

US Army Corps of Engineers Omaha District

Big Horn Lake Sediment Management Study

Dan Pridal Omaha District Corps of Engineers

Presentation Outline

- Omaha COE and Bureau Interagency Agreement
- Study compares sediment management alternatives and provides indication of impacts
- Completed modeling
- Final Draft Report for comment

Study Scope

- Initial appraisal level of detail
- Focus on screening and alternative comparison
- Highlight constraints/issues/impacts of the sediment management challenge
- Technical focus compare results of alternative model simulations
- Additional factors considered for alternative implementation not a component of this study

Alternatives

- A) Higher pool level during recreation season
- B) Trap sediments upstream of Lovell Causeway
- C) Flush sediment through HSB with lower pool at high inflow
- D) Dike to manage sediment within HSB
- E) Manage sediments within the watershed (not part of this study)
- F) Dredging of HSB sediments

Evaluation Method

- Collect available data
- Construct hydraulic model, SRH-1D
- Verify model with existing conditions
- Modify model for each alternative
- Simulate future conditions by repeating past historical record
- Simulate with base and alternative condition models
- Compare simulation results

Model Input

- Hydraulic Model Data Requirements
 - Geometry and typical hydraulic parameters
 - Water Inflow for Bighorn River and Shoshone River
 - Sediment inflow and material size that is related to the water inflow
 - Pool Level
- All flow, sediment, and pool data is daily interval

Sediment Load (tons/day)

Historical Period Simulation

- Start with 1965 era rangeline surveys
- Simulate period from Oct 1966 through July 2007
- Derive flow and sediment model inputs from available data, commonly used values, and results calibration
- Evaluate individual cross sections and average bed elevation between model results and survey
- Accuracy about 5-15% difference from observed, ± 5 ft actual from Causeway past HSB

Alternative Comparison Average Bed Elevation - Change from 1965

Elev Change (ft)

Base Condition

- Current average bed elevations in HSB vary from 3610 to 3615
- Delta front has moved past HSB
- Previous surveys show sediment accumulates at average rate of 0.8 to 1.1 ft/yr in HSB
- Model shows declining trend, approach ultimate elevation of 3625 to 3630 in 20 years

Evaluate Alternatives

- Use model to simulate future based on historical inflow
- Base condition starts with 2007 survey geometry
- Use "Average Bed Elevation" to compare base to alternatives
- Accuracy limits, future sediment loads, climate, inflow, etc.
- Compare between model results, not absolute value

Range Line 15 - Station 246853 with 40 Year Future Base Condition

Alternative A- Higher Pool During Recreation Season

Modeled by artificially setting pool level at 3630 or higher from 15 May – 15 Sep Changes about 60 days per year or roughly 1/6 of the pool levels Pool did not reach El. 3630 in 7 Years from 1970 to 2006 Probable recreation benefit for 15 – 25 years

- + Higher pool for recreation season
- + Increases sediment deposition rate upstream
- + Reduce rate of delta migration toward dam
- Likely to require system operation modification to implement, achieve higher pool by 15 May
- Increases sediment deposition rate within HSB, heighten drought impact, drawdown for extreme event
- Achieving pool level likely to impact other reservoir operations

Alt. A - Modified Pool Levels

Alternative A Pool Modification

Alternative B – Trap Sediment Upstream of Lovell

Alter Causeway east of Lovell to serve as impoundment Area is wide and shallow, more effective for coarse material than fine Basin Area – 2300 acres, Average Depth 10 ft, 23,000 ac-ft storage Assume maximum sediment trap efficiency of 70% Build with dikes or restricting Causeway

- + Trapped sediments benefit all downstream areas
- High initial and periodic sediment removal cost to maintain trap efficiency over time
- No impact on current HSB sediment levels
- Disposal area impact / cost (real estate, permit, loss of use)
- Possible impact to Causeway, upstream lands

Construct spaced berms to increase travel time and sediment retention within basin. Size and extent to be determined in next design phase. Sediment trap efficiency decreases for higher flow as travel time reduces.

Second option to restrict Causeway opening and use as dam. May be WY DOT issues with unequal water elevation for embankment.

Alternative C – Flush Sediment Through HSB

Maintain lower pool level during high sediment runoff period to flush sediment past Horseshoe Bend

Model does not route flow within the pool, only examining impact of pool level on sediment deposition

Altered pool during typical high flow period selected as 1 May through 30 July Examined two pool levels, 3595 and 3615

Pool changes about 20 – 25 days/year

- + Maintains lower sediment levels at HSB
- Lower pool during fill period will increase risk to incur lower summer pool levels in drought periods
- Low pool period/high inflow period includes the recreation season
- Refine with a reservoir routing model that tracks actual pool levels
- Increases delta migration rate toward dam
- Implementation likely to impact reservoir operation and releases

Alt. C - Modified Pool Levels

Alternative D – Dike Within Horseshoe Bend

Construct dike to separate flowing river from recreation area Sediments move past Horseshoe Bend 9000 foot length, 15 ft average height, built from all rock or earth core 250,000 tons rock

- + Maintains lower sediment levels within HSB
- + Minimal impact to sediment beyond HSB boundaries
- + Independent of other activities
- High initial and maintenance cost
- Does not impact turbidity, fine sediments in the water column and will deposit in the recreation area
- Public safety, access from HSB to pool
- Likely need to raise structure over time as sediments accumulate

Alternative D Typical Cross Section

Horseshoe Bend Range Line 15 - Station 246853 3635 - 2007 Survey 3630 Dike Height -**Tradeoff** 3625 Cost/Reliability Elevation - Feet 3620 **Recreation Area Confined Flow Area** 3615 3610 3605 3600 200 400 800 1,000 1,200 1,400 1,600 1,800 2,000 600 0 **Distance - Feet**

Alternative F - Dredge sediment within Horseshoe Bend

- Dredge sediments over the length of Horseshoe Bend
- Dredge sediment disposal below HSB within pool or land area
- Assumed dredge to elevation of 3590 (20 feet)
- For HSB, dredge area about 500 acres, average depth of 20 feet, return conditions to about 20 years ago
- Initial dredge volume is 16 Million cubic yards
- Annual inflow sediment load is about 3220 ac-ft or 5 Million cubic yards
- + Land disposal removes sediment and benefits project
- High initial and maintenance dredging cost
- Permit issues with dredging, contaminants, discharge\disposal of material
- Pool disposal advances delta migration rate
- High volume will result in a nearly perpetual dredge

Cost Summary

Alternative	Cost / Notes						
A – Higher Rec.	Construction Cost – NA						
Season Pool	Likely to include indirect costs as modified pool levels alter project benefits.						
	Construction Cost - \$34,000,000						
B – Sediment	Cost estimate includes initial construction cost plus a one-time excavation cost for 2						
Trap Upstream	million cubic yards. Will incur additional significant O&M cost due to removal of						
	deposited materials to maintain sediment trap.						
C – Lower Pool	Construction Cost – NA						
During Peak	Likely to include indirect costs as modified pool levels alter project benefits.						
Inflow							
	Construction Cost - \$24,000,000 (All rock dike)						
	Costs may be lower by using an earth core rock dike, geotubes, or similar product.						
D – HSB Dike	Will incur significant O&M cost to maintain structure, also dredging will be required						
	at connection locations, possibly throughout area due to general turbidity.						
F – Dredge HSB	Construction Cost - \$145,000,000 (Dredge and remove sediments to disposal area)						
	Construction Cost - \$73,000,000 (Dredge and discharge in pool downstream of HSB)						
	Will incur significant O&M cost to dredge repetitively.						
Estimates include 5% mobilization and preparation, 15% unlisted, 25% contingency and 20% non-contract costs.							
All costs are present-value, and the maintenance and dredging costs would be subject to fund indexing due to the							

multi-year nature of the work.

Alternative Comparison Average Bed Elevation

Difference From Base - Alternative Comparison After 40 Years

Summary

- Accuracy of 5-15 % bed change, tool best used to compare alternatives, not actual elevation
- Initial assessment level of detail
- Less than adequate sediment data set
- ALL alternatives affect sediment, consider short and long term impacts\tradeoffs
- Value of model demonstrated to evaluate sediment response to operations change
- Since using historic record, 1967 event near start of simulation has big influence
- Sediment is episodic, focus on long term

Results Summary

Alternative Results Difference Comparison										
Alt. Computed Elev - Base Condition Elev. (feet)										
	Alte	ernative A -	Higher Re	c Season P	Alternative B - Upstream Sed Trap					
	Change From Base for All Alternatives				Change From Base for All Alternatives					
	Year 5	Year 10	Year 20	Year 30	Year 40	Year 5	Year 10	Year 20	Year 30	Year 40
Min	-34.1	-56.5	-59.1	-70.7	-88.0	-41.0	-67.5	-84.8	-107.8	-122.8
Max	4.3	5.5	3.8	4.0	4.1	0.0	0.0	0.1	0.1	0.0
Avg. HSB-Causeway	1.4	1.8	1.8	1.2	1.2	-1.8	-2.7	-4.1	-5.0	-5.0
Avg. HSB	3.2	3.2	3.0	1.7	1.6	-4.7	-5.7	-6.7	-8.3	-7.5
	Alternative C - Lower Pool to 3595					Alternative C - Lower Pool to 3615				
	Year 5	Year 10	Year 20	Year 30	Year 40	Year 5	Year 10	Year 20	Year 30	Year 40
Min	-8.5	-8.7	-12.9	-15.9	-15.5	-7.6	-7.2	-7.8	-11.1	-10.6
Max	56.9	81.9	114.2	129.3	143.7	60.4	85.7	114.2	136.7	153.3
Avg. HSB-Causeway	-2.1	-2.7	-3.6	-4.7	-4.7	-1.8	-2.3	-3.1	-4.2	-4.3
Avg. HSB	-5.2	-5.9	-7.0	-9.2	-8.5	-4.7	-5.3	-6.0	-8.2	-7.7
	Alternative D - HSB Berm					Alternative F - Initial Dredge HSB				
	Year 5	Year 10	Year 20	Year 30	Year 40	Year 5	Year 10	Year 20	Year 30	Year 40
Min	-12.4	-13.4	-15.4	-19.4	-19.5	-14.2	-7.2	-6.1	-7.7	-7.7
Max	19.6	33.0	46.2	75.1	85.8	30.9	25.8	30.6	59.9	69.1
AVG. HSB-Causeway	-1.5	-2.1	-3.1	-4.5	-4.8	-1.3	-0.9	-1.2	-1.9	-1.9
Avg. HSB	-5.5	-7.8	-10.7	-14.2	-14.7	-6.7	-5.2	-5.3	-7.0	-6.6

Caution on absolute time, better to use long term average difference

Summary of Alternative Evaluations							
Alternative	Cost	O&M Notes	Pros / Cons				
A – Higher Rec. Season Pool	NA ¹	NA ¹	 + Higher pool for recreation season + Increases sediment deposition rate upstream + Reduce rate of delta migration toward dam - Likely to require system operation modification to implement, achieve higher pool by 15 May - Increases sediment deposition rate within HSB, heighten drought impact - Achieving pool level likely to impact other reservoir operations 				
B – Sediment Trap Upstream	\$34,000,000	Removal deposited material on 3 to 5 year interval	 + Trapped sediments benefit all downstream areas - High initial and periodic sediment removal cost to maintain trap efficiency over time - No impact on current HSB sediment levels - Disposal area impact / cost (real estate, permit, loss of use) - Possible impacted upstream lands 				
C – Lower Pool During Peak Inflow	NA ¹	NA ¹	 + Maintains lower sediment levels at HSB - Low pool for portion of recreation season +Reduces sediment deposition rate within HSB and upstream - Increase rate of delta migration toward dam, lessens project life - Achieving pool level likely to impact other reservoir operations and releases 				
D – HSB Dike	\$24,000,000 (All rock dike)	Maintain structure Some dredging at connection locations	 + Maintains lower sediment levels within HSB + Minimal impact to sediment beyond HSB boundaries - High initial and maintenance cost - Does not impact fine sediments that are in the water column and will deposit in the recreation area - Public safety, access from HSB to pool - Likely need to raise structure over time as sediments accumulate 				
F – Dredge HSB	\$145 mil (land disposal) \$73 mil (pool)	Repetitively dredge on a 5 to 10 year interval	 + Land disposal removes sediment and benefits project - High initial and maintenance dredging cost - Permit issues with dredging and discharge - Pool disposal advances delta migration rate - High volume will result in a nearly perpetual dredge 				

US Army Corps of Engineers Omaha District

Recommendations

- Alt. A is a minimal cost alternative that provides benefit for 15 – 20 years or more
- Alt. B provides benefit but needs maintenance, \$34 mil to implement, does remove sed. from system, possible issues with wetland, upstream impact, embankment
- Alt. C not recommended
- Alt. D provides a long term benefit although at a substantial cost \$24 mil
- Alt. F provides a long term benefit but appears cost prohibitive, still have 5-10 yr maintenance cost

