Mission Statements

The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.
Bighorn River Side Channel Investigation: Geomorphic Analysis

prepared by

Technical Service Center
Water Resources Services
Jeanne Godaire, Geomorphologist
Acknowledgements

This project was funded by the Montana Area Office of Reclamation, Western Area Power Administration and the Science and Technology Research Program of Reclamation. Additional in-kind contributions were provided by Montana Fish, Wildlife and Parks. The study was supported by a Memorandum of Understanding among multiple agencies and nonprofit groups including the National Park Service, Western Area Power Administration, State of Montana, State of Wyoming, Friends of the Bighorn River, Friends of the Bighorn Lake, Bighorn River Alliance and Trout Unlimited. Stephanie Hellekson, Lenny Duberstein and Clayton Jordan, Montana Area Office, Reclamation, provided management and oversight for this project. Rob Hilldale and Travis Bauer, Technical Service Center, Reclamation, collected the bathymetric data for the cross section survey and longitudinal profile; Earl Radonski, Montana Fish, Wildlife and Parks, provided equipment and navigation for the bathymetric survey. Ken Frazer and Jim Darling, Montana Fish, Wildlife and Parks provided early guidance in the study’s direction and long-term observations of the side channels in the study reach. Special thanks to the anglers and landowners along the river that provided their perspectives on river history and for their helpfulness in providing access to property for the river channel survey.
List of Figures

Figure 1. General map of the study reach with locations of channel complexes (labeled in blue). ... 5
Figure 2. Annual peak discharges, Bighorn River near St. Xavier, Montana (#06287000).. 11
Figure 3. Example of channel morphology in the study reach showing single channel sections separated by anabranching sections.. 14
Figure 4. Example of bank materials showing fine-grained overbank sediment capping gravelly alluvium... 15
Figure 5. Streambed elevations at USGS gaging station, Bighorn River near St. Xavier, MT (#06287000), (a) 1935-1965; (b) 1967-2000. 17
Figure 6. Locations of resurveyed historical cross sections. 18
Figure 7. Comparison of cross section survey data at Cross section 1, looking downstream ... 19
Figure 8. Comparison of cross section survey data at Cross section 2, looking downstream .. 20
Figure 9. Comparison of cross section survey data at Cross section 3, looking downstream .. 20
Figure 10. Longitudinal profile, Yellowtail Dam to St. Xavier Bridge 21
Figure 11. Example of geomorphic mapping along the Bighorn River study reach ... 24
Figure 12. Example of a bedrock outcrop along the study reach.................... 25
Figure 13. Bank protection with car bodies, right bank near river mile 6 25
Figure 14. Area calculations of mapped features, 1935-2006. 27
Figure 15. Active channel area measurements, 1935-2006. 28
Figure 16. Historical channel mapping for complexes 1 through 5 showing changes from 1939, 1961, 1980 and 2006. 2006 and 1939 mapping are overlaid for comparison. ... 31
Figure 17. Complex 6 historical channel mapping. 33
Figure 18. Historical channel mapping for complexes 7 and 8. 35
Figure 19. Historical channel mapping for complexes 9, 10 and 11. 37
Figure 20. Historical channel change, complex 12.. 38
Figure 21. Historical channel mapping for complexes 13, 14 and 15. 40
Figure 22. Historical channel mapping for complexes 16, 17 and 18. 42
Figure 23. Historical channel mapping for complexes 19, 20 and 21. 43
Figure 24. Historical channel mapping for complexes 22 and 23. 44
Figure 25. Historical channel mapping for complexes 24 and 25. 45
Figure 26. Historical channel mapping for complexes 26 and 27. 46
Figure 27. Historical channel mapping for complexes 28 and 29. 47
Figure 28. Historical channel mapping for complexes 30 and 31. 48
Figure 29. Erosion of sand bars in the study reach. 51
Figure 30. Changes observed from the June 23, 2009 peak discharge; 52
List of Tables

Table 1. List of aerial photography and maps used in the Bighorn River geomorphic analysis... 12
Table 2. Streambed elevation fluctuations, Bighorn River near St. Xavier (USGS gage no. 06287000)... 17
Table 3. Daily discharge for Aerial Photography, Bighorn River 22
Table 4. Area of map units (in acres).. 26
Table 5. Timing of the formation of side channels and channel complexes........... 49
Table 6. Areas of lateral channel change .. 53
Table 7. Abandoned channels following dam construction, Afterbay to Bighorn access ... 54
Table 8. Channels at greatest risk of abandonment, Yellowtail Afterbay to Bighorn Access... 56
Executive Summary

Geomorphic analysis of vertical and lateral historical changes on the Bighorn River from Yellowtail Dam to St. Xavier Bridge was conducted in order to investigate the loss of side channels in recent decades. Vertical changes were investigated by examining bed elevation changes at the USGS gaging station no. 06287000, Bighorn River near St. Xavier, MT and by resurveying historical cross sections established during the FWP wetted perimeter study in 1997 (Frazer, 1997). Lateral changes were investigated through detailed geomorphic mapping on 7 sets of historical aerial photography from 1939 to 2006. The following conclusions are derived from this study:

- Analysis of cross sections at the USGS stream gaging station (Bighorn River near St. Xavier, MT) and at the locations of the FWP wetted perimeter study (Frazer, 1997) show that the bed elevations in the main channel have remained relatively stable throughout the post-dam period and channel incision has not been significant. At the USGS gaging station, the mean bed elevation of the channel fluctuated up to 3.3 ft from 1935 to 1965 prior to the construction of Yellowtail Dam and Afterbay and remained relatively stable throughout the post-dam period from 1967 to 2000, fluctuating up to a maximum of 0.9 ft. At the repeat cross sections, changes in bed elevations have been less than 1 ft from 1997 to 2009.

- The channel positions of the main stem and side channels have been in similar locations since 1980 and reflect a stable river system in which large-scale lateral movement in the channel was halted between one and two decades following dam construction. This reflects the reduction in peak flows and sediment supply that are required for channel change in this system.

- Geomorphic complexity, reflected in active channel area, has been decreasing since 1961 as side channels are abandoned and unvegetated channel bars are covered with vegetation. This reflects the reduction in peak flows and sediment supply that are required to scour channels and modify bars as well as deposit sediment in new areas, facilitating the formation of new bars and channels. The reduction in active channel area from 1939 to 1961 reflects the recovery of the channel from the 1935 flood of record and possibly the effects of reduced peak discharges from the construction of Boysen Dam in 1952.

- Observations of channel conditions during 2009 indicate that several critical side channels are becoming disconnected with the main channel; this is based on the presence of fine sediment accumulations at side channel entrances and mouths that suggests that the channels are filling in with sediment and the establishment of vegetation in side channel mouths as well as along their lengths. This information is confirmed by geomorphic mapping, in which side channels inundated in 1939 are not inundated in 2009 even with a larger discharge in the channel.
Historical channel mapping identified several side channels that have been abandoned between 1961 and 2009. These include side channels 8E, 8F, 10B, 13, and 15D. Field observations during 2009 indicate that several side channels are at risk of abandonment, showing fine sediment and vegetation accumulating in the channels. These include 4, 8A, 10A, 11, 12A, 12C, 15A, and 15C.

1.0 Introduction
The construction of large dams on the Bighorn River in the 1950’s and 1960’s including Yellowtail Dam and Afterbay created a new hydrologic regime in the Bighorn Valley. With this change came transitions in the ecosystem and the change to a coldwater fishery capable of supporting a thriving trout population. With the river opened to anglers beginning in the 1980’s, the stocking of trout and monitoring of populations through electrofishing and angler surveys prompted detailed observations of the river and its aquatic habitat. Many of the observations that initiated this study were noted through the tracking of fish populations and the concern over the disappearance of side channel habitat.

In recent decades, river technicians, scientists and anglers have noted the progressive abandonment of side channels downstream of Yellowtail Dam and Afterbay, consisting of shallowing at side channel connections with the main channel and dewatering at low flow releases. Due to the high productivity and recreational use of the trout fishery downstream of the dam, habitat for rainbow and brown trout is of critical concern. Through informal agreements, Reclamation and FWP agreed that a minimum flow release of 1500 ft³/s in the Bighorn River was necessary downstream of the Afterbay to maintain side channel connections with the main channel and minimum aquatic habitat. Concern over channel incision and the decrease in flows entering side channel areas prompted a wetted perimeter study of three critical side channels within the first 3 miles downstream of the dam in order to determine whether the minimum flow values were still adequate (Frazer, 1997).

While the flow value of 1500 ft³/s was determined to still be valid as a minimum flow value, concern over the side channels persisted, as side channel depths continued to decrease to the point where boat navigation became difficult to impossible in some of the side channels during the lower discharges. While other smaller scale studies were initiated by Reclamation in the last two decades (Klumpp, 1997; Klumpp, 2005), this study is the first substantial fluvial geomorphology study by Reclamation to investigate side channel habitat downstream of Yellowtail Dam and Afterbay.

1.1 Objective
The objective of this study is to investigate the loss of side channels along the Bighorn River between Yellowtail Afterbay and St. Xavier Bridge by documenting the lateral and vertical changes to the river channel.
1.2 General response of rivers to dam construction

Several authors have summarized site-specific studies that document the downstream effects of large dams in order to understand larger patterns in geomorphic changes related to dam construction (i.e., Collier et al 1996; Williams and Wolman, 1984). These studies reflect variability in channel response that depends on climate, geology and the dam itself, among other considerations (i.e., Grant et al. 2003). Many studies document changes that include decreases in flood peaks, sediment concentrations and suspended load as well as degradation of the channel bed, channel armoring and vegetation encroachment along the channel (e.g., Williams and Wolman, 1984). Other studies have documented channel aggradation in areas where tributary loads exceed the sediment transport capacity of the altered hydrologic regime (i.e., Collier et al 1996; Everitt, 1993), while some studies document relatively little change compared to pre-dam conditions (i.e., Williams and Wolman, 1984; Inbar, 1990).

Graf (2006) found that large dams from a variety of locations across the continental United States and of similar size to Yellowtail Dam reduce annual peak discharges in regulated reaches between 56 and 67% on average and reduce the range of daily discharges by 64% on average when compared to similar unregulated reaches. This result is comparable to the reduction in annual peak discharges downstream of Yellowtail Dam, which is calculated to be 55%. Graf (2006) also found that geomorphic complexity, reflected in the area of active channel or geomorphic features that are modified by the present flow regime, is significantly reduced following dam construction. The reduction in complexity was calculated to be 72% less than in unregulated reaches, on average. The largest losses in geomorphic complexity were calculated for interior western rivers and Great Plains rivers, where the highest annual hydrologic variability exists and is thus subject to potentially greater changes in hydrology and geomorphic processes.

The reduction in geomorphic complexity can have significant impacts to the riparian ecology as well as the complex species interactions among both aquatic and terrestrial organisms downstream of the imposed structures (Ligon et al 1995). For example, channel simplification, which includes the conversion of multi-thread reaches to single thread reaches, reduces the areas where spawning gravels are recruited and deposited, thus limiting the areas that are suitable for spawning. Reduction in geomorphic complexity may also limit other types of environments, such as rearing habitat, by eliminating areas in the channel with lower velocities. Ligon et al (1995) document changes in the McKenzie River, Oregon due to two flood control dams built on tributaries that have reduced peak flows on the mainstem to bankfull discharge. This reduction in flows has acted to stabilize the channel, limiting the modification and creation of mid-channel bars and islands, areas that are depositional zones for spawning gravels. As the smaller side channels fill in with sediment, the channel is converted from a multi-thread to a single-thread system, and areas where these gravels can deposit continue to decrease. The geomorphic changes also affect other types of habitat in that areas of backwater, which are important for rearing habitat for juveniles, are lost as the smaller channels disappear.
1.3 Study reach description

The study reach extends for 16 miles from the Yellowtail Afterbay put-in to St. Xavier Bridge (Figure 1). Geomorphic mapping extends for an additional 5.6 miles to Mallards Landing Access in order to encompass all reaches under investigation by Montana Fish, Wildlife and Parks (FWP) for brown and rainbow trout habitat. The FWP reaches include the Upper Electrofishing Section (Yellowtail Afterbay to Lind Access, RM 0-3.8), the Standard Electrofishing Section (Side channel 5 to Soap Creek, RM 2.4-9.6) and the St. Xavier Electrofishing Section (Rotten Grass Creek? To Mallards Landing Access, RM 17.6-21.6) (Fredenburg, 1987). The study reach has a stream gradient of 0.0016, a sinuosity of about 1.2 and a mean annual discharge of about 7,900 ft³/s in the post-Yellowtail Dam period (1966-2008). Channel complexes are numbered from upstream to downstream; each active channel in the complex is also assigned a letter for reference (Figure x; Appendix A). For the first 16 miles, these designations are based on FWP’s designations (Fredenburg, 1984); for channel complexes from river mile 16 to 21.6, new designations are made since no previous designations were discovered.
Figure 1. General map of the study reach with locations of channel complexes (labeled in blue).
2.0 Previous work

Previous scientific studies that are relevant to this project include geologic literature, which document the Quaternary history of the Bighorn River valley in Montana, historical channel change studies that investigate channel changes due to anthropogenic influences, and habitat and river management studies that apply scientific information to address sediment and hydrologic issues related to aquatic and terrestrial habitat. The pertinent literature is described in the following sections.

2.1 Geologic literature

Numerous maps and reports exist that document the geology of the study area for a variety of purposes including mineral and gas exploration, surface and ground water resources, tectonics, and Quaternary history. The purpose of this literature review is to provide a brief summary of the references that are most pertinent to the study at hand. These references focus primarily on the Quaternary history of landscape development in the lower Bighorn Basin.

Alden (1932) documented a sequence of four terraces along the lower Bighorn River, which he interpreted to range in age from Quaternary to Tertiary. Richards (1955) and Hamilton and Paulson (1968) recognized six terrace levels and interpreted that four of the terraces were Quaternary in age and two were Tertiary in age. Agard (1989) recognized 12 terrace levels and provide a correlation table to link the Quaternary mapping from various authors. Several studies discuss the glaciofluvial origin for these terraces as well as evidence for Quaternary tectonism in the lower Bighorn Basin (i.e., Reheis, 1983; Reheis, 1985).

2.2 Historical channel change studies

Koch et al. (1977) examined geomorphic changes to the Bighorn River downstream of Yellowtail Dam before and after dam construction as part of a larger study investigating the effect of altered streamflow on the Yellowstone River. The river was divided into 5 reaches or sections based on similar geomorphic characteristics. Section 1 is the most pertinent to this study and extends from Yellowtail Afterbay Dam to just upstream of the confluence with Hay Creek. To analyze changes, the authors measured channel length, area of the river channel, vegetated islands, island gravel bars, lateral gravel bars and riparian area using aerial photography from 1939 and 1974. General conclusions for the entire study reach from Yellowtail Dam to the confluence with the Yellowstone River (71 miles) were that the river maintained its length and total riparian area; however a gain of 37.6% of bank riparian area was measured and corresponded with a similar loss in river area. Vegetated islands decreased by 23.1%, an area of about 1,469 acres. Island gravel bars decreased by 86.3%, an area of 1,401 acres, while lateral gravel bars decreased by 34%, an area of 131 acres. While the loss of island gravel bars was greatest downstream of the dam, lateral gravel bars actually increased in sections 3 and 5, which may be caused by the deposition of sediments from upstream sections and the influence of large
tributaries, such as the Little Bighorn River, in delivering additional sediment to the channel. In section 1 specifically, vegetated islands decreased by 22.6%, a total of 104 acres, island gravel bars decreased by 86.3%, a total of 189.3 acres, and lateral gravel bars decreased by 69.6%, a total of 56.4 acres. Koch also found that the average size of gravel bars decreased while the average size of vegetated islands increased; the process by which this occurs includes smaller gravel bars and islands combining into larger islands through a process of channel incision; this was accompanied by vegetation encroachment onto the gravel bars, which reduced the area of the bars and increased the area of vegetated islands.

2.3 Habitat and river management studies

Frazer (1997) conducted a wetted perimeter analysis downstream of Yellowtail Dam and Afterbay in order to determine if the flow levels requested under an informal agreement between Reclamation and Montana Fish Wildlife and Parks in 1986 were still valid for three important side channels. Three cross sections were measured upstream of each side channel that are 0.6 (cross section 1), 2.3 (cross section 2) and 3.1 (cross section 3) miles downstream of the Afterbay dam. Frazer used the wetted perimeter/inflection point (WETP) method to develop wetted perimeter-discharge relationships that are plotted and used to detect an inflection point below which the wetted perimeter and consequently aquatic habitat rapidly decreases. The inflection point defines the minimum flow required to maintain a low level of aquatic habitat. Discharges corresponding to these inflections points were measured as 50, 40 and 50 ft³/s for cross sections 1, 2 and 3, respectively. These minimum flows in the side channels corresponded to discharges in the main channel ranging from 2,000 to 2,500 ft³/s. Based on these results, Frazer concluded that 1,500 ft³/s was still valid as a minimum discharge for side channel habitat. Below this discharge, many of the side channels would be dewatered, which would be detrimental to trout populations.

Klumpp (1997) conducted a literature review of existing hydraulic and geomorphic data in order to document issues that have arisen on the Bighorn River since the adoption of the Bighorn River Management Plan in 1987. From this review, Klumpp concluded that annual peak discharges were reduced by 50% following the construction of Yellowtail Dam. Klumpp also reviewed the geomorphic study conducted by Koch et. Al 1997), which is also reviewed in this report and summarizes sediment data, including bed material and suspended sediment, collected during February, 1997 at locations similar to Frazer’s (1997) study and in the vicinity of Soap Creek. Results showed that particle size D50 decreased with distance downstream; particle size at Soap Creek was much finer and was attributed to the influence of the fine sediment issued from the Soap Creek watershed. Based on the review, Klumpp concludes that the decrease in gravel bars and vegetated islands is due to the reduction in sediment supply and flood flows to the reach, which is the mechanism through which bars erode and redeposit. She suggests that a new equilibrium will be reached in which gravel bar area and number will stabilize rather than continue to decrease indefinitely. She also concludes that controlled floods may be able to transport gravels to new locations to help restore some islands; however, it is possible that these types of flows may be detrimental to the river upstream of Soap Creek because
there are no significant sediment sources from the Afterbay to Soap Creek. She recommends testing the effectiveness of controlled floods with 2-3 day duration releases of 15,000 to 20,000 ft³/s.

Klumpp (2005) conducted a hydraulic analysis to determine the ability of river flows to flush fine sediment that had accumulated in spawning gravels during a period of low flow releases downstream of Yellowtail Dam and Afterbay from 2000 to 2003. This study analyzed sediment mobilization for discharges ranging between 2,500 and 5,000 ft³/s for a distance of 13 miles downstream from the Afterbay. The study found that the entire discharge range would be sufficient to mobilize gravels, which was also predicted then to flush the fine sediment. This study was based on limited sediment data, including bed-load, suspended load and bed material data, and cross section data, which was gathered from existing topographic maps. The study recommended that this data should be collected and modeled to improve the predictive capability of the model. The study also recommended that were flushing flows implemented, it would be advisable to establish cross sections to monitor changes before and after the flushing flows.

A number of progress reports were prepared as part of the Bighorn Lake and Bighorn River Post-Impoundment Study and Upper Bighorn River Investigations by Montana Fish Wildlife and Parks (Fredenburg, 1984; 1986; 1987; Frazer, 1999). These reports describe the results of fish shocking surveys and other biological investigations in two sections of the Bighorn River, the standard section from side channel 5 to Soap Creek and the St. Xavier section from xx to Mallard Landing Access. An additional section, the Upper section, was added in 1985 as part of the nitrogen supersaturation study (White et al 1986) and extends from the Afterbay Dam to 3-mile Access. Survey of these sections was begun in 1981 following the U.S. Supreme Court decision that determined ownership of the channel bed belonged to the State of Montana. Early progress reports created a river mile index beginning at Yellowtail Afterbay and continuing downstream for a distance of 43 miles and also delineated side channels and side channel complexes for the first 16 miles downstream of the Afterbay using 1980 USDA photographs, which were flown at a discharge of 3,990 ft³/s (Fredenburg, 1984). Some information is available in these reports that documents where spawning activity was observed (i.e., Fredenburg, 1986; Fredenburg, 1987). These reports found that nearly all rainbow trout spawning was observed within the first 9 miles downstream from the Afterbay Dam and that spawning in the St. Xavier section is limited by fines in the gravel substrate, delivered mainly by tributaries such as Soap Creek. However, more recent reports suggest that the lower section may be gaining in importance for the overall trout fishery (Frazer, 1999). Several reports also describe or document with photography which side channels are wetted at varying river discharges (Fredenburg, 1984; 1988?). These reports will be important for understanding the recent changes in side channel wetting and dewatering.
3.0 Setting

3.1 Physiography
The Bighorn River basin is located in the northern Great Plains physiographic province, which is characterized by extensive plains and small mountain ranges. Its headwaters extend into the Middle Rocky Mountains province in Wyoming which consists of intermontane valleys separated by the mountain ranges of the middle Rocky Mountains. From its headwaters in the Wind River Range in Wyoming, the Wind River flows through Wind River Canyon and at the wedding of the waters changes names to the Bighorn River to flow northward through alluvial valleys of northern Wyoming and the bedrock-controlled Bighorn Canyon of southern Montana into the study area. Major tributaries to the Bighorn upstream of the study area include the Nowood River, Greybull River and Shoshone River, all of which originate in northern Wyoming.

The Bighorn River downstream of Yellowtail Dam drains an area of 19,667 square miles; tributaries that enter the first 16 miles of the study reach are few and include Mountain Pocket Creek and Soap Creek, which enter from the south and Hay Coulee as well as several unnamed gulches of limited drainage area that enter from the north. Downstream of river mile 16 between St. Xavier Bridge and Mallard Landing, Rotten Grass Creek and Beauvais Creek enter the Bighorn River from the south and north, respectively and have larger watersheds to contribute greater quantities of discharge and sediment to the river channel. Several large dams have been constructed upstream of the study area. Yellowtail Dam and Afterbay was constructed in 1966 on the main stem and forms the upstream boundary of the study area. Boysen Dam, was constructed in 1952 on the Wind River at the upstream end of Wind River Canyon; the original Boysen Dam was built downstream of the present Boysen Dam by a private investor in 1908; however the dam began to impact the Burlington Northern railroad tracks built in 1911 and was dynamited in 1915 following a court decision (Mullen, 1916). Buffalo Bill Dam was built on the Shoshone River in 1910 near Cody, Wyoming and modified several times historically, the latest being 1990.

3.2 Geologic setting
In the study area, the Bighorn River exits the Bighorn Canyon near Fort Smith, which is composed of steeply dipping and resistant Mississippian through Jurassic age sedimentary rocks that were uplifted during the mountain building episode (Laramide orogeny) that formed the Rocky Mountains. Downstream of Fort Smith, the Bighorn River flows through less resistant Cretaceous shales for the remainder of the study reach (Hamilton and Paulson, 1968).

Agard (1989) mapped a sequence of 12 alluvial terraces in the study area, ranging in age from Pliocene (5.3-1.8Ma)) to Holocene (<10ka) and in height from about 10 ft to greater than 900 ft above the Bighorn River. Agard’s mapping appears to be the most detailed when compared to previous studies, which recognize a sequence of 4 terraces (Alden, 1932) and 6 terraces (Richards, 1955; Hamilton and Paulson, 1968) in the study area. The Pleistocene and Pliocene alluvial deposits consist of poorly sorted gravel and sand,
fining downstream to include greater proportions of sandy matrix between the gravels. Younger (Holocene) terraces and floodplain alluvium along the Bighorn River consist of a greater proportion of sandy alluvium that overlies gravelly deposits when compared to the older terraces. The mapped terraces are predominantly strath terraces, with about 9-18 ft (3-6 m) of gravel capping Cretaceous bedrock, although some of the alluvial deposits may have thicknesses of 18-30 ft (6-10 m) of gravelly alluvium. The terraces in the study area represent episodes of stability or aggradation during a period of regional incision of the Bighorn Basin from Pliocene time onward. The preservation of older terraces solely on the west side of the valley suggests a net eastward migration of the Bighorn River from the Pliocene to Middle Pleistocene. While the terraces cannot be directly tied to glacial deposits in the upper Bighorn Basin, Agard suggests a glaciofluvial origin for these deposits because several are tentatively correlated to glaciofluvial terraces in the upper Bighorn Basin that can be directly traced to Pleistocene glacial sequences.

Agard (1989) also suggests that the area has been tectonically active during the Quaternary, which was not recognized in prior studies of the area. Several lines of evidence are put forward to support this idea: (1) several of the terraces near Fort Smith that range in age from about 1.2 to 0.5 Ma are warped or offset; these locations correspond to the location of Soap Creek dome; (2) the six older terraces are only preserved on the western side of the valley, indicating a net eastward migration that may be structurally controlled, and (3) the channel planform of the Bighorn River from mile 10 to 15 changes abruptly from anabranching to straight and parallels a normal fault mapped on the east side of the valley, suggesting that the river is fault-controlled in this reach. It should also be noted that the general position of the river channel in the study reach is on the west side of the valley, which may also be related to structural control as it does not appear to be related to tributary fan deposition or other fluvial mechanisms.

Downstream of the study area, two other lines of evidence are noted by Agard. First, the abrupt transition of the river channel from the west side of the valley to the east side at Two Leggins Creek corresponds to a mapped lineament that aligns with several mapped faults in the area. It is possible, however, that this abrupt change corresponds to sediment input from Two Leggins Creek rather than any structural control. Second, the fact that the higher, older terraces converge in the downstream direction, whereas the lower and younger terraced diverge points to isostatic rebound related to erosion of the overlying sediments during Pliocene and Quaternary time.

3.3 Hydrology/meteorology

The largest flows that impact the study reach are related to snowmelt during the late spring and early summer when soil moisture is maximized, snowmelt is rapid and there is an abundance of extratropical cyclone activity delivering moisture into the northern Great Plains (Hirschboeck, 1991). In this scenario, warming trends or thaws induce snowmelt; the accelerated melting of the snowpack quickly saturates the soil and generates surface flow to the major rivers in the area. Rapid warming and melting will produce the largest flood peaks, which is perhaps what happened during the 1935 water year, when the Bighorn River produced its peak of record near St. Xavier. During this flood, the peak discharge remained above 10,000 ft³/s for a total of about one month, rising sharply to produce a peak discharge of 37,400 ft³/s and gradually decreasing on the falling limb of
the hydrograph. It is not known whether additional moisture from extratropical cyclone activity contributed to this flow, although a possible analog would be the May, 1978 flood, in which rainfall combined with snowmelt to produce widespread flooding in south-central Montana on the Bighorn River, Tongue River and Powder River basins (Paulson et al. 1991).

The closure of Yellowtail Dam in 1966 resulted in a reduction in annual peak discharge of about 55% on average with a mean from 1935-1965 of about 17,600 ft³/s and a mean from 1966-2008 of about 7,900 ft³/s (Figure 2). Annual peak flows were also more variable in the pre-dam flow regime with a minimum value of 6,900 ft³/s in 1954, a maximum value of 37,400 ft³/s in 1935 and a standard deviation of about 7,300 ft³/s. It should be noted, however, that the construction of Boysen Dam in 1952 also reduced flood peaks to the lower Bighorn River prior to the construction of Yellowtail Dam. Flows during the post-dam period from 1966-2008 had a minimum value of 2,030 ft³/s, a maximum value of 25,300 ft³/s in 1967 and a standard deviation of 4,800 ft³/s. In the pre-dam flow regime, annual peak discharges occurred almost exclusively in the months of May, June and July, with the majority of peaks occurring in June. These were snowmelt floods derived from the upper watershed and routed through Bighorn Canyon to the study reach. While quite a few of the annual peak discharges in the post-dam flow regime are released during May, June and July, there is a wider range of months in which the annual peak discharge is recorded; in fact, every month with the exception of September has recorded at least one annual peak discharge since 1966. These annual flows were probably not directly related to runoff events in the upper watershed, but rather were releases related to the operation of Yellowtail Dam.

Figure 2. Annual peak discharges, Bighorn River near St. Xavier, Montana (#06287000).
4.0 Methods

4.1 Aerial photo rectification

To document channel changes downstream of Yellowtail Dam and afterbay during the historical period, scanned aerial photos were acquired for approximately each decade from 1939 to 2006 from a variety of sources from Yellowtail Dam to Mallard Landing along the Bighorn River (Table 1) and at a scale sufficient to map river features (1:20,000 to 1:40,000). GLO Plat maps were also acquired, but were not utilized for the study because the mapped area on the plat maps did not completely cover the study reach. The aerial photos from 1939 through 1991 were scanned at a resolution of about 21-25 micron (about 1000-1200 dpi) and primarily rectified using an automated synchronization. Because of the changes in ground conditions between 1939 and the 2006 orthophoto base image, an automated synchronization for the rectification of the 1939 photos proved insufficient. For each scanned photo, 30 or more control points were identified by eye from vegetation, buildings, or road intersections that existed in both images were identified for use with the geocorrection tool in ESRI ArcGIS ArcMap v8.3. Because the river channel was the focus of this project, the rectification further from the channel may not be sufficient for other uses beyond the scope of this project.

2006 aerial photography was acquired from the USDA National Agriculture imagery program (NAIP); this imagery is rectified by USDA and has a 2-meter ground sample distance and a horizontal accuracy that matches within 12 meters of ground control points.

Table 1. List of aerial photography and maps used in the Bighorn River geomorphic analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Scale/Resolution</th>
<th>Film Type</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2m</td>
<td>Natural color</td>
<td>USDA/NAIP</td>
</tr>
<tr>
<td>1991</td>
<td>1:40,000</td>
<td>Black & white</td>
<td>NAPP</td>
</tr>
<tr>
<td>1980</td>
<td>1:40,000</td>
<td>Black & white</td>
<td>NRCS</td>
</tr>
<tr>
<td>1970</td>
<td>1:40,000</td>
<td>Black & white</td>
<td>ASCS</td>
</tr>
<tr>
<td>1961</td>
<td>1:20,000</td>
<td>Black & white</td>
<td>ASCS</td>
</tr>
<tr>
<td>1954</td>
<td>1:20,000</td>
<td>Black & white</td>
<td>USDA</td>
</tr>
<tr>
<td>1939</td>
<td>1:20,000</td>
<td>Black & white</td>
<td>USDA</td>
</tr>
<tr>
<td>late 1800’s</td>
<td>1:31,680</td>
<td>GLO Plat Map</td>
<td>BLM</td>
</tr>
</tbody>
</table>

4.2 Geomorphic mapping

The goal of the geomorphic map is to document physical features including historical channel tracks, mid-channel islands, gravel bars, side channels, overflow channels, bedrock, stream terraces, and any human constructs such as levees or revetments along the Bighorn River. These physical features were mapped for each year of aerial photography, including the most recent photography using heads-up digitizing in ArcGIS at a scale of about 1:6,000. For the most recent (2006) photography, the features were digitized initially on aerial photography and then field checked for verification. Other
features such as bedrock exposures along channel banklines and in the channel bed, and human constructs were predominantly mapped during fieldwork. The map provides a history of lateral channel movement, the abandonment and creation of side channels and overflow channels, and the revegetation or scouring of mid-channel islands and gravel bars.

4.3 Cross section survey/longitudinal profile

Data for the cross section survey and longitudinal profile were collected primarily during the April, 2009 field work; supplemental data for the cross sections were also collected during June, 2008 field work. The bathymetric data were acquired using an Acoustic Doppler Current Profiler (ADCP) and Trimble RTK GPS were used for ADCP positions, water surface elevations, and ground observations. With the ADCP and GPS mounted on the boat the bathymetric survey is estimated to have an accuracy of ±15 cm. Ground observations are estimated to have an accuracy of ±2 cm.

2009 cross section data were collected at the three cross sections surveyed during the 1997 cross section survey for the FWP wetted perimeter study (Frazer, 1997); benchmarks established in 1997 at cross section endpoints were reoccupied in order to compare cross section data and channel changes from 1997 to 2009. Longitudinal profile data were collected as part of the bathymetric river survey for the hydraulic modeling from Yellowtail Dam to Bighorn Access by taking multiple paths down the channel. An additional single line of data was collected between Bighorn Access and St. Xavier Bridge in order to examine changes in gradient for the entire 16-mile study reach. To construct the longitudinal profile, data points were extracted along the 2006 channel centerline beginning 250 ft downstream of Yellowtail Dam and thereafter at a spacing of 500 ft.

Data for cross section analysis at the USGS gaging station, Bighorn River near St. Xavier (#06827000) were acquired from the National Records Center in Denver, CO and Seattle, WA from 1935-2000. Records from 2000-2005 could not be located either as archived files in any of the USGS offices in Montana. The 2005-2008 surveys were measured by USGS personnel using an ADCP; these were acquired but were not processed due to initial data analysis of the 1935-2000 records that showed a consistent pattern in cross section geometry (see section xx for further information).

4.4 Field measurements of fine sediment deposition

During April, 2009 field work, many observations of side channels and overflow channels revealed that fine sediment was accumulating at the entrances and mouths of these channels. During June, 2009 field work, measurements of the thickness of fine-grained sediment accumulations were made using a hand auger and small shovel to measure the depth to gravel at the entrances of side channels and overflow channels and in locations downstream of the entrances. While thick accumulations of fine sediment are notable at many of the mouths of side channels and overflow channels, these thicknesses were not measured due to the depth of water ponded in the channels and difficulty in reaching these areas for measurements.
5.0 Results

5.1 River pattern/morphology

The Bighorn River can be classified as an anabranching system, which is defined by Nanson and Knighton (1996) as “…as system of multiple channels characterized by vegetated or otherwise stable alluvial islands that divide flows at discharges up to nearly bankfull.” (p. 218) The islands are typically stable for decades to centuries with mature vegetation and may reach the same height as the surrounding floodplain through the process of vertical accretion. Anabranching rivers cannot be neatly categorized as a distinct type on a slope vs. discharge plot and can have characteristics of both meandering and braided rivers.

Nanson and Knighton (1996) separate anabranching rivers into 6 classes based on stream power, bed and bank materials, lateral migration and vertical accretion rates, channel sinuosity, and island length to channel width ratios. A review of the general characteristics of their classification indicates that the Bighorn River channel pattern most closely resembles type 5, described as a gravel-dominated laterally active anabranching river. These rivers are also described in some literature as wandering gravel bed rivers (i.e., Burge, 2005; Church, 1983). Rivers in this category typically have high stream power values that range between 30 and 100 W/m² and therefore can be highly active in terms of lateral movement. As is characteristic of the Bighorn River, they can have a dominant main channel with multiple anabranches and may alternate between single thread and multi-thread reaches. In the study reach, single thread and multi-thread reaches alternate with variable spacing (Figure 3). Channel sinuosity for type 5 anabranching rivers ranges between 1.1 and 1.5; previous sinuosity measurements of the Bighorn River channel place it at the lower end of this range with a value of 1.2 (Klumpp, 1997). The measured slope of 0.0016 in the study reach is also within the range of type 5 rivers described in Nanson and Knighton (1996).

Figure 3. Example of channel morphology in the study reach showing single channel sections separated by anabranching sections.

Descriptions of streambanks for other type 5 anabranching rivers are also generally consistent with Bighorn River bank materials in which a cap of sandy alluvium overlies gravelly substrate (Figure 4). Vertical accretion rates in these systems are typically slow. The authors also state that bank resistance, including both vegetation and bank material plays a large role in the formation of anabranching systems; however this is less of a
factor for type 5 anabranching systems because roots do not typically extend deep enough to significantly influence bank resistance.

Figure 4. Example of bank materials showing fine-grained overbank sediment capping gravelly alluvium.

While anabranching systems span a wide range of climatic zones and geologic settings, they have several commonalities through which the anabranching network is formed. Nanson and Knighton (1996) identify two sets of processes that can form multiple channels in terms of erosion-based processes and accretion-based processes. The anabranching network on the Bighorn River is formed by the erosion-based process of channel avulsion, in which overbank flows in combination with channel sedimentation may periodically initiate new channels in floodplain alluvium and in effect cause other channels to be abandoned. A requirement for this process seems to be a variable flow regime, where flood flows are routed overbank due to the inability of the channel to alter its capacity to accommodate larger flows. In the case of the Bighorn River, its lack of change in channel geometry during the pre-dam historical period despite a variable flow regime indicates difficulty in altering its gradient, possibly due to bedrock control or other structural features in the subsurface. The reduction in peak flows and sediment supply following dam construction have essentially locked the channel into its current position by removing the two components necessary for channel avulsion. Continued growth of vegetation on the islands and encroachment of vegetation onto pre-dam
unvegetated bars has aided in the stabilization of channel position in the post-dam flow regime.

5.2 **Vertical changes in bed elevations**

5.2.1 **Gaging station data (1935-2000)**

Cross section measurements at the gaging station, Bighorn River near St. Xavier, MT (USGS gage no. 06287000), were gathered from archived files at the Federal Records Center in Denver, CO and Seattle, WA in order to investigate vertical changes downstream from Yellowtail Dam. Measurements were made multiple times each year from 1935 to 2009, which provides an extensive data set to investigate bed elevations for 30 years prior to the construction of Yellowtail Dam and for potentially 43 years following its construction. Only records from 1935 to 2000 were examined, due to missing records from 2000 to 2005. Although we could also process ADCP cross section data from 2005 to 2008, the results from the measurements up to year 2000 were conclusive and the further work required to investigate the most recent years of measurement were deemed unnecessary. For each calendar year, both the mean stream bed elevation (MSBE) and maximum stream bed elevation (MAXSBE) were plotted using data from one field survey during that year. Winter and spring measurements were preferred to avoid algae growth that might obscure the channel bottom; however measurements were not used if the technician noted extensive ice cover in the channel, which could increase error in the measurements. Whenever possible, measurements that were noted as “good” were used over measurements noted as “poor”. Smaller magnitude discharges were also preferred in order to ensure that flows were contained within the channel. Discharges during cross section surveys that were utilized from 1935-1965 had values of 2034 ±608 ft³/s while discharges during cross section surveys from 1966-2000 had values of 3439 ± 1122 ft³/s.

The mean stream bed elevation was estimated following the method outlined by Jacobsen (1995), where mean flow depth, calculated as cross sectional area/width, is subtracted from the water surface elevation. The maximum stream bed elevation (MAXSBE) is derived using the same formula, except the maximum flow depth recorded in the cross section replaces the calculated mean flow depth.

Results from this analysis are plotted on two separate graphs to reflect the relocation of the gage following the construction of Yellowtail Dam and Afterbay (Figure 5; Table 2). The gaging station is currently located 2 1/2 miles downstream from Yellowtail Dam at an elevation of 3,158.38 ft. Prior to 1963 and from June 13, 1964 to March 31, 1965, the gaging station was located about 50 ft upstream of the Bighorn canal diversion, or 1 1/4 miles upstream from its present location, at an elevation of 3,170 ft. Data from 1935-1965 show MSBE fluctuations of up to about 3.3 ft and MAXSBE fluctuations of up to about 4.3 ft. Based on the gage’s location in the bedrock canyon, which would indicate a resistant and stable channel bed, these fluctuations are interpreted as sediment fluxes through the cross section, or in other words the storage and removal of sediment on a
fixed channel bottom. When examined with corresponding annual peak discharges, sediment storage and removal does not appear to have an obvious correspondence to larger peak discharges.

Table 2. Streambed elevation fluctuations, Bighorn River near St. Xavier (USGS gage no. 06287000)

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Maximum (ft)</th>
<th>Minimum (ft)</th>
<th>Date</th>
<th>Discharge (ft³/s)</th>
<th>Fluctuation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1935-1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSBE</td>
<td>3166.67</td>
<td>3163.34</td>
<td>Apr. 16, 1961</td>
<td>1320</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>3165.8</td>
<td>3161.5</td>
<td>Apr. 7, 1960*</td>
<td>2180</td>
<td>4.3</td>
</tr>
<tr>
<td>MXSBE</td>
<td></td>
<td></td>
<td>Feb. 15, 1947*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSBE</td>
<td>3156.04</td>
<td>3154.80</td>
<td>Oct. 19, 1999</td>
<td>3990</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>3152.82</td>
<td>3151.94</td>
<td>Jan. 4, 1967</td>
<td>1940</td>
<td>0.88</td>
</tr>
<tr>
<td>MXSBE</td>
<td></td>
<td></td>
<td>Apr. 12, 1977*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Also same minimum bed elevation on April 13, 1948.

Figure 5. Streambed elevations at USGS gaging station, Bighorn River near St. Xavier, MT (#06287000), (a) 1935-1965; (b) 1967-2000.
Data from 1966-2000 show fluctuations in MSBE of up to 1.2 ft and fluctuations of MAXSBE of up to 0.9 ft. These fluctuations are about 1/3 to ¼ the magnitude of bed fluctuations prior to dam construction and are remarkably small. These data indicate that the channel has not incised at this location following dam construction, but rather has maintained a consistent bed elevation; this may be due to several factors, including the possible presence of bedrock in the channel, which was not directly observed, rapid channel armoring following dam closure, and reduced sediment fluxes and discharge through the cross section.

5.2.2 Repeat cross sections (1997-2009)

In order to investigate vertical changes in bed elevations within the last decade, cross sections originally surveyed in 1997 by the USGS in cooperation with BOR and FWP (Shields, 1997) were reoccupied during two field trips in April, 2009 using the methodology outlined in section 4.3. The cross sections also provide additional data points to compare the results from the gaging station cross section data in section 5.2.1. The three cross sections are located at approximate river mile 0.6, 2.5 and 3.2 downstream from Yellowtail Afterbay (Figure 6).

Figure 6. Locations of resurveyed historical cross sections.

Benchmarks for each cross section are not surveyed in the original cross section data; it appears that these were placed following the original survey (personal communication, Shields, 2009). Since benchmarks could not be matched between the two surveys, only water surface elevations could be used to compare the cross section data. The discharges recorded during the 1997 ($Q_{avg}=4235 \text{ ft}^3/\text{s}$) and 2009 ($Q_{avg}=3493 \text{ ft}^3/\text{s}$) surveys are within
18% of each other; therefore, these water surface elevations should be comparable. However, when plotted, the elevations are somewhat disparate between the data sets and suggest that there may be some difference in the vertical control used between the 1997 and 2009 surveys, although it does not appear to be a consistent offset (Figures 7 to 9). If the elevations are correct for both surveys, results indicate that no net change has occurred in cross section one, 5 ft of aggradation has occurred in cross section two and 1-2 ft of aggradation has occurred in cross section three. If the 1997 water surface elevations are adjusted to match the 2009 water surface elevations, the cross section geometries match remarkably well and suggest that there has been very little change in the vertical or lateral channel position in the last 12 years. This is the logical conclusion, since typically cross sections do not maintain the same geometry whether the channel is aggrading or incising, but rather preferentially deposit or erode in various locations, thus altering the cross section shape. In the adjusted data, cross section one shows little difference in the elevation of the raw and adjusted 1997 survey data; comparison to the 2009 cross section survey shows that the net change in bed elevations is essentially zero, with the area near the left bank slightly lower in elevation and the area on the right bank slightly higher (Figure 7). Cross section 2 shows lateral scour along the left bank and in the center of the channel of about 0.5-1.0 ft (Figure 8). This cross section shows the most change out of the three cross sections, although the scour in the cross section is localized and does not indicate an overall lowering of the channel bed. The shape of both the 1997 and 2009 cross sections at section 3 is very similar and suggests very little change in channel geometry at this site (Figure 9).

![Figure 7](image-url)
Figure 7. Comparison of cross section survey data at Cross section 1, looking downstream.
Figure 8. Comparison of cross section survey data at Cross section 2, looking downstream.

Figure 9. Comparison of cross section survey data at Cross section 3, looking downstream.
5.2.3 Longitudinal profile

The longitudinal profile was surveyed during April, 2009 field work in conjunction with the bathymetric and cross sections surveys. Points from the survey were extracted every 500 ft along the centerline of the main channel and plotted with distance from Yellowtail Afterbay to St. Xavier bridge starting at 250 ft downstream of the afterbay (Figure 10). The longitudinal profile shows an average slope of 0.0016 with maximum fluctuations of about ± 4 ft about the best fit regression line. Scour within the first 2,000 ft downstream of the afterbay is evident in the concave shape of the longitudinal profile. It is possible that some of the material was deposited within the first mile downstream from the dam; however the low variability in the historical cross section data within the first 3 miles downstream of the afterbay indicate that any scoured material material was transported downstream and more widely dispersed along the channel length. From the afterbay to channel complex 14, the main channel exhibits shallower depths where multiple channels exist and greater depths in reaches that only have a single channel. This relationship does not appear to be as consistent downstream of channel complex 14, where the channel is mostly confined to a single channel with the exception of a few anabranched sections at channel complexes 20 and 21. These changes in slope in locations where multiple channels do not exist could be related to bedrock outcrops in the channel bed or landslide materials in the channel that slumped from the bluff along the west bank of the river.

Figure 10. Longitudinal profile, Yellowtail Dam to St. Xavier Bridge.
5.3 Geomorphic mapping and analysis

Geomorphic mapping provides an analysis of historical lateral channel change from 1939 to 2006 as well as changes in geomorphic features along the length of the channel. Lateral channel movement as well as the creation and destruction of side channels, islands and bars highlight the dominant physical processes that shape the river channel and ultimately form the aquatic habitat critical for species survival. Several map units were defined that would reveal how dam construction has changed the physical attributes and processes along the Bighorn River; these units as well as changes in channel complexes and the overall physical system are described below. Discharge at the time of aerial photography can influence channel area as well as the extent of channel bars and islands. Discharges for aerial photography are listed in Table 3 and vary from 1827 to 3990, a difference of 54 percent. Results discussed in section 5.3.2 demonstrate that while discharge does play a role in the coverage of mapped features, it does appear not vary enough to have a large impact on the study’s results.

Table 3. Daily discharge for Aerial Photography, Bighorn River

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Daily Discharge (ft³/s)</th>
<th>Average discharge (ft³/s)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939</td>
<td>August 16</td>
<td>1850</td>
<td>1827</td>
<td>varies</td>
</tr>
<tr>
<td></td>
<td>August 18</td>
<td>1650</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>August 20</td>
<td>1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>August 9</td>
<td>2730</td>
<td>2260</td>
<td>half and half (9/1 are upstream half)</td>
</tr>
<tr>
<td></td>
<td>September 1</td>
<td>1790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>July 7</td>
<td>1880</td>
<td>2260</td>
<td>most photos are from 7/7-8; only upstream end at dam is from 7/16</td>
</tr>
<tr>
<td></td>
<td>July 8</td>
<td>2350</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>July 16</td>
<td>1310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>August 12</td>
<td>2290</td>
<td>2115</td>
<td>about half and half</td>
</tr>
<tr>
<td></td>
<td>August 16</td>
<td>2310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>September 26</td>
<td>3990</td>
<td>3990</td>
<td>most photos are from Sept. 26; only dam is from Oct. 3</td>
</tr>
<tr>
<td></td>
<td>October 3</td>
<td>3990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>August 21</td>
<td>2670</td>
<td>3030</td>
<td>d/s half</td>
</tr>
<tr>
<td></td>
<td>September 19</td>
<td>3390</td>
<td></td>
<td>u/s half</td>
</tr>
<tr>
<td></td>
<td>July 28</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.1 Definition of map units

Map units were defined using terminology derived from previous studies in the literature and from observations of the types of features present on the Bighorn River. These features were mapped in order to examine pre and post-dam changes in the channel for the first 21.6 miles downstream of the dam (Figure 11).

Main channel: wetted channel with the greatest width of any channel in the cross section and free of vegetation.

Side channel: wetted to partially wetted channels with a narrower width than the main channel at the upstream end and located between the main channel and stream bank or between vegetated or unvegetated islands. Side channels were wetted at both the upstream and downstream ends at the time of photography, but may have some disconnected pools along their length and are mostly free of vegetation. While it is assumed that side channels have lower average velocities and shallower depths than the main channel, this may not be true in all cases and since it cannot be proved for the historical photos, this was not used as a parameter.

Overflow channel: dry channel, predominantly unvegetated with occasional pools along its length; may also have a downstream connection with the main channel but does not have an upstream connection.

Vegetated island: channel bar surrounded by water on both sides and detached from the streambank by side channels, overflow channels or split flow channels. Vegetation can be observed in the form of dense shrubs and mature trees.

Unvegetated bar: channel bar that is bare of vegetation or supports only small shrubs and grasses, showing evidence of repeated or recent inundation in the post-dam flow regime. This unit includes several types of bars, the most common of which are lateral bars, point bars and mid-channel bars. Lateral bars are located between the main channel and stream bank and are typically elongate forms. Point bars are located along the inside of a channel bend and are more equidimensional in shape. Mid-channel bars are surrounded on both sides by water and typically have a streamlined form which tapers at both ends and is wider at the center of the bar. Bar types were not differentiated, but are noted here to recognize that different forms do occur that may support a variety of aquatic habitat.

Holocene floodplain: Holocene alluvium located outside the mapped channel features; the age of the alluvium ranges from historical to 10,000 years. Abandoned channels can be observed in many areas of this floodplain, evidence that channel position has varied within this zone during the Holocene. Boundaries for the Holocene floodplain were derived from Agard (1989) and digitized in ArcGIS.
Bedrock: Bedrock is composed of consolidated sediments that are less erodible than surrounding alluvium. Bedrock in the study reach is mostly shale, which is relatively soft compared to other sedimentary rocks in the area. If present in the channel bed, bedrock provides a natural grade control that will slow the rate of incision and provide a local base level that will influence upstream channel gradient and morphology. Bluffs along the channel banks will also impede the rate of lateral movement (Figure 12). The locations of bedrock outcrops in the channel bed and along bluffs adjacent to the channel were noted during two float trips for field work. In the channel bed, the bedrock locations are considered a minimum number because there could be more locations of bedrock that were not visible during the float trips.

Human features: Human features include bank protection in the form of rip rap and spur dikes (Figure 13). These features were mapped along the length of the channel to determine if there were any channel changes associated with these features. Most of the human features are limited in extent and do not appear to influence channel position to a great extent.
Figure 12. Example of a bedrock outcrop along the study reach.

Figure 13. Bank protection with car bodies, right bank near river mile 6.
5.3.2 Analysis of historical changes in geomorphic features

Results from geomorphic mapping documents changes in geomorphic features along the Bighorn River have occurred during the last 7 decades. Main channel and side channel areas show a decrease of about 11 and 42%, respectively, from 1939 to 1961 and an increase in area following 1970 (Figure 14; Table 4). The overall trend shows a decrease in main channel area from 1939 to 2006, but it is very slight. Side channel area shows a 40% decrease from 1939 to 2006; this decrease is apparently real, even when considering changes in river flow, since the difference between 1939 and 2006 average discharges is only about 9% and the photography with the most area of side channels has the smallest discharge.

The trend in unvegetated bar area shows a consistent sharp decrease ranging from xx to 72% loss from 1939 to 1980 and a more gradual decrease from 1980 to 2006 of about 65%. Decreases from 1939 to 1961 reflect recovery of the channel from the peak of record in 1935, in which lateral bars that had been scoured of vegetation were revegetated, thus decreasing the total area of unvegetated bars. Trends after 1961 show that the major response to dam closure took place from 1961 to 1980, and has been slowed for the last several decades, although the decreasing area of unvegetated gravel bars was still evident in 2006.

The trend in vegetated islands is somewhat more complicated with fluctuations from 1939 to 1961, a sharp decrease from 1961 to 1980 and increasing area from 1980 to 2006. From 1961 to 1980, the sharp decrease in vegetated islands corresponds to a concurrent loss of overflow channels, which were filling in with vegetation, causing the reattachment of the vegetated islands to the floodplain areas. The increase from 1980 to 2006 shows the continued encroachment and maturation of vegetation onto gravel bars that were previously unvegetated. The overall trend for vegetated islands is one of loss due to the loss of overflow channels and the reattachment of many of the larger vegetated islands to the floodplain areas.

Overflow channel areas remained consistent from 1939 to 1961 and show a sharp decrease from 1961 to 1980, corresponding to the loss of large flows and vegetation encroachment in the channels. The increase in overflow channels from 1991 to 2006 corresponds with the loss of side channels over the same time period in which side channels were transitioning to overflow channels and began to only receive flow during the largest discharges. The overall trend for the overflow channels is one of loss due to the decrease in peak flow following dam construction.

Table 4. Area of map units (in acres)

<table>
<thead>
<tr>
<th>Photo year</th>
<th>Main channel</th>
<th>Vegetated islands</th>
<th>Unvegetated bars</th>
<th>Overflow channels</th>
<th>Side channels</th>
<th>Active channel*</th>
<th>Average discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939</td>
<td>801</td>
<td>944</td>
<td>640</td>
<td>142</td>
<td>246</td>
<td>1686</td>
<td>1827</td>
</tr>
<tr>
<td>1954</td>
<td>778</td>
<td>888</td>
<td>590</td>
<td>141</td>
<td>179</td>
<td>1547</td>
<td>2260</td>
</tr>
<tr>
<td>1961</td>
<td>709</td>
<td>995</td>
<td>482</td>
<td>153</td>
<td>143</td>
<td>1334</td>
<td>2260</td>
</tr>
<tr>
<td>1970</td>
<td>711</td>
<td>834</td>
<td>355</td>
<td>87</td>
<td>142</td>
<td>1209</td>
<td>2115</td>
</tr>
<tr>
<td>1980</td>
<td>785</td>
<td>588</td>
<td>182</td>
<td>21</td>
<td>167</td>
<td>1134</td>
<td>3990</td>
</tr>
<tr>
<td>1991</td>
<td>756</td>
<td>627</td>
<td>143</td>
<td>24</td>
<td>175</td>
<td>1075</td>
<td>3030</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Photo year</th>
<th>Main channel</th>
<th>Vegetated islands</th>
<th>Unvegetated bars</th>
<th>Overflow channels</th>
<th>Side channels</th>
<th>Active channel*</th>
<th>Average discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>775</td>
<td>693</td>
<td>63</td>
<td>49</td>
<td>146</td>
<td>984</td>
<td>1990</td>
</tr>
<tr>
<td>% Change (1961-2006)</td>
<td>+9</td>
<td>-30</td>
<td>-87</td>
<td>-88</td>
<td>+2</td>
<td>-26</td>
<td></td>
</tr>
</tbody>
</table>

*Active channel = main channel + side channel area + unvegetated bar area

Figure 14. Area calculations of mapped features, 1935-2006.

Active channel area, a measure of channel complexity, includes the area of the main channel, side channels and unvegetated bars. These features show the overall area of habitat available in the post-dam flow regime, in which frequent inundation keeps these areas wetted or mobilizes sediment on a semi-frequent basis to keep the area clear of most vegetation and inhibits the development of mature vegetation (Figure 15). Active channel area has also decreased over the historical period; from 1939 to 1961, it reflects the recovery of the river channel from the 1935 peak of record and potentially the impacts of Boysen Reservoir on the upper Bighorn River. From 1961 to 2006, the decrease in active channel area reflects the decrease in sediment and discharge necessary to maintain the larger active channel area along the river. Without this, vegetation is allowed to establish on previously unvegetated bars and to encroach along side channels with low velocity flow. The decrease in unvegetated bars is the main driver of the overall pattern, since main channel area has remained similar and the total area of side channels is small when compared to the area of unvegetated bars.
Comparison to Koch’s (1977) analysis is difficult due to differences in mapping and study reach lengths. Koch defines two study reaches that span the present study reach; reach 1 extends from Yellowtail Afterbay to just above the mouth of Hay Creek; reach 2 extends from above Hay Creek to just above Two Leggins Diversion Dam. The current study reach comprises all of Koch’s reach 1 and part of reach 2. Koch does not appear to map overflow channels, or areas that convey high flows but are not wetted during the time of aerial photography. This difference significantly impacts the area of vegetated islands that would be mapped between the two studies. He also combines the results from the mapping of vegetated islands and gravel bars, making it impossible to just compare the gravel bars. The total water area is somewhat comparable; however, side channels were mapped to include unvegetated bars, so this would skew the results toward larger areas at least for the side channels. If the numbers are compared, they show an 18% decrease for combined main channel and side channel area from 1939 to 1970 while Koch’s results show less than 5% increase or decrease for the two study reaches from 1939 to 1974.

5.3.3 Individual channel complex history
In this section, historical channel changes and field observations are summarized for each channel complex in the expanded study reach (Yellowtail Dam to Mallard Landing). While 2006 mapping demonstrates that not all channel complexes are comprised of more than one channel or even a side channel as defined in this study, all are termed complexes to reflect the historical existence of a more complicated channel network in almost every mapped location. Detailed field observations were made and are noted in this section.
from Yellowtail Dam to Bighorn Access (up to channel complex 18). For the remaining channel complexes from Bighorn Access to Mallard Landing Access, mapping is described, but no field verifications were made regarding channel mapping or conditions of the side channels. A reconnaissance float was performed, however, during August, 2009 field work, and most side channels appeared to have flowing upstream and downstream connections; a notable exception to this observation occurred at the downstream confluence of the large side channel at complex 26, where flow was observed to backwater.

Channel complex 1
Side channel 1 has been in almost the same position since the earliest aerial photography available (Figure 16). In 1939, the channel flowed around an unvegetated bar and received additional flow during large discharges from an overflow channel that entered at its abrupt bend to the east. By 1961, the overflow channel began to fill in with vegetation and the unvegetated bar separating the side channel from the main channel also began to stabilize with vegetation. By 1970, the overflow channel appeared to be inactive in the flow regime, shown by a lateral bar along the main channel margin that cut off the overflow channels’ entrance and connection with the main channel. Vegetation continued to increase and mature on both the overflow channel and island; however, the downstream end of the overflow channel appears to have maintained a downstream connection with the side channel and serves as a backwater environment. It appears that the entrance to the overflow channel was utilized for power lines and is kept cleared for this reason. Side channel 1 exists currently as a high velocity channel with cobble substrate; bedrock was observed at the downstream end of the overflow channel and also and the downstream end of the side channel.

Channel complex 2
Prior to 1961, the area in the vicinity of channel complex 2 existed as a low lateral bar along the left bank inner channel bend whose material was mobilized frequently enough to remain free of vegetation (Figure 16). The channels as they exist today were formed between 1961 and 1970; grassy vegetation was established on the bars by 1980. The bars are low enough to the water surface that they are modified at least partially during the post-dam flow regime and therefore have not established a dense network of trees or shrubs on their surfaces. The channel complex consists mostly of a pebble-cobble substrate with moderate to high velocity flow through the side channels. Other major changes near channel complex 2 include the loss of a large overflow channel along the left bank between 1961 and 1970 and the loss of a smaller overflow channel on the right bank between 1954 and 1961.

Channel complex 3
The present configuration of side channel 3 was established in 1980 (Figure 16). In 1939, unvegetated bars existed in the area, but no side channel was present. By 1954, the general configuration for side channel 3 was established, with a side channel formed around an unvegetated bar in the area. This general pattern was maintained with minor variations in channel and bar position until 1980, when the side channel stabilized into a
form that has not changed considerably for the past several decades. Vegetation encroachment along an extensive lateral bar on the right bank from 1954 to 1980 aided in the stabilization of side channel 3. Observations from April, 2009 indicated that this was a low velocity channel with a mucky bottom of fine sediment over a gravelly substrate; however, observations following the high flow during July, 2009 revealed that some of this sediment had been scoured, leaving remnant benches of fine-grained sediment along the channel margins.

Channel complex 4
In 1939, the area near side channel 4 was occupied by a small vegetated island in the center of the main channel with an unvegetated lateral bar between the island and streambank (Figure 16). Downstream, several narrow overflow channels cut across vegetated portions of the large point bar on the right bank. In 1954, the general geometry of the channel was established but not well defined. Vegetation encroachment onto the lateral channel bar helped to establish a stable position for the side channel by 1970; this area has continued to vegetate through the present time. This side channel was marginally inundated during field observations and consisted of a silty sand deposit over cobbly substrate and young willows along the channel margins at its entrance. Several mucky backwaters existed at the downstream connection with the main channel and within the sharp bend to the northwest.

Channel complex 5
The general position of this side channel has been present since 1939, although the exact bar shape and channel position were not fully established until 1980 (Figure 16). This bar has grown in size from 1939 to 1980, but has remained relatively unvegetated, receiving inundation frequently enough in the post-dam flow regime to inhibit the maturation of woody shrubs and large trees. This channel is currently a high to moderate velocity side channel with a cobble substrate.
Figure 16. Historical channel mapping for complexes 1 through 5 showing changes from 1939, 1961, 1980 and 2006. 2006 and 1939 mapping are overlaid for comparison.
Channel complex 6

Channel complex 6, located just upstream of the 3-mile (Lind) boat access, consists of multiple channel branches with pebble-cobble substrates and moderate velocities. Minor areas of fine sediment exist where secondary flow currents create low velocity eddies, but the majority of the channel has fast flowing confluences within the multiple branches and with the main channel. 1939 aerial photography shows that several of the channels, including 6A, 6C, and 6D are in similar locations to the present configuration (Figure 17). Additional channels are located upstream on the left bank in 1939, one designated as a side channel and the other as an overflow channel. By 1954, side channel 6E is formed and more vegetation is observed on the mid-channel bar. Between 1954 and 1961, side channel 6B developed and the channels along the left bank have been abandoned; these were probably utilized during the 1935 flood and were not accessed since that time. The present configuration of channels was developed by 1970 and vegetation has continued to increase on the islands through 2006.

Channel complex 7

The 1939 channel pattern in the vicinity of complex 7 consisted of main channel split flow around an unvegetated mid-channel bar with an extensive lateral unvegetated bar and overflow channel along the left bank (Figure 18). Several narrow overflow channels are also mapped in the left bank and right bank floodplain areas. The change in channel configuration began to develop in 1954, in which the right branch of split flow developed into a distinct side channel separate from the main channel and vegetation began to establish on the mid-channel bar. The overflow channel along the left bank was progressively abandoned. Erosion along the right bank between 1961 and 1970 elongated the side channel and lengthened the mid-channel bar into an unvegetated and vegetated component. This channel pattern continued to stabilize through 2006 with further vegetation establishment in the unvegetated bar areas. The overflow channels mentioned in the 1939 aerial photography were abandoned by 1970, at which point the vegetation was large enough to infer that these were not being regularly utilized by the river in the post-dam flow regime. The side channels within channel complex 7 can be described currently as moderate to high velocity with a pebble-cobble substrate. The only exception to this is side channel 7E, which was not previously mapped by FWP, but exists as a low velocity channel with shallow flow. In April, 2009, a beaver dam existed at the downstream end of the side channel, which backed up flow to the sharp bend in the channel and encouraged the deposition of fine sediment in the ponded area. In August, 2009, the beaver dam had been significantly eroded by the peak discharge in July and much of the fine sediment had also been removed, leaving a patchy gravelly substrate in the channel bottom.
Channel complex 8
Several side channels of channel complex 8 are visible in 1939 including 8A, 8B and 8C (Figure 18). Additional side channels along the left bank (north side) of the river are also visible in 1939 that are either overflow channels or part of the floodplain in 2006. Side channels 8C, 8D and 8E and lateral migration of the main channel toward the east had developed by 1970 while the additional side channels present in 1939 either transitioned to overflow channels or attached to the floodplain. By 1980, all islands were heavily vegetated, which encouraged stability in the channel pattern through 2006. Observations
in 2009 revealed that channel 8A has a mucky substrate at both the upstream and
downstream ends with low velocity, shallow flow at the upstream end and backwater at
the downstream end. 8B is a moderately velocity channel, which slows in velocity toward
the downstream end. Sediments are composed of fines over gravel, which increase in
thickness downstream; observations before and after the high flow of July, 2009 suggest
that some of this sediment was scoured from the upstream end while fresh gravel was
deposited at the head of the island adjacent to 8B. 8C, also known as the Duck Blind
channel, can be characterized as a moderate velocity channel with several riffles and a
cobbly substrate. Channels 8E and F are overflow channels that have vegetation
established at their entrances, but are mostly grassy with intermittent scour holes that
form pools along their length. Thin deposits of fine sediments exist at the channel
entrance above the low flow channel and at the downstream connection with the main
channel where water is ponded. Both channels are backwatered at their downstream
connection with the main channel.

Channel complex 9
The mid-channel bar that exists at this location has been present in a very similar location
since 1939 and has remained relatively unvegetated throughout the historical period
(Figure 19). This suggests that the bar is relatively low to the water and has received
significant flow to destabilize sediment and vegetation on a regular basis. It should be
noted that the mapping scheme in this study did not designate a side channel in the area
due to the similar width of the channel on both sides of the mid-channel bar. Both
channels are relatively deep with moderate to high velocities.

Channel complex 10
In 1939, the area of channel complex 10 existed as an extensive lateral bar with several
vegetated islands (Figure 19). The main channel was in a similar position as that mapped
in 2006. Vegetation establishment between 1939 and 1954 created several distinct
channels including side channel 10A and smaller side channels 10B and 10C, separated
from the main channel by unvegetated mid-channel bars. An overflow channel was also
present at the upstream end of the complex. By 1980, the additional side channels had
transitioned to overflow channels; 10B exists currently as an unvegetated, gravelly
overflow channel while 10C is filled with cattails and fine-grained sediment over gravel
and received some minor flow during lower discharges. The overflow channel at the
upstream end filled in with vegetation by 1980; vegetation encroachment of many of the
bars can be observed between 1961 and 2006. 10A is the only remaining active side
channel in this complex and has a cobbly entrance with pebble-cobble bed material.
Some scour pools along its length are partially filled with a thin layer of silt; downstream
connections of the split flow channel are low velocity or backwater areas.
Figure 18. Historical channel mapping for complexes 7 and 8.
Channel complex 11
Generally a mid-channel bar and side channel have existed since 1939 in the vicinity of side channel 11, but were not in the exact 2006 position until 1980 (Figure 19). The channel experienced lateral erosion of the right (east) bank between 1961 and 1970 to establish the 2006 position of the right bank and an unvegetated lateral bar that subsequently developed into side channel 11 between 1970 and 1980. Several other side channels and overflow channels existed in this area in 1939 and were abandoned by 1980. Side channel 11 was observed during 2009 field work to have shallow, low velocity flow at the channel entrance and a layer of silt over gravel in the channel bed with some scour pools. The downstream connection to the main channel was backwatered; the mid-channel bar had mostly grassy vegetation at its upstream and downstream ends with some larger shrubs and trees in the mid-section of the bar.

Channel complex 12
Channel complex 12 consists of multiple anabranching channels that split around a large, vegetated island. The general channel positions of complex 12 were present in 1939 in addition to overflow channels that flowed through vegetated portions of the islands and several side channels located in unvegetated components of lateral bars (Figure 20). 1961 through 1980 aerial photography shows the gradual disappearance of overflow areas and unvegetated lateral bars, with the greatest change between 1970 and 1980. By 1980 all 2006 channel positions were established; vegetation encroachment continued through 2006 to further define the channel positions as they exist currently. Developments between 1991 and 2006 include the formation of two additional side channels, 12J and 12K; these side channels are steep and cobbly riffles with grassy vegetation on the mid-channel bars. Other side channels are high velocity channels with cobbly bed material. 12C is the only exception, which had marginal flow during 2009 field work and reed canary grass growing in the channel.

Channel complex 13
In 1939, side channel 13, also known as Glines channel, was a large side channel with a greater width and number of unvegetated bars than in 2006 (Figure 21). Two flow paths diverged at the downstream end around an unvegetated bar. In 1970, flow was disconnected at the upstream end with water visible in parts of the channel; the right branch of split flow appeared to be filling in with sediment. From 1970 to 1991, a gradual increase in vegetation is noted with a few bushes or trees visible at the upstream connection with the main channel. By 2006, a significant increase in vegetation at the side channel entrance is visible. This channel had marginal flow during 2009 field work with grass, willows and cattails in the channel entrance. Fine sediment was noted in the channel entrance and downstream from the entrance and covered the gravel bed in most locations.
Figure 19. Historical channel mapping for complexes 9, 10 and 11.
The split flow pattern and channel locations in 2006 aerial photography for channel complex 14 had developed by 1980 (Figure 21). In 1939, the channel pattern consisted of a main channel along the left bank with an unvegetated lateral bar and overflow channel along the right bank. By 1954, the split flow pattern had developed with the right channel (14C) considerably narrower than the left channel. By 1970, bars were beginning to develop in their current locations, forming side channels 14B and 14D; erosion along the right bank created a channel of similar width to 2006. Vegetation increases were also notable by 1970 and continued to increase through 2006. Side channel 14A appears to
have developed prior to 1991 as shown on FWP channel mapping; however, it is not easily recognized in aerial photography prior to 2006. This side channel became deep after its sharp bend with low to moderate velocity during 2009 field work; other side channels had moderate velocities with cobble substrates. It should also be noted that Soap Creek enters just downstream of this channel complex and has been located at this confluence point since 1939; this tributary contributes a sediment load of primarily sand, silt and clay to the Bighorn River.

Channel complex 15
The area of complex 15 had a very different configuration prior to dam construction (Figure 21). In 1939, the main channel was located in what is now a vegetated island. Several side channels were located on either side of the main channel with vegetated and unvegetated bars between the channels. By 1954, the side channel along the right bank was abandoned and a split flow pattern developed at the upstream and downstream ends of the complex. 1970 aerial photography shows that the main channel had switched to the left side between 1961 and 1970 and that side channels 15A, 15B and 15E and overflow channels 15C and 15F had begun to develop in their current locations while the main channel had migrated laterally to the right (east) bank. Vegetation was also beginning to emerge on islands in greater quantities than previously. By 1980, most of the side channels and overflow channels were in their 2006. Side channel 15D, not described above, was a very short lived side channel that was visible in 1980 photography; this side channel has primarily served as an overflow channel or area during the historical period. Most of the side channels in this channel complex, including 15A, 15C and 15D, had dry entrances with vegetation obscuring the entrances combined with backwater at the downstream connections. 15B had a cobble bed at its entrance and consisted of moderate velocity flow with silt accumulations in secondary flow areas; observations following the July, 2009 high flow indicated that channel 15B had been scoured and widened and a larger volume and high velocity discharge was entering the side channel. This channel complex was also noted to have bedrock in its channel bed based on large slabs of rock visible in side channel 15B and large standing waves in the main channel between 15C and the confluence with side channel 13.

Channel complex 16
At complex 16, the channel configuration has been similar since 1939, with split flow around an unvegetated bar (Figure 22). The channel developed its 2006 position by 1980; the island became partially vegetated by 1954 and has maintained a similar coverage of vegetation since this time, with the upper end of the island remaining unvegetated due to inundation in the post-dam flow regime. Side channel 16 was noted to be a long, deep, swift channel with a cobble substrate during 2009 field observations.

Channel complex 17
Channel complex 17 is located at the entrance of xx Creek. The history for complex 17 is similar to complex 16. In 1939, the side channel was in its present location, but shorter in length (Figure 22). The 1954 configuration was very close to the present configuration;
Figure 21. Historical channel mapping for complexes 13, 14 and 15.
By 1970, small mid-channel bars had developed and by 1980, had the same extent as 2006. Bars separating the side channel from the main channel have grassy vegetation and small shrubs, which suggest that they are frequently inundated; the channel substrate is cobbly and the channel itself is steep and narrow with swift velocities.

Channel complex 18
Channel complex 18 is predominantly mapped as a split flow channel through the historical period with exception of 1939 and 1961 where the difference in width between the two channels was great enough to define the left channel as a side channel (Figure 22). While the mid-channel bar has been in a similar location since 1939, it had established its 2006 location by 1970. This bar has larger trees and shrubs when compared to the bar at complex 17; the channels can be characterized as moderate to high velocity channels with cobbly substrate.

Channel complex 19
From 1939 to 1970, the area in the vicinity of channel complex 19 existed as an unvegetated lateral bar (Figure 23). By 1980, a side channel had developed along the back edge of the bar and has persisted through 2006. Low vegetation developed in 1980 and has remained low and immature, probably due to frequent flooding over most of the bar’s surface.

Complex 20
The 1939 channel configuration consisted of unvegetated lateral bars on the left bank and narrow overflow channels in the right bank floodplain (Figure 23). By 1954, the general bar configuration had developed that is present in 2006, with erosion along the right bank; progressive abandonment of the right bank overflow channels between complex 19 and 20 can be observed between 1939 and 1961, with some minor channel splays on the floodplain surfaces in 1961. By 1970, the upstream two side channels (20A, 20B and 20D) had developed with mid-channel bars beginning to vegetate and by 1980, all three side channels including 20C were in their 2006 locations. The continued growth and maturation of vegetation on the bars is documented between 1990 and 2006.

Complex 21
At complex 21, a large side channel existed along the right bank in 1939 that was converted to an overflow channel by 1954 and completely abandoned by 1980 (Figure 23). Multiple channels and unvegetated bars were present in 1939 photography and persisted in the same general locations until 1970, when the bars began to vegetate with several distinct small trees or large shrubs, eventually coalescing into larger vegetated islands with more mature vegetation from 1970 to 2006. The larger side channels along the right bank (21A and 21B) were established in their general locations by 1954; however, the smaller side channels not specifically noted in Figure xx developed as the smaller mid-channel bars and vegetation developed between 1961 and 2006.
Figure 22. Historical channel mapping for complexes 16, 17 and 18.
Figure 23. Historical channel mapping for complexes 19, 20 and 21.
Channel complexes 22 and 23
1939 photography shows split flow around a large unvegetated bar in the main channel and a side channel of considerable length along the right bank with a predominantly unvegetated bar in the middle of the complex (Figure 24). In 1954, side channel 22 is present at a slightly different location than 2006 with a mid-channel bar and lateral bar along the right bank; side channel 23 is present at a very similar location to that of 2006. Between 1954 and 1961, side channel 22 is incorporated into the main channel while side channel 23 is located in essentially the same position. In 1970, a narrow side channel is formed at the location of 22 and persists through 2006; side channel 23 and its mid-channel bar are also in the same position as in 2006 with an additional narrow side channel that formed between 1991 and 2006. Changes from 1970 to 2006 are mainly related to vegetation establishment on lateral bars and mid-channel bars, which reduced the overall active channel area for these complexes and slight changes in the configuration of side channel 22. It should also be noted that the lengthy side channel that existed in this area in 1939 had transitioned to an overflow channel by 1961.

Figure 24. Historical channel mapping for complexes 22 and 23.

Channel complex 24
In the area of complex 24, a narrow lateral bar existed along the left bank in 1939, which was mostly underwater (Figure 25). Along the right bank, a lateral bar and large overflow channel existed that connected with an additional side channel/overflow channel to the east. 1954 photography shows a similar channel configuration with lateral erosion of the right bank between 1939 and 1954. By 1961, the far eastern side channel had converted to an overflow channel. A major change in bar configuration can be observed along the left bank in which several unvegetated bars developed between 1961 and 1970; this could be related at least in part to the construction of St. Xavier Bridge, which may have encouraged sediment deposition downstream of bridge piers. By 1980, these bars had been stabilized by vegetation; vegetation growth continued on these surfaces so that by 2006 there existed mature vegetation on the majority of islands along the left bank.

Channel complex 25
Channel complex 25 has had a similar channel configuration since 1939 with minor changes in the position of the left bank side channel, increasing area of the mid-channel bar between 1939 and 1961, and right bank erosion between 1939 and 1970 (Figure 25).
Vegetation increases similar to other complexes can be observed between 1970 and 2006. Most of the vegetation on this bar has remained relatively immature, which suggests that it is inundated frequently in the post-dam flow regime.

Channel complex 26
Channel morphology in 1939 in the vicinity of complex 26 consisted of a split flow channel pattern with extensive unvegetated bars (Figure 26). Between 1939 and 1954, the channel shifted toward the right bank with a more equal split in flow between the two channel branches. By 1961, a greater amount of flow appeared to be routed down the left channel, which had widened since 1954 while the right channel (26A) had narrowed in width. Between 1961 and 1970, the channel migrated toward the right (east) bank and vegetation established on the large mid-channel bar between the two channels. The channel pattern in 1970 remained for the rest of the historical period, and included the development of 26B. Additional vegetation on the banks and bars developed through 2006; side channel 26C was a late development, appearing between 1980 and 1990 and partially filled in by 2006.

Channel complex 27
At channel complex 27, multiple channels and bars existed in 1939, but in a slightly different configuration than present (Figure 26). Between 1939 and 1954, the main channel switched to the opposite bank; the channels mapped in 1961 had moved to similar locations to that of the 2006 overflow channel through erosion of the right bank between 1954 and 1961 to establish the split flow channel. The split flow channel had disappeared by 1970 and evolved into a single channel on the left bank that conveyed the majority of the flow and an overflow channel on the right bank, which conveyed flow.
during larger discharges. Vegetation is noted to have progressively encroached on lateral bars and islands beginning in 1961 and continuing through 2006.

Figure 26. Historical channel mapping for complexes 26 and 27.

Channel complex 28
In 1939, the main channel in the vicinity of channel complex 28 was located along the left bank with a narrow lateral bar along the right bank and several overflow channels running through the right bank floodplain (Figure 27). Between 1939 and 1961, a channel avulsion likely switched the main channel from the left bank into the overflow channel on the right bank; the main channel subsequently transitioned into a side channel, shown in
1961 aerial photography. Vegetation growth, among other factors, stabilized this channel pattern that is present through 2006.

Channel complex 29
The general configuration of side channel 29 was formed between 1939 and 1961; in 1939, the area was composed of a single thread, straight channel with a narrow lateral bar and overflow channel along the left bank (Figure 27). Erosion along the right bank between 1939 and 1961 established a more extensive lateral bar and side channel along the left bank; slight changes in the side channel geometry and bar morphology established side channel 29 in its 2006 position by 1980.

Channel complex 30
Side channel 30A has existed in its general location since 1939 and has alternated between a side channel and weakly visible overflow channel within an unvegetated lateral bar from 1939 to 1980 (Figure 28). In 1980, its present position was established and it has remained in a similar position for the last 26 years. 1939 photography shows that this complex was much more complicated with multiple overflow channels and lateral bars that do not exist currently. Overflow channel 30B is a good example of a large side channel that has subsequently transitioned to an overflow channel with the change in flow regime.

Channel complex 31
Side channel 31 formed between 1939 and 1954 during a period of lateral erosion of the right bank and has remained a side channel for the past 52 years (Figure 28). While the mid-channel bar between the main channel and side channel 31 has experienced vegetation growth, very little has changed in the configuration of the side channel itself.
Several overflow channels and lateral bars have reattached to the streambanks through vegetation encroachment between 1961 and 2006 and have thereby significantly reduced the active channel area near this complex.

Figure 28. Historical channel mapping for complexes 30 and 31.

5.4 Trends/patterns in channel abandonment
Analysis of historical channel changes for each individual channel complex reveals that most complexes had established their 2006 channel position in the first decade following dam construction and at the latest, by 1980 (Table 5). The channel positions have essentially been “fixed” in place, or stable, for the last 28 years at a minimum and in
some cases for much longer. For example, complexes 1, 5, 9, 13, 16, 18 and 19 have been functioning as side channels in the Bighorn River system since at least 1939. These are simple complexes, with essentially one side channel and associated island that splits from the main channel for a relatively short distance; in some cases, the channel can be better characterized for the majority of the historical period as one of split flow, with apparently equal volumes of flow routed around a stable island. Since dam construction, relatively few channels have been gained in this reach; rather, the general pattern is one of loss or stability, where side channel and main channel area has shown an overall decrease. Some of the side channels have converted to overflow channels and only receive flow during the largest discharges in the post-dam flow regime. A few channels have formed; however, they are relatively small when compared to the side channels that have been lost. These include 15D, which was formed between 1970 and 1980 and abandoned by 1991 and two side channels that have branched from 12I through grassy islands sometime after 1970 and before 1980, although somewhat submerged and connect at the downstream end of complex 12. These channels are still active in 2009 with more defined and vegetated islands.

Table 5. Timing of the formation of side channels and channel complexes

<table>
<thead>
<tr>
<th>Complex no.</th>
<th>General 2006 channel configuration established</th>
<th>Stabilization to 2006 channel pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1939</td>
<td>1939</td>
</tr>
<tr>
<td>2</td>
<td>1961</td>
<td>1970</td>
</tr>
<tr>
<td>3</td>
<td>1954</td>
<td>1980</td>
</tr>
<tr>
<td>4</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>5</td>
<td>1939</td>
<td>1980</td>
</tr>
<tr>
<td>6</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>7</td>
<td>1970</td>
<td>1970</td>
</tr>
<tr>
<td>8</td>
<td>1970</td>
<td>1970</td>
</tr>
<tr>
<td>9</td>
<td>1939</td>
<td>1939</td>
</tr>
<tr>
<td>10</td>
<td>1954</td>
<td>1980</td>
</tr>
<tr>
<td>11</td>
<td>1954</td>
<td>1980</td>
</tr>
<tr>
<td>12</td>
<td>1939</td>
<td>1980</td>
</tr>
<tr>
<td>13</td>
<td>1939</td>
<td>1939</td>
</tr>
<tr>
<td>14</td>
<td>1970</td>
<td>1980</td>
</tr>
<tr>
<td>15</td>
<td>1970</td>
<td>1980</td>
</tr>
<tr>
<td>16</td>
<td>1939</td>
<td>1980</td>
</tr>
<tr>
<td>17</td>
<td>1939</td>
<td>1980</td>
</tr>
<tr>
<td>18</td>
<td>1939</td>
<td>1970</td>
</tr>
<tr>
<td>19</td>
<td>1939</td>
<td>1980</td>
</tr>
<tr>
<td>20</td>
<td>1970</td>
<td>1980</td>
</tr>
<tr>
<td>21</td>
<td>1939</td>
<td>1980</td>
</tr>
<tr>
<td>22</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>23</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>24</td>
<td>1970</td>
<td>1970</td>
</tr>
<tr>
<td>Complex no.</td>
<td>General 2006 channel configuration established</td>
<td>Stabilization to 2006 channel pattern</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>25</td>
<td>1961</td>
<td>1970</td>
</tr>
<tr>
<td>26</td>
<td>1961</td>
<td>1970</td>
</tr>
<tr>
<td>27</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>28</td>
<td>1961</td>
<td>1970</td>
</tr>
<tr>
<td>29</td>
<td>1961</td>
<td>1991</td>
</tr>
<tr>
<td>30</td>
<td>1939</td>
<td>1970</td>
</tr>
<tr>
<td>31</td>
<td>1954</td>
<td>1970</td>
</tr>
</tbody>
</table>

5.5 Effects of the June, 2009 peak discharge (12,800 ft³/s)

On June 23, 2009, a peak discharge of 12,800 ft³/s was released from Yellowtail Afterbay, which had not been equaled in about 14 years (see Figure 2). The effects of this discharge on the channel downstream of Yellowtail Dam and Afterbay were observed during August, 2009 field work. High water marks from the June, 2009 peak discharge indicate that the stage of the flow was relatively consistent in the main channel along the length of the study reach; most of the side channels that were not flowing during August field work had inundation depths at their channel entrances during the June high flow ranging from 2-4 ft based on high water marks. The dense vegetation in channel entrances inhibited flow in some of the channels downstream from the entrance; high water marks in these side channels were difficult to observe since most of the vegetation had been trapped at the entrance.

Several side channels appeared to have significantly less fine sediment accumulated in their beds when compared to April, 2009 field observations; remnant benches of sediment were noted along the sides of several channels as well as remnant sand bars that were significantly eroded and stood above the low water level during field work (Figure 29).
Gravel transported short distances into the side channels from their entrances was also apparent by the presence of isolated cobbles sitting on the surface of dry channels. Several new gravel deposits at the heads of mid-channel bars were also observed (Figure 30). Areas of scour were noted that were associated with points of high shear stress, such as downstream of woody obstructions; preferential scour in some places left a patchy appearance to deposits, in which fine-grained sediment had been stripped down to gravel in some places and not in others. A beaver dam located in channel complex 7 was also eroded along with much of the fine sediment that had accumulated behind it. Channel 15B had widened significantly since April field work; it is likely that other channels also experienced changes that were not observed during field observations.

These observations suggest that flows of 12,000 ft³/s, while not affecting every channel, are capable of at least partially scouring side channels that are filling in with fine sediment and of transporting gravel onto the heads of islands and for short distances into vegetation choked channels.
Figure 30. Changes observed from the June 23, 2009 peak discharge; (a) gravel mobilization and debris at entrance to side channel; (b) gravel deposition at head of bar, side channel 8B.
6.0 Discussion

6.1 Areas of historical instability/lateral channel change

Areas of historical instability and lateral channel change were identified based on lateral migration of the main channel and major changes in the channel positions within anabranching sections using the aerial photography from 1935 to 2006. The areas identified meet at least one of two criteria:

- Lateral movement of more than one main channel width (200-300 ft)
- Major changes in channel configuration

While most locations along this section of the Bighorn River have been relatively stable during the historical period, a few channel complexes met at least one of the above criteria (Table 6).

Table 6. Areas of lateral channel change

<table>
<thead>
<tr>
<th>Channel complex number</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>lateral erosion along left bank; changes in channel configuration</td>
</tr>
<tr>
<td>14</td>
<td>lateral erosion along right bank; changes in channel configuration from single channel to split flow</td>
</tr>
<tr>
<td>15</td>
<td>lateral erosion along right and left banks; changes in channel configuration from single channel to split flow and transition to side channel complex in right branch of split flow</td>
</tr>
<tr>
<td>26</td>
<td>lateral erosion along right bank; changes in channel configuration from split flow to main channel with large side channel</td>
</tr>
<tr>
<td>27</td>
<td>changes in channel configuration from split flow to main channel with overflow channel</td>
</tr>
<tr>
<td>28</td>
<td>main channel avulsion from left bank to right bank</td>
</tr>
</tbody>
</table>

6.2 Channels abandoned following dam construction

Several side channels formed prior to 1966 have already been abandoned during the historical period. Since these channels still may receive discharge during high flows, the abandonment is defined by side channels remaining dry during low flows, or flows less than 4,000 ft³/s. This value was chosen because this was the maximum discharge in aerial photography and also during field observations. The abandoned channels are located in
complexes 8, 10 and 15 and with the exception of 15D, were abandoned by 1970 (Table 7). 15D is a relatively small channel that was formed in 1980 and abandoned as a side channel by 1991. 8E and 8F have dry side channel entrances that are elevated above the main channel streambanks. However, they are wet at their downstream connections, forming ponded areas and wetland environments. Side channel 10B is choked with vegetation that can withstand wet conditions. A small amount of water still enters at the upstream end of the side channel but goes subsurface within a short distance from the entrance. The fact that the channel contains vegetation that prefers wet conditions suggests that flow still enters through the subsurface for some distance downstream; however, the downstream end of the channel is drier with less cattails suggesting that subsurface flow may be deeper in this area. Side channel 10C is much higher in elevation above the main channel and differs from many of the other channels in that it has a surface that is relatively free of vegetation, suggesting that it has been modified recently, probably during the peak discharge of June 18, 2008 (10,000 ft³/s) and June 23, 2009.

Table 7. Abandoned channels following dam construction, Afterbay to Bighorn access

<table>
<thead>
<tr>
<th>Side channel</th>
<th>Description</th>
<th>8/11-12/2009 flow observations</th>
<th>Longevity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F</td>
<td>2 ft of fines over gravel</td>
<td>wetland at downstream end</td>
<td>1939-1970</td>
</tr>
<tr>
<td>8E</td>
<td>2-3 inches of fines over gravel</td>
<td>ponded water at downstream end</td>
<td>1954-1970</td>
</tr>
<tr>
<td>10B</td>
<td>1 ft of fines over gravel at entrance</td>
<td>minimal flow along upstream side of channel; most of channel is choked with young willow and cattails</td>
<td>1954-1970</td>
</tr>
<tr>
<td>10C</td>
<td>gravelly deposits, vegetation free</td>
<td>no flow; acts as overflow path during high flow</td>
<td>1954-1970</td>
</tr>
<tr>
<td>13</td>
<td>up to 1 ft of fines over gravel at entrance; further downstream, 2-4 inches of fines over gravel</td>
<td>vegetation established at entrance; no flow into channel</td>
<td>1939-1991</td>
</tr>
<tr>
<td>15D</td>
<td>did not measure</td>
<td>no flow observed</td>
<td>1980-1991</td>
</tr>
</tbody>
</table>

6.3 Channels at greatest risk of abandonment

Channels at the greatest risk of abandonment were identified based on their lack of flow or minimal flow at side channel entrances during field work, and the character of fine sediment and vegetation in the channel itself. These channels generally had some amount of fine sediment depositing at side channel entrances and had shallow, low velocity flow at their entrances (Figure 32). Some of the side channels have vegetation developed at
their entrances as well and are characterized by discontinuous ponded water in scour holes along their channel lengths. Most of the downstream connections are characterized by ponded, wetland environments with thicker deposits of fine sediment than at channel entrances and sediment that is composed of greater fractions of clay and silt than those deposits at the channel entrances (Figure 31).

Figure 31. Examples of side channels at risk of abandonment; (a) entrance to side channel 4; (b) near mouth of side channel 10A.
Channels that were identified in Table 8 are mostly located on insides of channel bends where shear stress and stream power are lower, allowing for less scour from overbank flows. They are also located at the heads of channel complexes where flow splits into multiple channels and channel gradients and shear stresses are lower, allowing for sediment to fall out of suspension or transport.

Table 8. Channels at greatest risk of abandonment, Yellowtail Afterbay to Bighorn Access

<table>
<thead>
<tr>
<th>Channel no.</th>
<th>Description</th>
<th>8/11-12/2009 flow observations (xx ft3/s)</th>
<th>Year first observed in general position</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8 inches of fines over gravel at entrance; thins downstream</td>
<td>shallow low velocity flow at entrance</td>
<td>1970</td>
<td>inside channel bend</td>
</tr>
<tr>
<td>8A</td>
<td>3 inches of fines over gravel; thickens downstream</td>
<td>ponded water in channel; no flow at entrance</td>
<td>1939</td>
<td>inside channel bend/ head of complex</td>
</tr>
<tr>
<td>10A</td>
<td>thin veneer of fines over gravel at entrance; low flow riffle is composed of pebbles and cobbles</td>
<td>moderate velocity riffle at entrance; low velocity flow downstream; ponded water or low flow at downstream end</td>
<td>1980</td>
<td>inside channel bend/ head of complex</td>
</tr>
<tr>
<td>11</td>
<td>4 inches of fines over gravel</td>
<td>ponded water; grass, willows and cattails in channel</td>
<td>1954</td>
<td>straight reach</td>
</tr>
<tr>
<td>12A</td>
<td>up to 1 ft of fines over gravel</td>
<td>low velocity shallow flow; channel is filled with cattails (or canary reed grass?)</td>
<td>1939</td>
<td>head of complex</td>
</tr>
<tr>
<td>12C</td>
<td>pebble-cobble bed material at entrance; some fines are filling in low areas</td>
<td>low velocity flow and water ponding at entrance; reed canary grass in channel</td>
<td>1939</td>
<td>head of complex</td>
</tr>
<tr>
<td>15A</td>
<td>2-4 inches of fines over gravel</td>
<td>no flow; ponded water in scour holes</td>
<td>1954</td>
<td>inside channel bend</td>
</tr>
<tr>
<td>15C</td>
<td>up to 1 ft of fines over gravel</td>
<td>entrance has thick vegetation; channel is filled with reeds</td>
<td>1980</td>
<td>~inside channel bend</td>
</tr>
</tbody>
</table>
6.4 Processes associated with side channel loss

River technicians and scientists as well as anglers have observed that several side channels appear to be dry during similar discharges that inundated the side channel several decades ago. This would lead to the conclusion that side channels in the study reach are becoming disconnected from the system and losing their functionality as aquatic habitat for much of the year. Several processes could be responsible for this abandonment, three of which seem to be most likely: (1) degradation of the channel leading to greater flow conveyance in the main channel and larger discharges required to inundate side channels; (2) lateral migration of the channel or channel avulsion away from side channels, causing a transition from frequent low flow inundation to infrequent high flow floodplain sedimentation; or (3) reduction in peak flows, thereby reducing the erosive capability of flows to promote channel avulsion and channel scour, and allowing for deposition and filling of side channels with sediment. While all three explanations are plausible, this analysis has shown that there is no evidence to support channel degradation; both USGS gage cross section data and repeat cross sections surveys indicate that channel degradation is not apparent in the study reach. Qualitative observations of mid-channel bars that have existed since 1939 (such as the mid-channel bar at complex 9) and are still being inundated frequently today are also an indication that the channel is not undergoing reach-wide degradation. Geomorphic mapping and historical channel analysis demonstrate that channel positions have remained relatively fixed since 1980 and very little channel migration or avulsion has occurred for the past 26 years. Even prior to 1980, many areas of the channel had a relatively stable channel pattern, existing since 1939. This suggests that lateral channel migration is not responsible for the majority of side channel shallowing and loss.

Based on data analysis, field observations and existing literature that documents similar response of rivers downstream from dams, the lack of large discharges that periodically mobilized large quantities of sediment prior to dam construction have limited new channel avulsions and the formation of new islands and bars. Lower magnitude flows that inundate side channels tend to deposit sediment in the channel; main channel flows that only marginally inundate side channels deposit sediment along channel entrances as natural levees or berms, which act to block flow further from entering the channel. Longer periods of dry channels promote vegetation encroachment and establishment at channel entrances and in channel beds, which act to further stabilize and inhibit side channels from being scoured during the higher flows that do occur. Examination of the record of monthly mean discharge shows that a period of low flow from 1999 to 2008 probably acted as a catalyst to further promote side channel loss as well as the stabilization of lateral and mid-channel bars, further inhibiting sediment supply in the reach to create new active areas and channel complexity (Figure 32).
Ligon et al. (1995) showed that similar processes were at work in the McKenzie River, which is also characterized as an anabranching or wandering gravel bed river. On this river, channel morphology gradually transitioned from a multi-thread channel to a single-thread channel over several decades; smaller channels slowly filled in, removing the existing islands from the active system. In the study reach, this process can be observed in many locations; at channel complex 10, side channels 10B and 10C present in 1961 have been lost and not replaced by other channels; the entrance to channel 10A is in the process of filling in with sediment, as shown by the accumulation of grasses, shrubs and small trees in 2006 photography (Figure 33). At side channel 13, the majority of loss of this entrance appears to have occurred between 1991 and 2006, a period of low flows with few larger flows, which allowed vegetation to establish on sediment accumulations.
Figure 33. Channel changes at channel complex 10; (a) vegetation establishment and sediment deposition in side channel 10a entrance; (b) vegetation growth in side channel 10b entrance

7.0 Conclusions
Geomorphic analysis of vertical and lateral historical changes on the Bighorn River from Yellowtail Dam to St. Xavier Bridge was conducted in order to investigate the loss of side channels in recent decades. Vertical changes were investigated by examining bed elevation changes at the USGS gaging station no. 06287000, Bighorn River near St. Xavier, MT and by resurveying historical cross sections established during the FWP wetted perimeter study in 1997 (Frazer, 1997). Lateral changes were investigated through detailed geomorphic mapping on 7 sets of historical aerial photography from 1939 to 2006. Results show that the mean bed elevation of the channel fluctuated up to 3.3 ft from 1935 to 1965 prior to the construction of Yellowtail Dam and Afterbay and remained relatively stable throughout the post-dam period from 1967 to 2009, fluctuating
up to 1.2 ft. The channel positions of the main stem and side channels have been in similar positions since 1980 and reflect a stable river system in which large-scale lateral movement in the channel was been halted about a decade following dam construction. Analysis of geomorphic mapping indicates that many channels have filled in with sediment and vegetation and that the geomorphic complexity, reflected in active channel area, has been decreasing since 1961 as side channels are abandoned and unvegetated channel bars are covered with vegetation. This reflects the reduction in peak flows and sediment supply that are required to scour channels and modify bars as well as deposit sediment in new areas, facilitating the formation of new bars and channels. The reduction in active channel area from 1939 to 1961 reflects the recovery of the channel from the 1935 flood of record and possibly the effects of reduced peak discharges from the construction of Boysen Dam in 1952. Observations of channel conditions during 2009 indicate that several critical side channels are becoming disconnected with the main channel; this is based on the presence of fine sediment accumulations at side channel entrances and mouths that suggests that the channels are filling in with sediment and the establishment of vegetation in side channel mouths as well as along their lengths. This information is confirmed by geomorphic mapping, in which side channels inundated in 1939 are not inundated in 2009 even with a larger discharge in the channel; these side channels are not being replaced by new channels created by channel avulsion, but rather are being lost as aquatic habitat during large parts of the year.

8.0 Further work
Hydraulic modeling, the second component of the Bighorn River Side Channel Investigation, is proposed to continue in Fiscal Year 2010. This analysis will identify the flows needed to inundate the side channels at various depths and discharges. If needed, modeling could also be performed to determine the potential of various discharges to scour the channel bed in critical side channels; this would require additional sediment sampling of the channel bed to obtain needed data on bed material. This study can be used to explore how habitat conditions are related to the physical features mapped during this study and how they may have changed during the post-dam flow regime.

9.0 References

Jacobsen, R.B., 1995, Spatial controls on patterns of land-use induced stream disturbance at the drainage basin scale—an example from gravel bed streams of the Ozark Plateau,
Missouri, In Natural and Anthropogenic Influences in Fluvial Geomorphology, American Geophysical Union Geophysical Monograph 89, p. 219-239.

Appendix A: Map Atlas
2006 Channel Mapping

- River mile
- Main channel
- Side channel
- Unvegetated bar/island
- Vegetated bar/island
- Holocene floodplain
- Overflow channel
2006 Channel Mapping

- river mile
- main channel
- side channel
- unvegetated bar/island
- vegetated bar/island
- Holocene floodplain

0 0.25 0.5 Miles

unvegetated bar/island
vegetated bar/island
Holocene floodplain

- 00.50.25 Miles

overflow channel
1991 Channel Mapping

- river mile
- main channel
- side channel
- overflow channel
- unvegetated bar/island
- vegetated bar/island

0 0.2 0.4 Miles
1991 Channel Mapping

- **river mile**
- **main channel**
- **side channel**
- **overflow channel**

- **unvegetated bar/island**
- **vegetated bar/island**

0 0.2 0.4 Miles
1980 Channel Mapping

- river mile
- main channel
- side channel
- overflow channel
- unvegetated bar/island
- vegetated bar/island

0 0.25 0.5 Miles
1970 Channel Mapping

- river mile
- main channel
- side channel
- unvegetated bar/island
- vegetated bar/island

0 0.25 0.5 Miles
1970 Channel Mapping

- river mile
- main channel
- side channel
- overflow channel

Legend:
- yellow: unvegetated bar/island
- green: vegetated bar/island

Unvegetated bar/island and vegetated bar/island locations are indicated on the map.

Main channel and overflow channel are also marked, with specific mile markers (e.g., 10, 11, 12, 13, 14, 15, 16) identified on the map.
1961 Channel Mapping

- **river mile**
- **main channel**
- **side channel**
- **overflow channel**

- **unvegetated bar/island**
- **vegetated bar/island**

 overflow channel
 side channel
 unvegetated bar/island
 river mile

0 0.25 0.5 Miles
1961 Channel Mapping

- river mile
- main channel
- side channel
- unvegetated bar/island
- vegetated bar/island
- overflow channel

0 0.25 0.5 Miles
1954 Channel Mapping

- **river mile**
- **main channel**
- **side channel**
- **overflow channel**

- **unvegetated bar/island**
- **vegetated bar/island**
- **Holocene floodplain**

0 0.25 0.5 Miles
1954 Channel Mapping

- River mile
- Main channel
- Overflow channel
- Vegetated bar/island
- Unvegetated bar/island

Legend:
- River mile
- Main channel
- Overflow channel
- Vegetated bar/island
- Unvegetated bar/island

Map showing channel mapping with specific mile markers and channel types indicated.
1954 Channel Mapping

- River mile
- Main channel
- Side channel
- Vegetated bar/island
- Unvegetated bar/island
- Overflow channel
1939 Channel Mapping

- river mile
- main channel
- side channel
- overflow channel
- unvegetated bar/island
- vegetated bar/island
1939 Channel Mapping

- river mile
- main channel
- side channel
- unvegetated bar/island
- vegetated bar/island
- overflow channel

0 0.25 0.5 Miles