Yellowtail Reallocation Study

Travis D. Yonts

Water Resource Engineer Omaha District 29 Sept 2009

US Army Corps of Engineers BUILDING STRONG_®

Presentation Overview

- Project background
- Reservoir simulation information
- Summary of results
- Questions

Project Objective

 Evaluate the change in flood reduction benefits due to reallocation of flood control storage to joint use storage for Yellowtail Dam.

BIGHORN LAKE STORAGE ALLOCATION

PROPOSED STORAGE ALLOCATION

Elev. 3660.0 Surcharge - 52,829 Acre-Feet **3657** (1,328,360 AF) Exclusive Flood Control - 190,846 Acre - Feet Joint Use - 307,827 Acre - Feet **3614** (897,172 Acre - Feet) Active Conservation - 336,103 Acre - Feet Top of Conservation Elev. 3547.00 (493,584 Acre - Feet) ſ Inactive Conservation - 477,576 Acre - Feet Top of Dead Elev. 3296.50 (16,008 Acre - Feet)

Dam Crest

HEC-ResSim (Reservoir Evaluation System-Simulation)

- Single or multiple reservoir systems
- Flood control
- Hydropower
- Water supply (municipal, irrigation, etc)
- Diversions
- Navigation
- Flow targets (max & min)
- Period of record or event simulation

Data Requirements

- Daily stream flow 1967-2006
- Daily reservoir inflow, outflow, storage
- Daily precipitation, evaporation
- Elevation-area-capacity relationships
- Spillway & outlet rating curves
- Downstream discharge-damage functions
- Reservoir operating criteria/storage zones
- Project design floods
- Local flow calculations

ResSim Modeling Process

- Gather input data
- Construct and calibrate models
 - Period of record, inflow design flood, project design flood, 1923 event
 - Establishment of a baseline condition
- Develop reallocated condition
 - Increase top of joint use pool to 3645 ft msl
- Evaluate change in net flood benefits between the baseline and reallocated simulations.

Period of Record Model Results

BUILDING STRONG®

Summary of Analysis

- Comparison of elevation and outflow data
- Pool and flow duration relationships
 - Annual and seasonal
- Pool probability
- Flow frequency
- Change in flood benefits
 - Yearly and period of record

Summary of Analysis

- Two period of record models created
 - ► Fixed guide curve
 - Drafts to elevation 3600 ft msl each spring
 - Reallocation of joint use storage to 3645 ft msl
 - Based on historical operations
 - ► Time series guide curve
 - Drafts to an elevation based on spring inflow conditions
 - Reallocation of joint use storage to 3643 ft msl
 - Not based on historical operations, but potential future operations

- Detailed write-up of all period of record results included in the Yellowtail Dam Reallocation Study report.
 - Information presented is only a portion of all period of record results.

Fixed Guide Curve

Fixed Guide Curve

Fixed Guide Curve

16

Reach	Difference in Average Annual (\$1000)	% of Baseline
Reach 1 – Miles City	-1.8	1.1
Reach 2 – Miles City	-0.3	1.1
Reach 3 – Sidney	0.3	1.5
Reach 5 – Hardin	0.0	0.0
Reach 6 – Bighorn	0.0	0.0

Baseline vs. reallocated change in flood benefits (average annual). Difference is reallocated – baseline.

Time Series Guide Curve

Time Series Guide Curve

19

Time Series Guide Curve

20

Reach	Difference in Average Annual (\$1000)	% of Baseline
Reach 1 – Miles City	2.2	1.4
Reach 2 – Miles City	0.4	1.5
Reach 3 – Sidney	0.2	1.0
Reach 5 – Hardin	0.2	50.0
Reach 6 – Bighorn	0.6	1.9

Baseline vs. reallocated change in flood benefits (average annual). Difference is reallocated – baseline.

Time Series Guide Curve

Inflow Design Flood Results

22

Comparison of Outflow Data

Comparison of Elevation Data

Results Summary

- When comparing the baseline and reallocated simulations, increased pool elevation could be categorized as a dam safety issue.
 - Pool elevation in the reallocated scenario is only 1.1 ft from the top of the dam.
 - Changes in operations could create additional dam safety concerns.

Project Design Flood Results

Comparison of Outflow Data

Comparison of Elevation Data

Results Summary

- When comparing the baseline and reallocated simulations, increased outflow could be categorized as a dam safety concern.
 - Outflow is 1,150 cfs above the listed Yellowtail Afterbay capacity.
 - Changes in operations could create additional dam safety concerns.

1923 Flood Results

Comparison of Outflow Data

Comparison of Elevation Data

Results Summary

- When comparing the baseline and reallocated simulations, increased outflow could be categorized as a dam safety concern.
 - Outflow is 8,050 cfs above the listed Yellowtail Afterbay capacity.
 - Changes to operations could create additional dam safety concerns.

Next Steps

- Detailed study addressing the impacts presented
 - Identify appropriate mitigation measures
 - Update and sensitivity analysis of downstream flood damage curves
 - Analysis of downstream river capacity
- Is environmental assessment needed?
- Update flood control manual/Field Working Agreement
 - Approved by both the Bureau of Reclamation and U.S. Army Corps of Engineers

