

Executive Summary

Northwest Area Water Supply Project Draft Supplemental Environmental Impact Statement

U.S. Department of the Interior Bureau of Reclamation Great Plains Region

Mission Statements

The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public.

Table of Contents

Introduction	1
Reason for the Draft SEIS	2
Proposed Action	4
Issues and Concerns	6
Alternatives	7
Summary of Environmental Consequences	16
Next Steps	24

United States Department of the Interior

BUREAU OF RECLAMATION Great Plains Regional Office P.O. Box 36900 Billings, MT 59107-6900

JUN 2 0 2014

IN REPLY REFER TO: DK-5000 ENV-6.00

Dear Interested Party:

The U.S. Department of the Interior, Bureau of Reclamation announces the availability of the Draft Supplemental Environmental Impact Statement for the Northwest Area Water Supply Project (Draft SEIS) for review and comment. Reclamation will be accepting comments on the Draft SEIS until 5:00 p.m., Monday, August 11, 2014.

Reclamation, with assistance from federal and state agencies, tribes, and other cooperating agencies, prepared this Draft SEIS to evaluate and compare the impacts of a proposed project (action alternatives) to the consequences of the future without the Reclamation-funded project (No Action Alternative). Reclamation has identified the Missouri River and Groundwater Alternative as the preferred alternative.

To complement the public comment process, Reclamation will host a public hearing preceded by an open house at the following location and time:

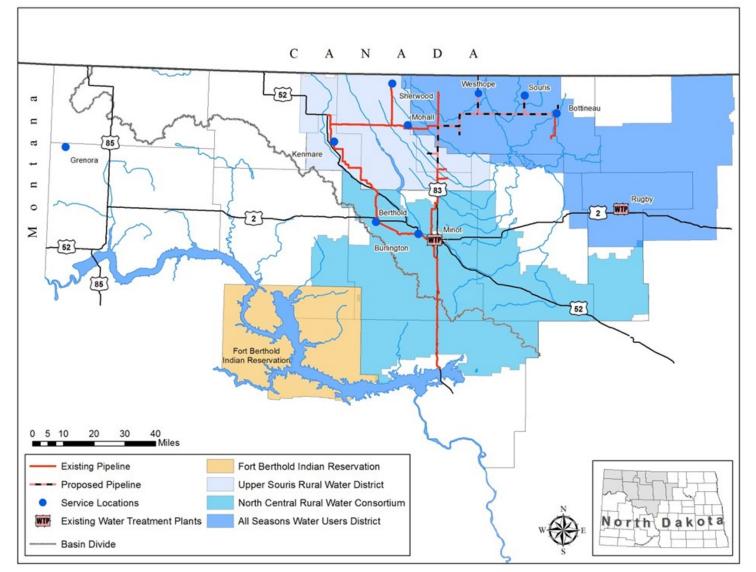
July 23, 2014 Comfort Inn, 1515 22nd Avenue SW, Minot, North Dakota *Open House* – 6:00 to 6:30 p.m. CST and *Public Hearing* – 6:30-8:30 p.m. CST

Comments can be made verbally during the hearing or be submitted in writing at the hearing. Written comments may also be submitted any time during the comment period via letter or e-mail. Comments should be sent to the attention of:

Ms. Alicia Waters, Bureau of Reclamation, P.O. Box 1017, Bismarck, North Dakota 58502 E-mail: <u>awaters@usbr.gov</u>

Please include "Draft SEIS Comment" as the subject line of e-mail comments. For additional questions on the public hearing or public comment period, or to request an Executive Summary, please contact Alicia Waters at 701-221-1206 or awaters@usbr.gov.

Sincerely, a). Ay-


Michael J. Ryan Regional Director

Introduction

The Northwest Area Water Supply Project (Project) in North Dakota is a municipal, rural, and industrial water supply project authorized by the Garrison Diversion Reformulation Act of 1986 as amended by the Dakota Water Resources Act of 2000. The Project has been under consideration and partial construction since 2002 and if completed, would resolve long-standing water supply and water quality problems in a ten-county area in northwestern North Dakota. The Project would provide a reliable, high quality water supply to serve the projected population through 2060.

Construction of Project facilities began in 2002 after the Bureau of Reclamation (Reclamation) completed an environmental assessment and finding of no significant impact, and the Secretary of the Interior signed a determination of compliance with the Boundary Waters Treaty of 1909. By 2010, 45 miles of buried main transmission pipeline from Lake Sakakawea to Minot had been built along with several segments of the originally planned distribution system.

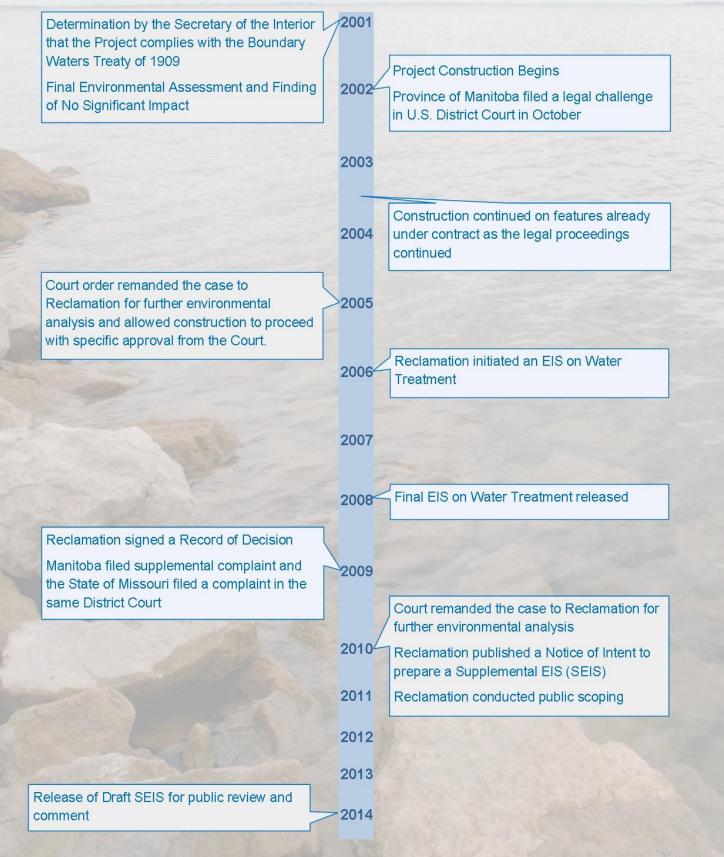
Reclamation prepared this draft supplemental environmental impact statement (Draft SEIS) to evaluate and update the estimated future water needs through 2060 and to examine a full range of reasonable alternatives to meet this future need. Analyses presented in the prior environmental assessment and environmental

Map of Northwest Area Water Supply Project Constructed and Proposed Facilities in North Dakota

impact statement (EIS) were updated and the potential effects of global climate change were evaluated. These analyses were used to compare the impacts of completing the Project (action alternatives) to the consequences of the future without further Reclamation funding for the Project (No Action Alternative). Cooperating agencies assisting in the preparation of the Draft SEIS include the U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, North Dakota State Water Commission, City of Minot, and Garrison Diversion Conservancy District. The Draft SEIS supplements the 2008 Final EIS on Water Treatment.

Construction of Project Main Transmission Pipeline

Reasons for the Draft SEIS


After Project construction began in April 2002, the Province of Manitoba, Canada, filed a lawsuit in October 2002 against the U.S. Department of the Interior in U.S. District Court in Washington, D.C. The province challenged the adequacy of the environmental assessment and finding of no significant impact and requested an injunction prohibiting expenditure of federal funds on the Project.

In 2005 the U.S. District Court ordered Reclamation to revisit the finding of no significant impact after completing further environmental analysis. The order stated that additional analyses should consider potential impacts associated with not fully treating Missouri River water at its source, as well as the impacts of pipeline leaks and possible failure of water treatment systems. The court also partially denied the plaintiff's request for an injunction, allowing Project construction to continue with some restrictions. In response to the court order, Reclamation prepared an EIS in consultation with other federal, tribal, state and local government agencies, which also included public input. The EIS evaluated a wide range of methods for treating water from Lake Sakakawea in the Missouri River basin prior to conveyance of treated water via buried pipeline to users within the Hudson Bay basin. The EIS also evaluated environmental impacts that could occur due to

pipeline leaks and failure of the water treatment systems. A Final EIS on Water Treatment was published in 2008 and Reclamation signed a Record of Decision in 2009.

Shortly thereafter, the Province of Manitoba filed a supplemental complaint contending the Final EIS was insufficient. The state of Missouri also filed a complaint against the U.S. Department of the Interior and the U.S. Army Corps of Engineers in the same District Court. The state of Missouri alleged Reclamation's Final EIS was insufficient and that the Corps of Engineers failed to complete a separate National Environmental Policy Act (NEPA) assessment of the Project. These two complaints were joined by the District Court. In March 2010, the court remanded the case to Reclamation and ordered that the injunction imposed in 2005 remain in effect. The court found the Final EIS inadequately examined cumulative impacts of water withdrawals on Lake Sakakawea and on the Missouri River as well as the consequences of transferring potentially invasive species into the Hudson Bay basin. This Draft SEIS evaluates these issues, and also reconsiders the purpose and need for the Project, evaluates a full range of reasonable alternatives, and evaluates and discloses impacts to affected resources.

Project Timeline

Proposed Action

The proposed action is to construct a project that provides drinking water to local communities and rural water systems in northwestern North Dakota, including the City of Minot. The project would supply water to specific delivery points. Each community or rural water system would be responsible for connecting to the distribution line and delivering water through their water system to end users.

Construction would be administered under a cooperative agreement between the Garrison Diversion Conservancy District and Reclamation. They along with the North Dakota State Water Commission, the project sponsor, would be responsible for following standard construction practices, procurement regulations and all applicable local, state, or federal laws. Reclamation provides oversight, and is the lead federal agency for National Historic Preservation Act and National Environmental Policy Act compliance.

The purpose of the proposed action is to provide a reliable, high quality water supply to communities and rural water systems in northwestern North Dakota for municipal, rural, and industrial uses; the Project is designed to serve water needs through 2060.

The Project is needed because the existing water supplies are not of sufficient quality or quantity to reliably meet current needs or projected growth in the Project Area during the 50-year planning period.

• Project members are supplied by groundwater, and supplies currently are constrained by water quality that does not meet all drinking water standards.

Northwest North Dakota Needs Reliable High Quality Water

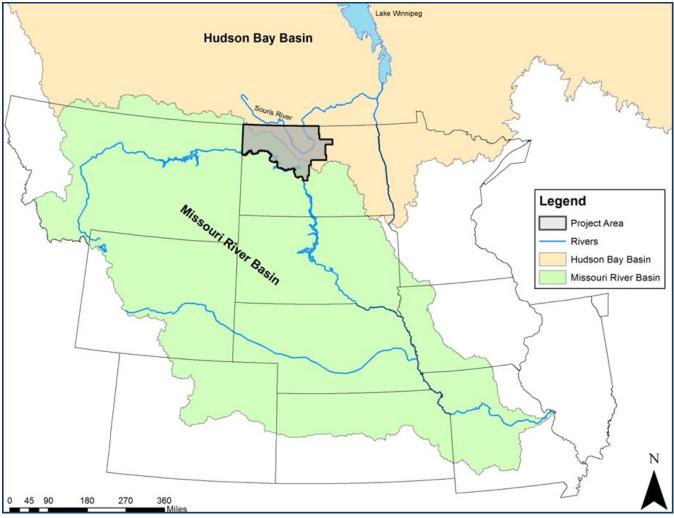
• Some Project members also have insufficient quantities of water available to meet current and/ or anticipated future demand.

The *Water Needs Assessment Technical Report* estimates the population that would be served by the Project will increase from 78,381 to 82,418 people by 2060. This rise is due to inclusion of rural

	Rural Water Associations and Districts					
	All Seasons Water Users District North Central Rural Water Consortium			r Consortium		
	West River Water and Sewer District		Upper Souris Water Users			
	Cities and Municipal Areas					
Be	erthold	Bottineau	Burlington	Grenora	Kenmare	Minot
IV	lohall	Rugby	Sherwood	Souris	Westhope	

Project Members

Executive Summary


populations into rural water systems or communities, as well as population growth in urban areas.

At least five communities or rural water systems would face water shortages in their service areas in the near future. Mohall, for example, has historically experienced water shortages during periods of peak water use. In other communities, although water supplies meet current demands, supplies would not meet estimated future demands. A population-based water demand model was used to project water needs, based on data from the U.S. Census and water user surveys circulated to Project members.

In 2010 water use was approximately 7.9 million gallons per day. By the end of the planning period in 2060, the projected average daily water need would rise to around 10.40 million gallons per day (average use) and 27 million gallons per day (peak use). In addition to water shortages, Project members are also experiencing poor water quality. The U.S Environmental Protection Agency regulates drinking water through the Safe Drinking Water Act. The city of Kenmare's groundwater source violates the primary drinking water standard for arsenic and many Project members rely on water sources that do not meet secondary standards.

In terms of industrial use, the Project is not designed to supply water for irrigation or for oil and gas production. Some livestock water needs would be served by the Project via rural water districts and are included in the rural water estimates as an industrial need.

This Draft SEIS complies with the court order by taking a hard look at cumulative impacts of water withdrawals from Lake Sakakawea and the Missouri River and consequences of biota transfer into the Hudson Bay basin, including Project effects in Canada. The NEPA does not require federal

Project Area in the Missouri River and Hudson Bay Basins

agencies to carry their impact analysis into the sovereign territories of foreign governments. However, in order to comply with the court's direction, Reclamation has done so in this particular case only. The Draft SEIS considers direct, indirect, and cumulative effects of the proposed construction and use of inbasin surface and groundwater sources, as well as imported Missouri River basin water to meet Project needs.

The geographic scope of analysis varies by resource but generally covers the Missouri and Souris River basins and extends into Canada. The Hudson Bay basin, which includes Canada's Lake Winnipeg and the surrounding communities, is within the scope of study. Lake Winnipeg area is included because the Souris River flows north into Manitoba where it meets the Assiniboine River, which flows into the Red River and eventually flows into Lake Winnipeg. Thus, aquatic invasive species transfer from the Missouri River to the Souris River could potentially affect this area.

Issues and Concerns Raised by the Public

Reclamation consolidated comments received during scoping in the *Summary of Public Comments, Northwest Area Water Supply Project* report. Concerns identified fall within the following issue categories:

- Purpose and Need need for reliable water supply and better quality water.
- Alternatives –examine water treatment options to avoid potential consequences and include a full range of alternatives.
- Cumulative Impacts evaluate potential for cumulative impacts of the proposed action with other past, present and reasonably foreseeable actions.
- Missouri River Depletion –examine current and future uses of the river with the Corps of Engineers and describe the potential effects of Project withdrawals on the river and related resources.
- Invasive Species Transfer –identify potentially invasive species that could be transferred between basins, the mechanisms of transfer, and evaluate the potential environmental and economic consequences.
- Climate Change disclose Project greenhouse gas emissions and climate change impacts.
- Mitigation and Monitoring develop an adaptive management plan for mitigation and monitoring Project effects.
- Construction Impacts minimize construction impacts to stream banks and other resources.

Reclamation considered issues and concerns raised during the scoping process and evaluated them in the Draft SEIS as appropriate.

Missouri River

Alternatives

Alternatives were identified using a structured alternative development and screening process, as described in Chapter 2 and Appendix C, *Alternatives Formulation*. The alternatives evaluated represent a full range of reasonable alternatives to meet the purpose and needs of the Project. Four action alternatives, as well as the No Action Alternative were evaluated. The NEPA regulations require analysis of a No Action Alternative to compare to action alternatives.

No Action Alternative

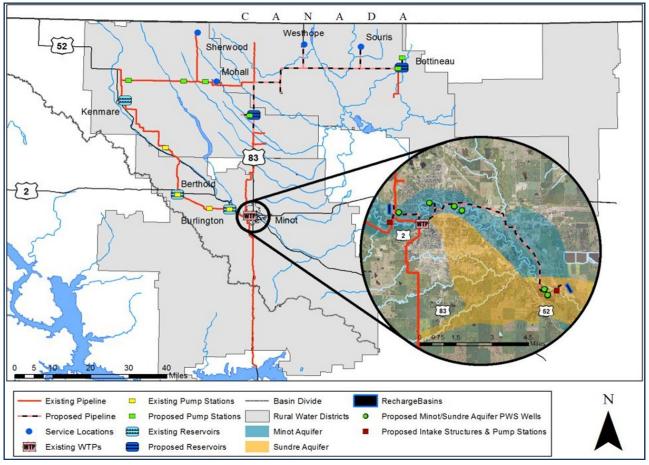
The No Action Alternative describes future water supply and changes in the affected environment without additional Reclamation funding for the Project. It was developed using the best available information and includes any reasonably foreseeable federal, state, tribal, and local water supply projects that may be constructed in the Project area through 2060.

Since 2008, the City of Minot has been temporarily supplying groundwater to Berthold, Burlington, Deering, Kenmare, Mohall, and the North Central Rural Water Consortium to alleviate some of the area's most severe water quality problems. These interim water service contracts expire by 2018, although they may be terminated earlier because groundwater in the Minot and Sundre aquifers is being withdrawn at an unsustainable rate.

Under the No Action Alternative at least five communities or rural water systems would experience water shortages in their service areas and many members would fail to meet Safe Drinking Water Act secondary water quality standards without additional treatment. Kenmare's local groundwater source violates the primary drinking water standard for arsenic so the community would have to upgrade or replace their water treatment plant to meet primary standards, or find an alternate water source.

Action Alternatives

Action alternatives fall into two categories – those using only inbasin water sources (Souris River and groundwater) and those proposing to use water from the Missouri River. One Missouri River alternative would blend water from Lake Sakakawea with Souris River water and groundwater. The other Missouri River alternative would blend water from Lake Sakakawea with groundwater. While all action alternatives would include many of the same components, they differ in the components related to water sources and the volume of water to be withdrawn from inbasin and/or Missouri River sources.


Component – a facility designed for the Project that forms an alternative when combined with other components.

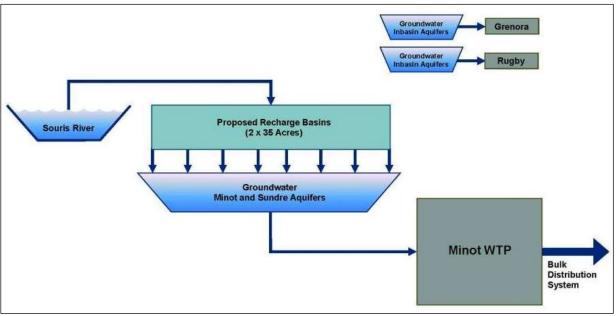
Option – an alternate way of implementing a component.

Pipeline construction

Inbasin Alternatives

Map of Existing and Proposed Inbasin Alternative Components

Inbasin Alternative Components

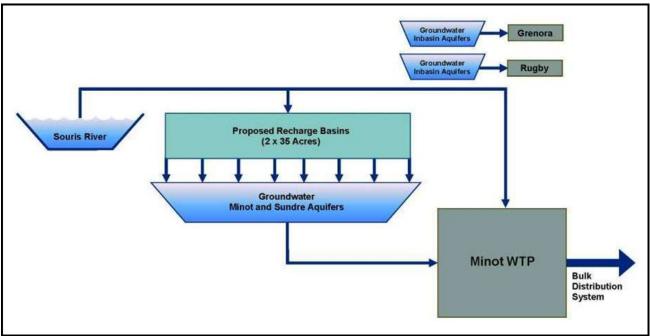

Components	Status
Minot Aquifer Recharge Facilities	Proposed
Sundre Aquifer Recharge Facilities	Proposed
Groundwater Collection Facilities	Existing and Proposed
Main Transmission Pipeline (buried)	Existing
Minot WTP Upgrades	Existing and Proposed
High Service Pump Station and Reservoir at Minot WTP	Existing
Souris Ri∨er Intake at Minot WTP*	Existing
Bulk Distribution Pipelines (buried)	Existing and Proposed
Storage Reservoirs	Existing and Proposed
Pump Stations	Existing and Proposed
Rugby Water Treatment Plant Upgrades	Existing

Note: Inbasin alternatives include the same components but differ in volume of water used from each source

* Used in Groundwater with Recharge and the Souris River alternative only

Groundwater with Recharge Alternative

This inbasin alternative would rely on existing Minot and Sundre aquifer wellfields as primary sources of water for the Project. Souris River water would be used to artificially recharge these aquifers. Groundwater would be piped to and treated at the existing Minot water treatment plant (WTP) and supplied to Project members through a water distribution system. Estimated total cost of this alternative is \$216.6 million for construction and \$8.8 million for annual operation, maintenance and replacement costs

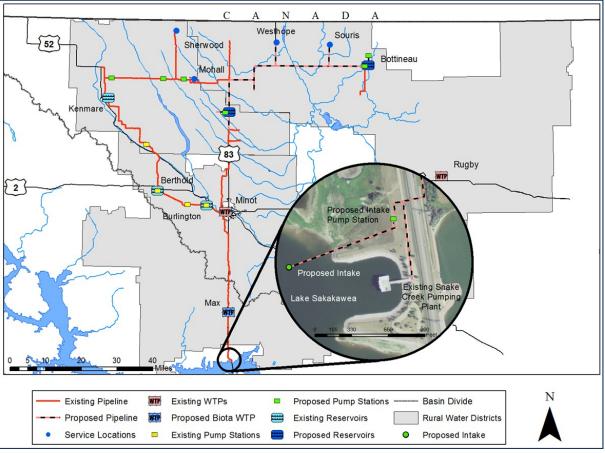

Groundwater with Recharge Alternative

Groundwater with Recharge Alternative

Advantages	Disadvantages
Lowest cost alternative	Project would need to acquire an additional water permit for withdrawal from the Souris River, which would be junior to existing water permits
Biota WTP would not be necessary	Finished water would not meet all Safe Drinking Water Act secondary water quality standards
Project construction and operation would create new jobs and provide economic benefits	Flows in the Souris River are extremely variable, making this a potentially un- reliable water source for aquifer recharge.
	Would substantially increase the number of near-zero flow days in the Souris River
	Water quality, aquatic biological communities, and recreation would be adversely impacted by lower flows in the Souris River
	There is uncertainty regarding technical feasibility of aquifer recharge in the Project Area
	Decreased flows in the Souris River would adversely affect the J. Clark Salyer National Wildlife Refuge
	Flows below 20 cfs downstream of Minot would be more frequent, which could become an issue in maintaining minimum flow at the international border
	Would result in permanent construction impacts due to construction of aquifer recharge facilities

Groundwater with Recharge and Souris River Alternative

This inbasin alternative would use water from existing Minot and Sundre aquifers to serve as a primary water source and would use Souris River water to artificially recharge these aquifers. In addition Souris River water would supply the Minot WTP during certain periods. Groundwater would be piped to the Minot WTP, blended with Souris River water when available, and treated for delivery to Project members through a distribution system. Components would be the same as the other inbasin alternative (see table above) but would also include the use of an existing Souris River intake. Estimated total cost of this alternative is \$217.1 million for construction and \$8.8 million for annual operation, maintenance and replacement costs.



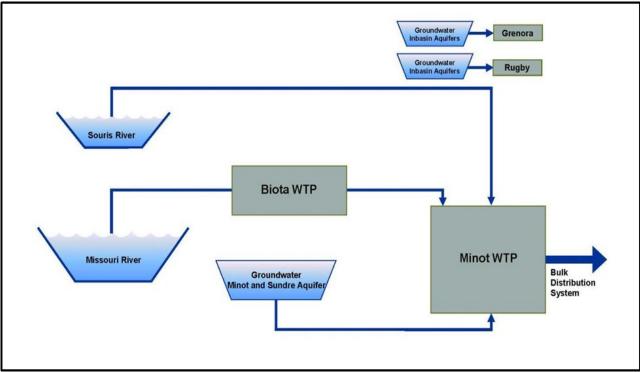
Groundwater with Recharge and Souris River Alternative

Groundwater with Recharge and Souris River Alternative

Advantages	Disadvantages
Second lowest cost alternative	The Project would need to acquire an additional water permit for withdrawal from the Souris River, which would be junior to existing water permits
Biota WTP would not be necessary	Finished water would not meet all Safe Drinking Water Act secondary water quality standards
Project construction and operation would create new jobs and provide economic benefits	Flows in the Souris River are extremely variable, making this a potentially unreliable water source for aquifer recharge or direct delivery
	Would substantially increase the number of near-zero flow days in the Souris River
	Water quality, aquatic communities, and recreation would be adversely impacted by lower flows in the Souris River
	There is uncertainty regarding the technical feasibility of aquifer recharge in the Project Area
	Decreased flows in the Souris River would adversely affect the J. Clark Salyer National Wildlife Refuge
	Flows below 20 cfs downstream of Minot would be more frequent, which could become an issue in maintaining minimum flow at the international border
	Would result in permanent construction impacts due to construction of aquifer recharge facilities

Missouri River Alternatives

Map of Existing and Proposed Missouri River Alternatives Components


Missouri River Alternative Components

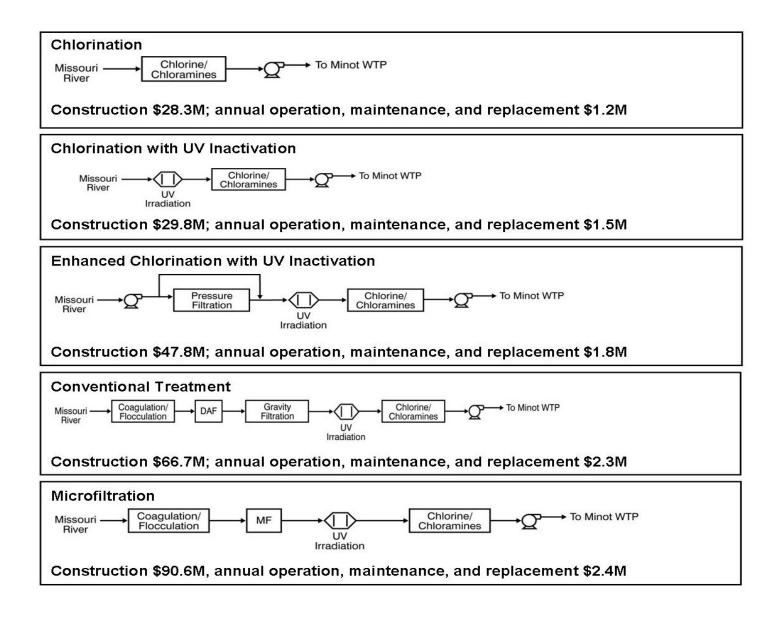
Facility	Status
Biota WTP and Pump Station	Proposed
South Prairie Storage Reservoir	Proposed
Main Transmission Pipeline (buried)	Existing
Bulk Distribution Pipelines (buried)	Existing and Proposed
Minot WTP Upgrades	Existing and Proposed
Souris Ri∨er Intake at Minot WTP*	Existing
High Service Pump Station and Reservoir at Minot WTP	Existing
Storage Reservoirs	Existing and Proposed
Pump Stations	Existing and Proposed
Rugby WTP Upgrades	Existing

Note: Missouri River alternatives include the same components but differ in volume of water used from each source

Missouri River and Conjunctive Use Alternative

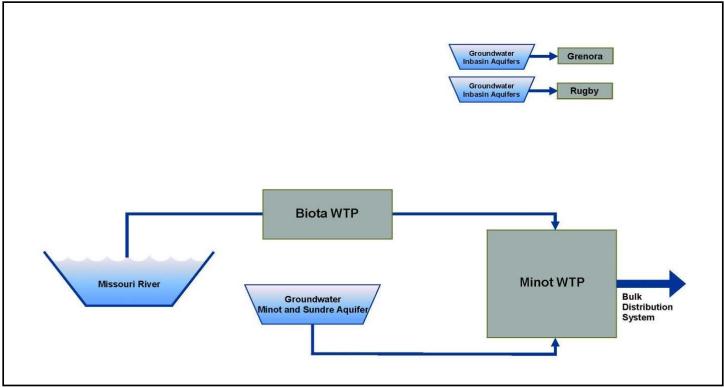
This Missouri River alternative would convey water from Lake Sakakawea to the Biota WTP in the Missouri River basin. After treatment at the Biota WTP, water would be conveyed in a buried pipeline to the Minot WTP and blended with water from the Souris River and Minot and Sundre aquifers. Following treatment at the Minot WTP, water would be distributed to Project members through a distribution system. Two options for a new intake and pump station at Lake Sakakawea and five options for a Biota WTP are evaluated. The range of total estimated costs this alternative is \$205.7 to \$276.7 million for construction and \$9.5 to \$10.8 million for annual operation, maintenance and replacement. Costs depend on the intake and Biota WTP options included.

Missouri River and Conjunctive Use Alternative


Missouri River and Conjunctive Use Alternative

Advantages	Disadvantages
The Missouri River would provide a reliable source of water and the state has issued a water permit for water from Lake Sakakawea	Highest cost alternati∨e
Finished water would be of high quality, meeting all Safe Drinking Water Act (primary and secondary) standards	The Project would need to acquire an additional water permit for withdrawal from the Souris River, which would be junior to existing water permits
Using Missouri Ri∨er water would reduce demands on Minot and Sundre aquifers	Decreased flows in the Souris River due to the Project would adversely affect J. Clark Salyer National Wildlife Refuge
Minimal permanent impacts associated with construction activities	Biota WTP would be required
Project construction and operation would create new jobs and economic benefits	Operational complexity of treating water from three sources with varying water quality

Two options are evaluated for an intake and pump station at Lake Sakakawea:


- Modify existing Snake Creek Pumping Plant (approximately \$14 million to construct and \$1 million annually for operation, maintenance and replacement) or
- Build a new intake adjacent to Snake Creek Pumping Plant (approximately \$23 million to construct and \$1.1 million annually for operation, maintenance and replacement)

Five Biota WTP options for Missouri River alternatives are evaluated. These would provide treatment to further reduce risk of a Project-related transfer of aquatic invasive species to the Hudson Bay basin. The options propose a range of treatments starting with chemical disinfection and incrementally adding treatment technologies to further reduce risk; costs increase with added treatment.

Missouri River and Groundwater Alternative

This Missouri River alternative would use Lake Sakakawea for a primary water supply. No Souris River water would be used. Water from Lake Sakakawea would be conveyed to the Biota WTP in the Missouri River basin. After treatment at the Biota WTP, the water would be conveyed in a buried pipeline to the Minot WTP and blended with water from the Minot and Sundre aquifers. Following treatment at the Minot WTP, water would be supplied to Project members through a distribution system. This alternative includes two options for a new intake and pump station and five options for a Biota WTP as described previously. Estimated range of total cost is \$205.6 to 276.8 million for construction and \$9.5 to \$10.8 million for annual operation, maintenance and replacement costs. Cost depends on intake and Biota WTP options included.

Missouri River and Groundwater Alternative

Missouri River and Groundwater Alternative

Advantages	Disadvantages
The Missouri River would provide a reliable source of water and the state has issued a water permit for water from Lake Sakakawea	Second highest cost alternative
Finished water would be of high quality, meeting all Safe Drinking Water Act (primary and secondary) standards	Biota WTP would be required
Using Missouri River water would reduce demands on the Minot and Sundre aquifers	
Minimal permanent impacts associated with construction activities	
No impacts to the Souris River and related resources	
Project construction and operation would create new jobs and economic benefits	

Other Considered but Eliminated Alternatives

During preparation of this SEIS, Reclamation identified alternate ways of meeting the purpose and need for the Project including water treatment technologies and sources. A number of components and/or options were considered but eliminated during the alternative development process for the following reasons:

Water Treatment

- <u>Basic Treatment Biota WTP Option</u> (pretreatment, chlorination and ultraviolet inactivation) – this specific layout of biota
- treatment processes was eliminated from further consideration because it provided limited improvements in treatment effectiveness with a substantial increase in capital costs in comparison to the Biota WTP options evaluated.
- <u>Reverse Osmosis</u> this treatment process at the Minot WTP was proposed for inbasin alternatives as a means of achieving secondary drinking water standards. It was eliminated because the cost-benefit ratio was very low.

Water Sources

- <u>Audubon Lake</u>—water in Audubon Lake is of lower quality than water in Lake Sakakawea due to evaporation and limited outflow from Audubon Lake. Missouri River depletions would be essentially the same because water from Lake Sakakawea is the primary source of water for Audubon Lake. Use of water from Audubon Lake would increase water treatment costs and result in more persistent water quality problems.
- <u>Bedrock Aquifers</u> Inbasin bedrock aquifers were eliminated because they are very deep, would yield limited quantity, have poor water quality, and proposed Project use could impact nearby existing wells.
- <u>Aquifer Storage and Recovery</u> This is not a proven technology for local aquifers and would require extensive investigation to determine feasibility, engineering design, and costs.

• <u>Reuse of Treated Wastewater for Outdoor Needs</u> Wastewater treatment facility upgrades and distribution in the city of Minot would be expensive. Given low rates of outdoor water use the estimated Project water demand would not be substantially reduced; therefore, potential reuse of treated wastewater by other Project area communities and rural water systems was eliminated.

Alternative Components

- <u>Lake Sakakawea Intake and Pump Station near</u> <u>Fort Berthold</u> – This intake location on Lake Sakakawea, north of the Fort Berthold Indian Reservation and east of New Town, and associated pipeline were proposed. It would require the construction of 59 miles of new pipeline, and evaluation and acquisition of a different Biota WTP site. This intake option was eliminated due to large capital costs in comparison to other intake options evaluated.
- <u>Intake on South Shore of Lake Sakakawea</u> This option was eliminated because it would require a costly and lengthy extension of the transmission pipeline. The pipeline would need to be constructed under either Lake Sakakawea or Lake Audubon because the U.S. Army Corps of Engineers would not allow construction of a buried, pressurized pipeline in the causeway between the two lakes. In comparison to the intake options evaluated, the estimated costs of this option were much higher and the potential environmental impacts were greater.

Identification of the Preferred Alternative

Reclamation has identified a preferred alternative in this Draft SEIS. According to Reclamation's NEPA Handbook, in identifying a preferred alternative Reclamation should consider:

• If an alternative exists which has consensus of the affected community, is reasonable and practicable, meets the purpose and need for action, and is within Reclamation's statutory authority to implement, Reclamation should designate it as the preferred alternative.

• The preferred alternative should be an alternative that completes the action and that best meets the purpose and need for the action as defined in the SEIS.

Reclamation compared all alternatives in terms of how each addressed the purpose and need (i.e., a reliable supply of high quality drinking water), environmental impacts and non-environmental issues identified during the SEIS process, and the estimated construction and operation, maintenance and replacement costs. Based on this information, Reclamation has identified the Missouri River and Groundwater Alternative as the preferred alternative. This alternative would include modifications to the Snake Creek Pumping Plant as the intake option and chlorination with ultraviolet inactivation as the biota water treatment plant option.

With an estimated total construction cost of \$207 million and an annual operation, maintenance and replacement cost of approximately \$10.5 million, the Missouri River with Groundwater Alternative would provide a reliable source of high quality water to the Project area to meet the Project purpose and need through 2060. The preferred alternative would provide Project members with drinking water that meets both primary and secondary standards. This alternative would not require additional water permits, would not impact the Souris River or the J. Clark Salyer National Wildlife Refuge, and would have minimal effects on the Missouri River and related resources.

The risk of a Project-related transfer and establishment of aquatic invasive species would be much smaller than the risk of transfer and establishment through existing non-Project pathways. To further reduce the risk of a Project-related transfer of aquatic invasive species, this alternative would include the chlorination and ultraviolet inactivation biota water treatment plant option, which provides protection against the organisms of concern and is the most cost effective option evaluated. With proposed best management practices (BMPs) and environmental commitments described in Appendix F, the Missouri River with Groundwater Alternative would have fewer environmental effects than other alternatives that meet the purpose and need. Appendix C provides the detailed rational for Reclamation's identification of the preferred alternative.

Summary of Environmental Consequences

To evaluate environmental effects of the alternatives, two primary comparisons are made in this Draft SEIS (43 Code of Federal Regulations 46):

> *No Action Alternative Compared to Existing Conditions*: consequences to be expected if the Project is not completed.

Action Alternatives Compared to No Action Alternative: evaluates the net effects or impacts of each action alternative compared to the No Action Alternative.

In this analysis, the consequences of the No Action Alternative (future condition through 2060) are identified by comparing to existing conditions. The No Action Alternative is the basis to which all action alternatives are compared to identify potential impacts. The consequences of the No Action Alternative are identified in the following table.

Impacts of Action Alternatives

Two issues identified by the court are highlighted in this section: 1) cumulative impacts of water withdrawals on Lake Sakakawea and on the Missouri River and 2) consequences of transferring potentially invasive species into the Hudson Bay

Consequences anticipated changes to resources under the No Action Alternative

Impacts/Effects anticipated changes to resources attributable to the construction or operation of the action alternatives

Consequences of the No Action Alternative

Issues	Consequences
Water Resources	
Groundwater	Minot and Sundre aquifers would continue to decline due to existing and increasing withdrawals that exceed natural recharge. Aquifers used by other communities may also decline due to increased withdrawals as temporary water supply contracts with the City of Minot expire.
Missouri Ri∨er Flows	Water withdrawals would increase over existing conditions. The average annual depletion would be 516,000 ac-ft greater than it is now due to increased water demands from projected population growth, expanded industrial use, and new water projects in the Missouri River basin. These depletions, along with continuing reservoir sedimentation, would generally result in slightly reduced streamflow.
Missouri Ri∨er System Storage	Small reduction in average Missouri River System storage, primarily due to future sedimentation plus a very small reduction due to reasonably foreseeable future non-Project depletions.
Missouri River Reservoir levels	Reservoir levels would rise as a result of continuing sedimentation.
Aquatic Invasive Species	
Risk to Hudson Bay Basin	The risk of aquatic invasive species transfer to and establishment in the Hudson Bay basin through existing pathways would continue.
Environmental and Economic Impacts from Aquatic Invasive Species	Adverse environmental and economic impacts of aquatic invasive species could increase due to transfer through existing pathways, potential future invasions through new pathways, and expanded distribution and abundance of aquatic invasive species already in the Hudson Bay basin.
Vegetation	
Vegetation	Potential shift in species composition toward drought- or salt-tolerant species if groundwater sources overused without sufficient natural recharge.
Wetlands and Riparian Areas	
Groundwater Changes to Wetlands and Riparian Areas	Increased groundwater use in parts of the Project Area could adversely affect wetlands and riparian areas connected to groundwater.
Missouri River Flows	Very small change to wetlands and riparian areas.
Socioeconomics	
Souris River Basin	Project communities would lack sufficient water supply to meet future demands and/or would have poor quality water that fails to meet drinking water regulations. Households could incur annual appliance depreciation costs due to poor water quality. Additionally, some residents might rely on supplemental water supplies, such as bottled water and water services (laundromats) in response to poor-quality water.
Missouri Ri∨er System	The primary economic consequence of No Action would be reduced navigation benefits from continuing reservoir sedimentation and effects on System releases from reduced storage capacity.

basin. See Chapter 4 for a more comprehensive discussion of resource effects. Given implementation of best management practices, most construction impacts would be temporary, although some permanent impacts would result from

construction of aboveground facilities. Impacts of Project operations would be permanent. If an action alternative is selected for implementation in the Record of Decision, Reclamation would develop an adaptive management plan to address uncertainties associated with Project operations. Environmental commitments listed in the Chapter 4 and in Appendix F would be implemented to mitigate adverse environmental impacts not avoided by BMPs. The summary of action alternative construction impacts table identifies whether each alternative would have a beneficial, adverse, or minimal/no effect on a resource when compared to the No Action

Summary of Action Alternative Construction	minipacts			
Beneficial Effect Minimal or No Effect Adverse Effect	Groundwater with Recharge	Groundwater with Recharge and Souris River	Missouri River Conjunctive Use	Missouri River and Groundwater
Water Resources				
Crossings, intakes, water quality	•		•	
Fisheries and Aquatic Invertebrate	I			
Fisheries and Aquatic Invertebrate Habitat Loss	▶ ≤ 1	ac	▶ ≤	2 ac
Land Use				005 4 -
Temporary Change		131 ac	▶ 1	065 ac
Permanent Conversion	•	79 ac		17 ac
Vegetation				
Temporary Disturbance	► 163 ac		► 118 ac	
Permanent Loss	● 65 ac		• 12 ac	
Wetlands and Riparian Areas				
Temporary Disturbance	► 19 ac		► 17 ac	
Permanent Loss	► ≤ 1 ac		▶ ≤ 1 ac	
Wildlife				
Temporary Habitat Disturbance	► 1131 ac		► 1065 ac	
Permanent Habitat Loss	• 79 ac		• 17 ac	
Additional Resources				
Federally Protected Species	•		•	
Historic Properties	>		>	
Indian Trust Assets	•			
Paleontological Resources	×			
Environmental Justice	Þ		۲	
Socioeconomics				
Job Creation	147	148	132 -	231
Annual Wages	• \$5.7 M	\$5.8 M	 \$5.1 (N - \$9.0 M
Annual Economic Output	\$18.7 M	• \$18.8 M	\$16.8	M - \$29.3 M

Summary of Action Alternative Construction Impacts

Alternative. All temporary impacts are evaluated and determined to be minimal.

The summary of operational impacts table shows impacts that could be expected to occur from

operation of an alternative. This table summarizes the effects of action alternatives when compared to No Action and whether the effects are beneficial, adverse, or minimal.

Beneficial Effect Minimal or No Effect Adverse Effect	Groundwater with Recharge Alternative Groundwater with Recharge and Souris River Alternative	Missouri River and Conjunctive Use Alternative Missouri River and Groundwater Alternative	
Water Resources			
Souris River Flows	•	• •	
Souris River Water Quality	•	•	
Groundwater Quantity	0	0	
Groundwater Quality	•	•	
Missouri River Flows	×	•	
Missouri River System Storage	F	•	
Missouri River Reservoir Levels	▶	•	
Fisheries and Aquatic Invertebrates			
Change in Souris River Flows	•	• •	
Change in Missouri River Flows	•	•	
New Intakes		•	
Aquatic Invasive Species			
Risk to Hudson Bay Basin	▶	▶.	
Environmental and Economic Impacts	•	>	
Land Use	1		
Effects on National Wildlife Refuge	•	• •	
Wetlands and Riparian Areas	-		
Change in Souris River Flows		>	
Change in Aquifer Levels	•	>	
Change in Missouri River Flows	•	•	
Wildlife	-		
Effects on National Wildlife Refuge	•	• •	
Additional Resources (Souris River and Mi	ssouri River Basins)		
Federally Protected Species	•		
Historic Properties	•		
Indian Trust Assets	E.	•	
Environmental Justice	F	•	
Socioeconomics			
Drinking Water Quality	0	0	
Job Creation	105	113 - 129	
Annual Wages	• \$4 M • \$4.3 M -		
Annual Economic Output	• \$14.3 M • \$15.5 M - \$17		
Missouri River System Economic Benefits			

Summary of Operational Impacts of the Action Alternatives

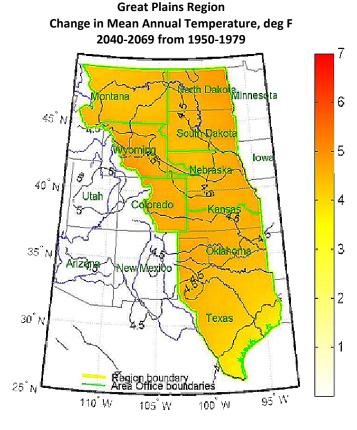
Temporary impacts generally would result from construction and would be short-term. The resource would be return to its previous condition within 1 to 3 years.

Permanent impacts are long-term changes or reoccurring changes to a resource.

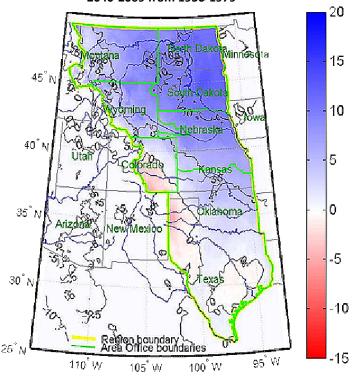
Climate Change

The effects of the Project on climate change from greenhouse gas emissions would be minor. However, climate change would affect the Project.

Souris River Basin


Based on regional climate projections, future precipitation would likely increase about 10% in the Souris River Basin and average annual temperatures would rise around 5° Fahrenheit. Higher winter flows, earlier spring peak flows, and lower summer flows are more likely. Intense, heavy rainfall interspersed with longer relatively dry spells would be more frequent; existing highly variable flows in the Souris River are likely to become more so. Reservoirs on the Souris River upstream of Minot are limited in their ability to capture and store increased winter flows for use during the summer. Decreased summer flows would make inbasin alternatives less reliable because less water would be available when needed for aquifer recharge or direct delivery.

Missouri River Basin


Climate change would likely increase the amount of water available for Project withdrawals for alternatives using water from the Missouri River. The best available scientific information indicates that runoff in the Missouri River basin is likely to increase in the future due to climate change. More runoff would raise reservoir levels and increase reservoir releases resulting in higher streamflow downstream from mainstem reservoirs. Potential effects of climate change on the Missouri River would more than offset Project water withdrawals.

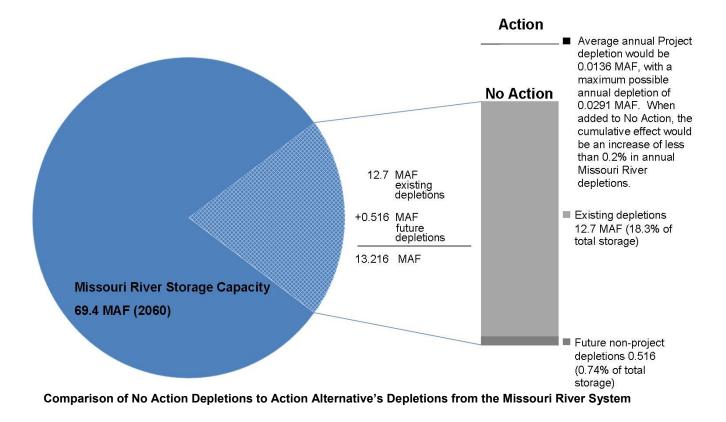
Water Resources

Adverse impacts to flows and water quality in the Souris River would be unavoidable for alternatives

Great Plains Region Change in Mean Annual Precipitation, Percentage 2040-2069 from 1950-1979

Executive Summary

using Souris River water. Changes would be greatest with the two inbasin alternatives that use Souris River to recharge aquifers or for direct use.


The average number of days per year with near-zero flows below Minot would increase from 26 days under the No Action Alternative to 103 days and 108 days, respectively, for the Groundwater with Recharge and Groundwater with Recharge and Souris River alternatives. The percentage of years with near-zero flows would increase from 29% to 94% or 95% for each alternative, respectively. Souris River water quality (such as dissolved oxygen and temperature) would be degraded by low flows caused by inbasin alternative operation.

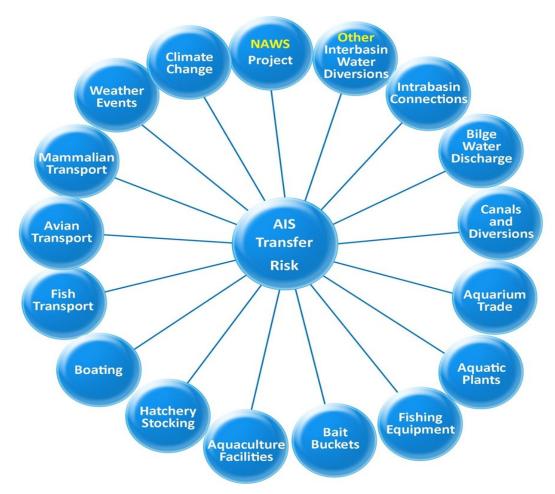
Groundwater quantity would improve under all action alternatives because withdrawal rates (withdrawal minus recharge) would be lower for action alternatives than for No Action. Lower net groundwater use likely would stabilize or raise groundwater levels. The inbasin alternatives would improve groundwater quality by adding surface water to the Minot and Sundre aquifers, although the effect likely would be small.

Canoe Recreation on the Souris River

Regarding cumulative impacts of water withdrawals on Lake Sakakawea and the Missouri River, this analysis considered effects of Missouri River alternatives on depletions, reservoir levels and storage, dam releases, and water quality. Potential Project depletions would be very small (average annual depletion of 0.0136 million acre feet [MAF] with a maximum possible annual depletion of 0.0291 MAF) compared to existing and reasonably foreseeable future non-Project depletions under No

Action (13.2 million acre-feet). The cumulative effect would be an increase of less than 0.2% in annual Missouri River depletions over No Action depletions. Effects of Project withdrawals on water surface elevation and system storage would be negligible. Depletions from the Missouri River alternatives would have very little effect on dam releases.

Differences in average annual releases from Fort Peck, Garrison, and Oahe dams would be less than 0.2%. Because the effects of Missouri River alternatives on Missouri River water quantity would be negligible, there would be no measurable water quality impacts.


Fisheries/Aquatic Invertebrates

More frequent periods of low to near-zero flow in the Souris from inbasin alternatives withdrawals would reduce habitat quality and availability and could degrade water quality with adverse effects on fish and aquatic invertebrates.

Aquatic Invasive Species

Existing non-Project pathways that could introduce aquatic invasive species to the Hudson Bay basin are numerous and diverse, and would continue under the No Action Alternative and action alternatives. These exhibit a far greater risk than a Missouri River alternative for introducing aquatic invasive species to the Hudson Bay basin. The overall risk could be slightly increased if one of the Missouri River alternatives were implemented, because it would add one, very low probability pathway to an already wide variety of existing pathways.

The probability that implementation of a Missouri River alternative would result in transfer and establishment of aquatic invasive species in the

Hudson Bay basin is minimal. Nevertheless, biota treatment options and other controls designed into Missouri River alternatives, and management actions, including system monitoring and development of an adaptive management plan, would further reduce the minimal Project-related risk.

Potential impacts from Project-related transfer and establishment of aquatic invasive species would be comparable to No Action, because numerous transfer pathways already exist and impacts would be dependent on the species transferred and not the source of introduction. Missouri River alternatives would not create new types of impacts or increase severity of impacts from aquatic invasive species transferred through existing non-Project pathways.

Land Use

Construction of action alternatives would permanently change land use for some acres. Inbasin alternatives would adversely, permanently affect 79 acres. Missouri River alternatives would have slightly smaller adverse effects, 17 acres permanently affected.

Operation of inbasin alternatives would adversely affect J. Clark Salyer National Wildlife Refuge by reducing Souris River flows, which could impact wildlife and recreation. This may conflict with provisions of the National Wildlife Refuge System Improvement Act of 1997. These impacts may be unavoidable. Missouri River and Conjunctive Use Alternative also would withdraw water from the Souris River, but adverse impacts would be substantially less than inbasin alternatives.

Vegetation

Under all action alternatives, most construction impacts would occur in cultivated areas, with lesser impacts to shrubland, pasture/hay, and native prairie. Inbasin alternatives would permanently impact 65 acres of vegetation. Only 1% of the disturbed acres would be native prairie. Missouri River alternatives would disturb 12 acres permanently. Only 2% of the disturbed acres would be native prairie.

Wetlands and Riparian Areas

Both inbasin alternatives would withdraw water from the Souris River between March and August, which could cause localized effects on wetlands and riparian areas during dry and normal conditions. Changes would be most pronounced during dry and normal flows.

Wildlife

Construction of action alternatives would impact wildlife habitats but wildlife could move to nearby suitable habitat. Inbasin alternatives would permanently affect approximately 79 acres as compared to Missouri River alternatives, which would affect approximately 17 acres.

Alternatives that withdraw Souris River water would reduce inflow to J. Clark Salyer National Wildlife Refuge, which could have detrimental impacts on wildlife and waterfowl in particular. These adverse effects would be much greater under the inbasin alternatives than with the Missouri River and Conjunctive Use Alternative. Reduced river flows during some months of the year may increase outbreaks of botulism and mortality of waterfowl;

Souris River J. Clark Salyer National Wildlife Refuge (photo credit: Marlene Welstad/USFWS)

impacts would be greater during dry and normal years than in wet years. Although an adaptive management plan would be implemented as an environmental commitment, these adverse impacts may be permanent and unavoidable.

Socioeconomics

All of the action alternatives would create jobs and increase annual economic output that would benefit Project area residents and North Dakota overall during construction and operation. Statewide Project benefits of construction could range from \$5 million to \$9 million in average annual wages and between \$17 million to \$29 million in average annual economic output during the 10-year construction schedule. Economic benefits from operation of the alternatives would include annual wages of \$4 million to \$5 million, and annual economic output of \$14 million to \$18 million.

Next Steps

This Draft SEIS has been released to the public for a 45-day comment period. During public review, Reclamation is hosting a public hearing to present information and collect public comments on the Draft SEIS.

Open House/Public Hearing

When: July 23, 2014Where: Comfort Inn in Minot, North Dakota.Time: Open House 6:00 -6:30 p.m. CST Public Hearing 6:30-8:30 p.m. CST

Reclamation will respond to substantive comments on the Draft SEIS in the Final SEIS.

No sooner than 30 days after the U.S. Environmental Protection Agency has published the notice of availability for the Final SEIS, Reclamation will issue a Record of Decision. Reclamation decisions regarding the proposed federal action will be documented in the Record of Decision. The Record of Decision will identify the following:

- Substantive comments received on the Final SEIS.
- Reclamation's selected alternative for implementation
- Alternative(s) considered environmentally preferable

The Record of Decision will also discuss factors considered with respect to the alternatives and how these considerations entered into the decision. Reclamation will include environmental commitments, means to avoid or minimize environmental harm, and any monitoring or enforcement activities to ensure that environmental commitments would be met, if a proposed action is selected, constructed, and put into operation.

Acronyms

BMPs	best management practices
EIS	environmental impact statement
SEIS	supplemental environmental impact statement
М	million
MAF	million acre feet
NEPA	National Environmental Policy Act
Project	Northwest Area Water Supply Project
Reclamation	Bureau of Reclamation
USFWS	U.S. Fish and Wildlife Service
UV	ultraviolet
WTP	water treatment plant

Enclosed CD

The enclosed disk contains the Northwest Area Water Supply Project Draft Supplemental Environmental Impact Statement and its Appendices and Supporting Documents. It is designed to be used on your desktop or laptop computer. The files are opened with Adobe Reader, which is already on many computers. If you do not have Adobe Reader, it can be downloaded for free (see below).

STEP 1: Insert disk into the CD drive on your desktop or laptop computerSTEP 2: The program will automatically run, or a notice will pop up.STEP 3: Choose 'Run NW_Area_WSP_EIS.html' and the information will launch.

How to Install Adobe Reader

STEP 1: Go to: *http://get.adobe.com/reader/* **STEP 2:** Follow online instructions to install