Plant Management) (see web sites for U.S.Fish and 
Wildlife Service-Invasive Species Program, U.S. Geological Survey-Upper Midwest 
Environmental Sciences Center, National Biological Control Institute, National Biological 
Information Infrastructure). 
 
Humans, through migration, transport, and commerce, have acted as both accidental and 
intentional dispersal agents of many invading species. Although in general we are aware that 
human-caused invasions have resulted in the extirpation or extinction of native organisms 
(Taylor et al. 1984, Meffe 1985, Moyle 1995). However, many other invading species have 
become established without extinctions of native organisms and seem to have become integrated 
into the local biota (Brown 1989, Carey 1996, Cox 1999). These observations make our ability to 
predict outcomes of biological invasions quite limited.  
 
WHAT IS AN INVASIVE SPECIES? 
 
An invasive species (a.k.a. invading species) is an organism that crosses barriers (with or without 
help from humans), rapidly establishes itself on the other side, then expands its numbers and 
range in its new habitat and persists (Brown 1989, Mack et al. 2000). 
 
Several attempts have been made to describe the attributes of a successful invader (Newsome 
and Noble 1986, Brown 1989, Ehrlich 1989, Case 1996, Vermeij 1996, Williamson and Fitter 
1996, Mack et al. 2000). Here is a summary of those attributes: 
 
Attribute Successful invader Unsuccessful invader 
Geographic range Large Small 
Abundance High in original range Rare in original range 
Mobility Vagile Sedentary 
Ability to disperse High Low 
Duration of generation 
times 

Short Long 

Ability to shift between r 
and K strategy 

High None 

Genetic variability High Low 
Social pattern Gregarious Solitary 
Role of female Female able to colonize alone Female unable to colonize alone 
Body size Larger than most relatives Smaller than most relatives 
Association/dependency 
with humans 

High Not associated 

Adaptability Able to function in a wide 
range of physical conditions 

Only able to function in a narrow 
range of physical conditions 

For Birds 
Flock size Travel in small flocks solitary 
Diet Granivore Insectivore 
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Attribute Successful invader Unsuccessful invader 
Habitat preferences Able to shift Unable to shift 

For Plants 
Vegetative reproduction Common and often the only 

method of reproduction 
Rare 

Reproduction rate fast Slow 
 
Similar to the attributes described for a rare species, those for an invasive species should be 
carefully considered when attempting to identify this type of species. Biological attributes alone 
are not enough to ensure a successful invasion. Other factors such as size of the initial immigrant 
population, frequency of immigrations, sex ratio, maturity of individuals, genetic composition, 
behavioral patterns, ability of new immigrants to escape predation and parasites, disturbances 
before and after initial immigration, timing (particular season or weather conditions), and more 
importantly, vulnerability/resistance (vacant niches) of the community being invaded also play 
an important role (Mooney and Drake 1986, Baltz and Moyle 1993, Chapman and Carlton 1994, 
Leach 1995, Lyons et al. 1995, Grozhloz 1996, Hastings 1996a and 1996b, Johnson and Carlton 
1996, Kot and van den Driessche 1996, Mackie and Schloesser 1996, Moyle and Light 1996, 
Rejmanke and Richardson 1996, Williamson and Fitter 1996). 
 
INVASION PROCESS OR THEORY OF INVASION 
 
The process of invasion has been described using different viewpoints; however, most of these 
approaches could be conceptualized in three successive stages (Arthington and Mitchell 1986, 
Vermeij 1996, Mack et al. 2000). The first one is the arrival stage when organisms (colonizing 
species) are transported from their native ranges to a new region. This may occur naturally or 
with the aid of humans. At this stage, many, if not most, perish en route to a new locale. If they 
succeed in reaching a new site, immigrants are likely to be destroyed quickly by a multitude of 
physical or biotic agents (Mack et al. 2000). The second stage, establishment, occurs when the 
new population sustains itself by local reproduction and recruitment, which in turn augments or 
replaces dispersal from the donor region as a mean for the invading population's persistence 
(Vermeij 1996). Finally, integration (or naturalization) occurs when the invading species 
integrates with other species in the recipient region and there is no dependence on re-
immigration from the native range. Among the naturalized species that persist after this 
extremely severe reductive process, a few will go on to become (Mack et al. 2000). Animal 
invaders can cause extinctions of vulnerable native species through predation, grazing, 
competition, and habitat alteration. Many non-native animals and plants can hybridize with 
native species (Downling and Childs 1992, Cox 1999, Huxel 1999).  
 
Mack et al. (2000) argue that the progression from immigrant to invader often entails a delay or 
lag phase, followed by a phase of rapid exponential increase that continues until the species 
reaches the bounds of its new range and its population growth rate slackens. Several examples 
exist where only a brief lag phase has occurred (e.g. Africanized bees in the Americas and zebra 
mussels in the Great Lakes). In other cases, the lag phase has been quite extended (sometimes for 



Issues in defining, detecting and quantifying rare species April 2000 
Francisco J. Abarca and Linda Allison Page 17 
 
decades) during which the invaders may remain undetected (e.g. Brazilian pepper trees in 
Florida). 
 
During the lag phase, it can be difficult to distinguish doomed populations from future invaders. 
Most extinctions of immigrant populations occur during the lag phase, yet the dynamics of such 
a population are often indistinguishable from those of a future invader, which is growing slowly 
but inexorably larger. This similarity in the size and range makes quite difficult any attempt to 
predict future invaders while they are few in numbers and presumably controllable (Mack et al. 
2000). 
 
Another active area of research on invasive species, over the last two decades, has been focussed 
on the attributes of the recipient community that may facilitate the establishment of invaders. 
Brown (1989) described five patterns of succesful invasion among vertebrates: 
 
1. Isolated environments with a low diversity of native species tend to be differentially 

susceptible for invasion. 
2. Species that are successful invaders tend to be native to continents and to extensive, 

nonisolated within continents. 
3. Successful invasion is enhanced by similarity in the physical environment between the source 

and target areas. 
4. Invading exotics tend to be more successful when native species do not occupy similar 

niches. 
5. Species that inhabit disturbed environments and those with a history of close association with 

humans tend to be more successful in invading man-modified habitats.   
 
Further analyses of the characteristics of both donor and recipient communities have been 
explored by Kruger et al. (1989), Loope and Muellr-Dombois (1989), Mack (1989), Baltz and 
Moyle 1993, Smallwood (1994), Hastings (1996), Vermeij (1996) and Mack et al. (2000). 
 
Following the lead of workers in the field of disease transmission, much of the current work on 
invasions focuses on predicting the pattern of invasions (Mollison 1977, Kornberg and 
Williamson 1987, Chapman and Carlton JT 1994, Hastings 1996, Carey 1996, Kareiva et al. 
1996).That is, given characteristics of the invading species and of the area it has recently 
established itself, which areas will be occupied and in which sequence? What densities are 
expected to occur? This latter question allows researchers to estimate the effort they will expend 
in detecting individuals of the species.  

 
DISCUSSION 

 
Our initial idea that both endangered natives and recently introduced non-natives might be 
studied under the framework of rarity resulted only partially true. Endangered species share some 
traits with rare species in the sense that both might have low abundance and may have limited 
geographic range. While habitat specificity and occupancy may vary between a rare and an 
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endangered species, both are limited in their reproductive and dispersal capability to successfully 
expand their ranges and/or increase population size, which makes them more similar with each 
other than a rare species with an invasive species. By comparing invasive species attributes with 
those used in Rabinowitz’s and/or Rey-Benayas’ schemes of rarity, we can say with confidence 
that rare species and invasive species present almost opposite characteristics. 
 
The Gila and San Pedro rivers seem highly vulnerable for invasion when considering factors like 
habitat modifications, already depauperate fish fauna, presence of alien species, proximity to 
urban developments, and the presence of the CAP as a potential corridor for alien species. The 
presence of alien fishes in the CAP and portions of the Gila and San Pedro rivers does not 
necessarily indicate those species have become established. They may be simply showing up in 
the system because of the continuous supply of individuals coming from the CAP, and not 
because of successful recruitment events that will allow them to persist. However, they can 
invade to a river in a propitious year, anyway. 
 
Our knowledge about the ecology and epidemiology of invasion by alien species in desert 
aquatic systems is limited. A more comprehensive and systematic rather than an anecdotal 
approach is badly needed. Each potential invading species should be considered on a case-by-
case basis. This approach should be tested at several spatial and temporal scales during the 
various stages of invasion and considering various class sizes (larvae, juvenile, and adult) for 
each target species. In addition, this approach could be complemented by experimental 
manipulations based on innocuous releases of organisms under controlled situations.  
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