Bighorn Lake Forecasting

Long-Term Issues Group Meeting

Crown Plaza Hotel Billings, Montana

May 21, 2008

U.S. Department of the Interior

Bureau of Reclamation

Outline

$>$ Deriving Bureau of Reclamation forecast
$>$ Utilization of other forecasts
> NRCS / National Weather Service
> Corps of Engineers
$>$ Final Bureau of Reclamation Forecast
$>$ Interpreting the Forecast

Data Used to Develop Seasonal Forecasts

- NRCS Snow Data
- NWS Precipitation Data
- Antecedent Conditions
- (October - December Inflows)
- Actual Historic Inflows
- April - July

NRCS Snowtel Site

Burgess Junction Hansen Sawmill Shell Creek Hobbs Park
Kirwin
Marquette Parkers Peak

Sucker Creek
Bone Springs Divide Burroughs Creek Little Warm
Blackwater
Sylvan Lake

Bald Mountain Sylvan Road South Pass
Togwottee Pass
Evening Star
Sylvan Lake

Snowtel Sites

Sites Used in Forecasts, and in Daily Monitoring of Snowpack

Precipitation Stations

- Powell
- Basin
- Cody
- Lovell
- Worland
- Thermopolis
- Sheridan
- Lander
- Riverton

Antecedent Conditions

- Natural Inflows from the previous months, and current Inflows are looked at when determining the equations we use to predict spring runoff.
- Typically the period from October - December provides the best correlation to predict future runoff.

Forecast

- Linear Regression is used to derive the forecasting equations.
- Independent Variables
- Snow Station Data
- Precipitation Station Data
- Fall Inflows
- Dependent Variable
- April-July spring flows

Forecast Development

- Linear Regression is used to evaluate all of the variables to come up with an equation that best matches the Actual Historic Inflows.
- The derived equation for the Equal Chance Forecast will come out something like the examples below.
$\mathbf{R}=0.92$ (coefficient of multiple correlation) Inflow = 27.0(Snow) +10.9(Precip.) +2.7 (IN) -624.8

R = 0.89 (coefficient of multiple correlation) Inflow = 81.99(S1) - 60.85(S2) + 7.7(S3)+38.23(S4) $+72.81(\mathrm{~S} 5)$ +36.49(P1) - 68.23(P2) +103.56(P3) +16.33(P4) +19.92(P5)
+45.26(P6) +43.11(P7) -22.25(P8) -20.57(P9) +43.72(P10) -1191.04

Statistical Evaluation

Bighorn Basin - April Natural Inflows Forcast

Interpreting Water Supply Forecasts

- 90 Percent Chance of Exceedance Forecast- There is a 90 percent chance that the actual stream flow volume will exceed this forecast value, and there is a 10 percent chance that the actual stream flow volume will be less than this forecast value.
- 70 Percent Chance of Exceedance Forecast- There is a 70 percent chance that the actual stream flow volume will exceed this forecast value, and there is a 30 percent chance the actual stream flow volume will be less than this forecast volume.
- 50 Percent Chance of Exceedance Forecast- There is a 50 percent chance that the actual stream flow volume will exceed this forecast value, and a 50 percent chance that the actual forecast will be less than this forecast value. Generally, this forecast is the middle of the range of possible stream flow volumes that can be produced given current conditions.
- 30 Percent Chance of Exceedance Forecast- There is a 30 percent chance that the actual stream flow volume will exceed this forecast value, and there is a 70 percent chance that the actual stream flow volume will be less than this forecast value.
- 10 Percent Chance of Exceedance Forecast- There is a 10 percent chance that the actual stream flow volume will exceed this forecast value, and a 90 percent chance that the actual stream flow will be less than this forecast.

Forecast Exceedance Levels

April - July Exceedence

- 10\% Chance of Exceedance
$\square 30 \%$ Chance of Exceedance
- Historic Average April-July
\square 50\% Forecast
$\square 70 \%$ Chance of Exceedence
\square 90\% Chance of Exceedance
$\begin{array}{lllllll}0 & 250 & 500 & 750 & 1,000 & 1,250 & 1,500\end{array}$
Inflow (1,000 Acre-Feet)

Forecast Exceedance Levels

April-July Exceedance

Distribution of Inflow Forecast

$05 / 20 / 2008$	Bighorn Lake Inflow Most Probable Plan									
	MONTH USED FOR FORECAST									
	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE				
Forecasted May 1 (May- Jul) Runoff Value										
Jan	128.9	153.6	154.0	134.5	143.7					
Feb	119.6	153.9	154.5	127.4	140.1					
March	147.2	189.0	189.7	156.7	172.2					
April	132.9	175.5	176.3	142.6	158.4					
May	199.7	258.1	259.2	212.9	234.7					
June	255.6	398.1	400.7	287.9	340.9					
July	155.6	248.2	249.9	176.6	211.1					
Aug	121.2	169.5	170.3	132.1	150.1					
Sept	152.7	198.5	199.3	163.0	180.1					
Oct	161.0	205.0	205.8	170.9	187.3					
Nov	128.6	172.1	172.9	138.4	154.6					
Dec	109.5	153.8	154.5	119.5	136.0					

Variability on Forecasts

- Spring precipitation accounting for $30-35 \%$ of the April-July runoff
- Weather conditions
- Precipitation (rain and/or snow)
- Temperatures
- Irrigation demands or withdrawals
- Soil moisture conditions
- High elevation snow versus low elevation snow
- Upstream reservoir and river operations

Daily Operations Worksheet

21-May-08 11:25 AM
BIGHORN LAKE (YELLOWTAIL) PROJECTED STORAGE CONTENTS

										Conservation Space		Flood Pool Space		
Date	Gains	Boysen	Buff. Bill	Calculated	Outflow			Content	Elevation	Feet	Acre-Feet	Feet	Acre-Feet	\%
		Release	Release	Inflow ${ }^{\text { }}$	Canal	River	Total			to Fill	to Fill	Occupied	Occupied	Occupied
05/20/08	1,693	1,110	1,840	4,642	341	1,490	1,831	810,455	3611.1	28.9	259,574	0.0	0	0.0
05/21/08	2,500	1,140	1,800	5,449	400	1,500	1,900	817,495	3612.2	27.8	252,534	0.0	0	0.0
05/22/08	3,125	1,140	1,800	6,065	400	1,500	1,900	825,756	3613.4	26.6	244,273	0.0	0	0.0
05/23/08	3,906	1,140	1,800	6,846	400	1,500	1,900	835,567	3614.8	25.2	234,462	0.0	0	0.0
05/24/08	4,883	1,140	1,800	7,823	400	1,500	1,900	847,315	3616.4	23.6	222,714	0.0	0	0.0
05/25/08	6,104	1,140	1,800	9,044	400	1,500	1,900	861,483	3618.4	21.6	208,546	0.0	0	0.0
05/26/08	6,714	1,140	1,800	9,654	400	1,500	1,900	876,863	3620.4	19.6	193,166	0.0	0	0.0
05/27/08	7,385	1,140	1,800	10,325	400	1,500	1,900	893,574	3622.5	17.5	176,455	0.0	0	0.0
05/28/08	8,124	1,140	1,800	11,064	400	1,500	1,900	911,750	3624.7	15.3	158,279	0.0	0	0.0
05/29/08	8,936	1,140	1,800	11,876	400	1,500	1,900	931,538	3626.9	13.1	138,491	0.0	0	0.0
05/30/08	9,383	1,140	1,800	12,323	400	1,500	1,900	952,211	3629.2	10.8	117,818	0.0	0	0.0
05/31/08	9,195	1,140	1,800	12,135	400	1,500	1,900	972,513	3631.3	8.7	97,516	0.0	0	0.0
06/01/08	9,011	1,140	1,800	11,951	400	1,500	1,900	992,449	3633.2	6.8	77,580	0.0	0	0.0
06/02/08	8,831	1,140	1,800	11,771	400	1,500	1,900	1,012,029	3635.0	5.0	58,000	0.0	0	0.0
06/03/08	8,655	1,230	2,300	11,595	400	1,500	1,900	1,031,258	3636.7	3.3	38,771	0.0	0	0.0
06/04/08	8,481	1,230	2,300	12,011	400	1,500	1,900	1,051,313	3638.4	1.6	18,716	0.0	0	0.0
06/05/08	8,312	1,230	2,300	11,842	400	1,500	1,900	1,071,033	3640.0	0.0	0	0.0	1,004	0.4
06/06/08	8,146	1,230	2,300	11,676	400	1,500	1,900	1,090,422	3641.5	0.0	0	-1.5	20,393	7.9
06/07/08	7,983	1,230	2,300	11,513	400	1,500	1,900	1,109,489	3643.0	0.0	0	-3.0	39,460	15.3
06/08/08	7,823	1,230	2,300	11,353	400	1,500	1,900	1,128,238	3644.3	0.0	0	-4.3	58,209	22.5
06/09/08	7,588	1,230	2,300	11,118	400	1,500	1,900	1,146,523	3645.6	0.0	0	-5.6	76,494	29.6
06/10/08	7,361	1,230	2,300	10,891	400	1,750	2,150	1,163,860	3646.8	0.0	0	-6.8	93,831	36.3
06/11/08	7.140	1,230	2,300	10,670	400	1,750	2,150	1,180,759	3647.9	0.0	0	-7.9	110,730	42.9
06/12/08	6,926	1,230	2,300	10,456	400	1,750	2,150	1,197,233	3649.0	0.0	0	-9.0	127,204	49.2
06/13/08	6,579	1,230	2,300	10,109	400	1,750	2,150	1,213,020	3650.0	0.0	0	-10.0	142,991	55.4
06/14/08	6,250	1,230	2,300	9,780	400	1,750	2,150	1,228,154	3650.9	0.0	0	-10.9	158,125	61.2
06/15/08	5,938	1,230	2,300	9,468	400	1,750	2,150	1,242,669	3651.8	0.0	0	-11.8	172,640	66.8
06/16/08	5,641	1,230	2,300	9,171	400	1,750	2,150	1,256,595	3652.7	0.0	0	-12.7	186,566	72.2
06/17/08	5,359	1,230	2,300	8,889	400	1,750	2,150	1,269,962	3653.5	0.0	0	-13.5	199,933	77.4
06/18/08	5,091	1,230	2,300	8,621	400	1,750	2,150	1,282,797	3654.3	0.0	0	-14.3	212,768	82.4
06/19/08	4,836	1,230	2,300	8,366	400	1,750	2,150	1,295,127	3655.0	0.0	0	-15.0	225,098	87.1
06/20/08	4,595	1,230	2,300	8,125	400	1,750	2,150	1,306,977	3655.7	0.0	0	-15.7	236,948	91.7

Post Runoff Season Forecast

- Analyze actual April-July runoff
- Compare to Previous Records
- Actual Inflows
- Precipitation
- Snow Water Content
- Forecast future inflows using from previous years of similar characteristics.

