ANNUAL OPERATING PLAN

KANSAS RIVER PROJECTS

1957 OPERATIONS
1958 OUTLOOK

February 1958
INTRODUCTION

This is the fifth Annual Operating Plan for irrigation units in the Kansas River Projects area. Its primary purpose is to describe the irrigation operations and responsibilities of the Bureau of Reclamation. It does not include operations for flood control which are the responsibility of the Corps of Engineers.

The report is concerned primarily with the Federally constructed irrigation facilities in the Republican, Solomon, and Smoky Hill River drainage areas which were in operation during 1957 or are expected to be in operation during 1958. Chapter 1 (or the Introduction) of the report is a brief description of the irrigation units in the Kansas River Projects Area. Chapter II gives a summary of actual operations during 1957. Chapter III presents operational estimates for 1958. The operational data regarding Harlan County Reservoir, which was constructed and is operated by the Corps of Engineers, has been prepared with the cooperation of the Corps.

1957 OPERATIONS

The water supply for 1957 was more than adequate to satisfy the irrigation requirements for the year. Irrigation water was delivered to 49,200 acres under Bureau-constructed systems. Above average precipitation during the irrigation season resulted in only approximately 1,200 acres of land served by privately owned pumps and canals contracting for supplemental storage water. Inflow at all reservoirs was above average and in most cases was among the wettest years of record. Reservoirs in operation were Bonny, Swanson Lake, Enders, Harry Strunk Lake, Harlan County (operated by the Corps of Engineers), Lovewell, Kirwin, Webster and Cedar Bluff. Lovewell Reservoir was placed in operation during October 1957. Controlled spills occurred at all reservoirs except Lovewell.

1958 OUTLOOK

The carryover storage in reservoirs of the Kansas River Projects area is more than adequate to meet all expected irrigation demands in 1958, even if extremely dry conditions develop. Approximately 66,500 acres of Bureau-constructed or operated systems will receive irrigation water in 1958. Under dry conditions as many as 17,000 acres under privately constructed irrigation systems may obtain supplemental water. This 17,000 acres includes 9,600 acres under the Culbertson canal which was privately constructed, although in 1957 the Bureau of Reclamation initiated rehabilitation work on the canal.
TABLE OF CONTENTS

Synopsis.. iii
List of Tables... v
List of Exhibits... v

CHAPTER I - INTRODUCTION.. 1
 Purpose of Report.. 1
 Location and Major Features... 1
 Irrigation Districts... 1
 Municipal Water... 3

CHAPTER II - SUMMARY OF 1957 OPERATIONS... 4
 Precipitation.. 4
 Streamflow... 4
 Reservoir Operations-1957... 4
 Bonny Reservoir... 4
 Swanson Lake.. 5
 Enders Reservoir... 5
 Harry Strunk Lake... 5
 Harlan County Reservoir... 5
 Lovewell Reservoir.. 5
 Kirwin Reservoir... 5
 Webster Reservoir... 6
 Cedar Bluff Reservoir.. 6
 Canal Operations-1957... 6

CHAPTER III - ANNUAL OPERATING PLAN FOR 1958.. 7
 Water Supply-1958... 7
 Reservoir Operations-1958.. 7
 Bonny Reservoir... 8
 Swanson Lake.. 8
 Enders Reservoir... 8
 Harry Strunk Lake... 8
 Harlan County Reservoir... 9
 Lovewell Reservoir.. 9
 Kirwin Reservoir... 10
 Webster Reservoir.. 10
 Cedar Bluff Reservoir.. 10
 Canal Operations-1958 Estimates... 11
 Frenchman Valley Irrigation District... 11
 H. & R. W. Irrigation District... 11
 Frenchman-Cambridge Irrigation District.. 11
TABLE OF CONTENTS (Continued)

Nebraska-Bostwick Irrigation District.................. 12
Kansas-Bostwick Irrigation District.................. 12
Kirwin Irrigation District............................ 12
Webster Irrigation District............................ 12

LIST OF TABLES

Number
1 Reservoir Data-Kansas River Projects.................. 13
2 Precipitation at Dams during 1957...................... 14
3 Inflow into Reservoirs-1957 Records. 1958 Estimates........ 15
4 Reservoir Operations-1957............................ 16
5 Acres Irrigated and Canal Diversions.................. 17

LIST OF EXHIBITS

Kansas River Basin Map.................................... Frontispiece
1 Kansas River System..................................... 18
2 Bonny Reservoir Operation Hydrographs................ 19
3 Swanson Lake Operation Hydrographs.................... 20
4 Enders Reservoir Operation Hydrographs................ 21
5 Harry Strunk Lake Operation Hydrographs................ 22
6 Harlan County Reservoir Operation Hydrographs........ 23
7 Lovewell Reservoir Operation Hydrographs.............. 24
8 Kirwin Reservoir Operation Hydrographs................ 25
9 Webster Reservoir Operation Hydrographs............... 26
10 Cedar Bluff Reservoir Operation Hydrographs.......... 27
11 Meeker-Driftwood Canal Diversions and Acres Irrigated. 28
12 Meeker Canal Diversions and Acres Irrigated.......... 29
13 Bartley Canal Diversions and Acres Irrigated......... 30
14 Cambridge Canal Diversions and Acres Irrigated....... 31
15 Franklin Canal Diversions and Acres Irrigated........ 32
16 Naponee Canal Diversions and Acres Irrigated.......... 33
17 Franklin Pump Canal Diversions and Acres Irrigated... 34
18 Superior Canal Diversions and Acres Irrigated.......... 35
19 Courtland Canal Diversions and Acres Irrigated in Nebraska. 36
20 Courtland Canal Diversions and Acres Irrigated in Kansas
 (above Lovewell Res.).................................. 37
21 Courtland Canal Diversions and Acres Irrigated in Kansas
 (below Lovewell Res.).................................. 38
22 Kirwin Canal Diversions and Acres Irrigated.......... 39
23 Annual Inflow-Bonny Reservoir.......................... 40
24 Annual Inflow-Swanson Lake............................ 41
25 Annual Inflow-Enders Reservoir........................ 42
26 Annual Inflow-Harry Strunk Lake........................ 43
27 Annual Inflow-Harlan County Reservoir................ 44
28 Annual Inflow-Lovewell Reservoir........................ 45
29 Annual Inflow-Kirwin Reservoir........................ 46
30 Annual Inflow-Webster Reservoir........................ 47
31 Annual Inflow-Cedar Bluff Reservoir.................... 48
ANNUAL OPERATING PLAN - KANSAS RIVER PROJECTS

1957 OPERATIONS - 1958 OUTLOOK

CHAPTER I - INTRODUCTION

Purpose of Report

The purpose of this Annual Operating Plan is to advise water users, cooperating agencies, and other interests of the results of irrigation operations during 1957 and the plan of irrigation operations during 1958. The report also includes a brief description of the irrigation units, including Federally-constructed canals and reservoirs.

Location and Major Features

The Kansas River Projects refers to irrigation units of the Kansas River Basin that are a part of the Missouri River Basin Project. This includes multiple-purpose reservoirs which provide storage for irrigation, flood control, municipal water supply, recreational purposes, stream pollution abatement, and other uses. The irrigation systems for these units are served by dams and reservoirs that have been constructed (and are operated) by the Bureau of Reclamation or the Corps of Engineers. The canals and diversion dams have been constructed (or rehabilitated) by the Bureau of Reclamation. The location map of the various units is shown in the general map of the Kansas River Basin (Frontispiece).

Ten reservoirs are now in operation. Eight of these (Bonny, Swanson Lake, Enders, Harry Strunk Lake, Lovewell, Kirwin, Webster, and Cedar Bluff) are operated by the Bureau of Reclamation. Two reservoirs (Harlan County and Kanopolis) are operated by the Corps of Engineers. Kanopolis Reservoir is not being used at present to serve an irrigation unit, therefore, it is not listed with other irrigation facilities referred to in this report. Storage allocations for the various reservoirs are shown in Table 1 on page 13. A schematic layout of these reservoirs and the main irrigation canals is shown in Exhibit 1, page 18. Insofar as it will be practical to do so, a plan of system operation will be followed that will permit the water supply of the various reservoirs to be shared equally during periods of shortages.

Irrigation Districts

Seven irrigation districts in the Kansas River Projects area have contracted with the Bureau of Reclamation for construction of irrigation facilities. These are the Frenchman Valley, H. & R. W., Frenchman-Cambridge, and Nebraska-Bostwick in the State of Nebraska; and the Kansas-Bostwick, Kirwin, and Webster Irrigation Districts in the State of Kansas. Also the Almena Irrigation District, in Kansas, is negotiating with the Bureau for such facilities. In addition to these districts, there are possibilities that irrigation districts below Cedar Bluff and Kanopolis Reservoirs (in Kansas) will be organized during 1958.
Enders Reservoir and Culbertson Canal will be used to serve the Frenchman Valley Irrigation District. The Bureau of Reclamation initiated rehabilitation work on the Culbertson Canal during 1957; however, additional construction work is being delayed pending the outcome of litigation regarding the validity of the district's repayment contract with the government. If storage water, to supplement the natural flow rights of the canal, cannot be made available in 1958 under the repayment contract, it can be delivered under a temporary Warren Act contract to the approximately 9,600 acres under the canal.

H & RW

The H & RW (initials for Hitchcock and Red Willow Counties) Irrigation District will be served after enlarging and extending the Culbertson Canal now used to serve the Frenchman Valley District. Work on this is being delayed because this is affected by the same legal question affecting the Frenchman Valley District. Present schedules of construction (assuming no extended litigation) provide for deliveries of water to part of the 11,500 acres of project lands under the Culbertson Canal Extension by July 1961.

Frenchman-Cambridge

Eventually the Frenchman-Cambridge Irrigation District will receive storage water primarily from three reservoirs. Two of these, Swanson Lake and Harry Strunk Reservoir, are in operation. Construction of the third, Red Willow Reservoir, is being delayed until construction funds become available for it.

Canals now in use for the District are Cambridge, Bartley, Meeker-Driftwood (part of which is still under construction), and the old Meeker Canal (which becomes a part of the new Meeker-Driftwood system after June 1959 when that canal is expected to be completed). Two additional canals, McCook and Red Willow, are planned for construction when a storage water supply becomes available from Red Willow Reservoir. After full development of the project a total of about 42,400 acres will be irrigated in the District.

Nebraska - Bostwick

Harlan County Reservoir is the primary source of storage water for the Nebraska-Bostwick Irrigation District. After full development by water users of the project area about 24,200 acres will be irrigated in the District. The Franklin, Naponee, Franklin Pump, Superior, and Courtland Canals have been completed to serve the district.
Storage water for the Kansas-Bostwick Irrigation District is provided primarily by Harlan County and Lovewell Reservoirs. The Courtland Canal above and below Lovewell Reservoir will be used to serve approximately 49,000 acres in the District. Most of the system above Lovewell Reservoir is complete except for small areas to be served by pumps. The system below Lovewell Reservoir is expected to be completed by May 1961.

Kirwin

The Kirwin Irrigation District is comprised of a project area of about 11,500 acres. Most of the Kirwin canal system will be completed before the 1958 irrigation season. Kirwin Reservoir is used to supply storage water to the District.

Webster

The Webster Canal, now under construction, will serve 8,500 acres in the Webster Irrigation District. Some of the area may be irrigated in 1960. However, the completion of the canal system is not expected before May 1961. Storage water for the District will be supplied from Webster Reservoir.

Municipal Water

The city of Russell, Kansas, contracted for storage water from Cedar Bluff Reservoir to supplement their natural flow rights in 1954 through 1957. The contracts for this have been of a temporary nature because negotiations have not been completed for a long term contract.

A long term contract for supplying municipal water to the city of Norton, Kansas, appears to be in the final stages of negotiation. Actual deliveries of storage water under this contract must wait until funds become available for construction of Norton Dam and Reservoir.

There is a possibility that additional cities, such as Beloit, Kansas, may in future years consider contracting for municipal water.
CHAPTER II - SUMMARY OF 1957 OPERATIONS

Precipitation

Precipitation over most of the Kansas River Projects area was above average during 1957. This resulted in less demands on reservoir storage for irrigation. The total annual precipitation at the weather stations of the various dams ranged from 99 percent of normal at Trenton and Lovewell Dams to 156 percent of normal at Webster Dam. See Table 2 on Page 14.

Streamflow

At most reservoirs the total annual inflow was one of the highest on record. At Bonny Reservoir and Swanson Lake the 1957 inflow was exceeded only in 1935. Inflows at Kirwin, Webster, and Cedar Bluff Reservoirs were second only to those of 1951. The inflows to the other reservoirs were well above normal. The total annual reservoir inflows of calendar year 1957 are compared graphically with other years of record in Exhibits 23 through 31 (Page 40 to 48). Table 3 on Page 15 shows that the inflows varied from 104 percent of normal at Enders Reservoir to over 348 percent of normal at Cedar Bluff Reservoir.

Reservoir Operations - 1957

There were no irrigation shortages and controlled spills occurred at all Kansas River Projects reservoirs except Lovewell. Operation hydrographs on which are plotted reservoir content, mean monthly inflow, and mean monthly outflow are shown in Exhibits 2 through 10 (pages 19 to 27). Table 4 on Page 16 gives the monthly figures in acre feet for these values at each reservoir during 1957.

At reservoirs where the irrigation pools were filled there were no instances where the flood control pool was even half filled. In most instances less than 25 percent of the flood control pool was ever filled. The highest was 44 percent at Cedar Bluff Reservoir. This information is given so as not to give the erroneous impression that flood protection was not provided when the irrigation pools were filled and the reservoirs spilled.

Bonny Reservoir

Controlled spills occurred at Bonny Reservoir during all, or parts of, the months of May through September. During September the reservoir level was lowered about three feet below the top of the irrigation pool to reduce the amount of spill releases that may be required during winter months. Releases to the Hale Ditch, a privately constructed and operated canal system, were made to satisfy natural flow rights. There was no demand for supplemental storage water.
The irrigation pool in Swanson Lake was filled for the first time in May 1957. Controlled spills occurred throughout parts of May, June, July, and August. Releases for irrigation were made for Meeker-Driftwood Canal, Bartley Canal, and supplemental requirements (under Warren Act Contracts) to the Meeker Canal.

Enders Reservoir

There was little demand for storage water in Enders Reservoir except for some under Warren Act Contracts for pumps along Frenchman Creek and Stinking Water Creek. During most of the summer months the natural inflow was released for senior water rights downstream. Controlled spills occurred in April, May and June.

Harry Strunk Lake

The water supply from Harry Strunk Lake was more than adequate to meet the irrigation demands of the Courtland Canal and of a few pump irrigators obtaining storage water under Warren Act Contracts. Controlled spills occurred during most of the period May through September.

Harlan County Reservoir

The irrigation pool in Harlan County Reservoir was filled for the first time in June 1957. Controlled spills occurred during parts of June, July, August and December. Irrigation releases were made for the Franklin, Naponee, Franklin Pump, Superior, and Courtland Canals. During October approximately 27,000 acre-feet of water was released from Harlan County Reservoir for storage in Lovewell Reservoir. This resulted in a drawdown of almost 1 1/2 feet of the water surface elevation at Harlan County; however, this drawdown was replaced by inflow by the end of December. The transfer was not made before October because Lovewell Dam was not completed.

Lovewell Reservoir

Closure in Lovewell Dam was made May 29, 1957, but planned storage did not start until October 2, 1957. Over half of the total annual inflow of 43,100 acre-feet occurred during June. Most of this inflow was stored temporarily, but was released as soon as possible so that construction of the dam could be completed. No releases were made for irrigation purposes. During October approximately 28,000 acre-feet of water from the Republican River and Harlan County Reservoir were diverted into Lovewell Dam through the Upper Courtland Canal.

Kirwin Reservoir

The irrigation pool in Kirwin Reservoir was filled for the first time in July 1957 and controlled spills occurred during that month. This was the first year of releases to the Kirwin Canal.
Webster Reservoir

Webster Reservoir had the irrigation pool filled for the first time during June 1957. Controlled spills occurred during parts of July, September, and October. No releases were made for irrigation.

Cedar Bluff Reservoir

Exceptionally high inflows into Cedar Bluff Reservoir kept the reservoir level in the flood control pool during the last half of 1957. Controlled spills also occurred during this period. These spills were more than adequate to satisfy any downstream demands by pump irrigators for irrigation water. No special releases were made for the municipal water pumps of the City of Russell, Kansas because any requirements were met by the reservoir spills.

Canal Operations

During 1957 the total diversions by Bureau constructed and operated canals (including the existing Meeker Canal) amounted to 96,470 acre-feet to serve 49,203 acres. This acreage included 11,468 acres in Kansas and 37,735 acres in Nebraska.

In addition, 388 acre-feet of surplus storage was made available under Warren Act Contracts to 4,187 acres under pump irrigation in Nebraska. Total releases of natural flow to the Hale Ditch amounted to 2,677 acre-feet for 880 acres.

Monthly diversions for each canal are shown in Table 5 on Page 17. Total annual diversions for the past few years of record and acres irrigated are shown graphically in Exhibits 11 through 21 (Pages 28 to 39).
CHAPTER III - ANNUAL OPERATING PLAN FOR 1958

Water Supply - 1958

The water supply outlook for 1958 is excellent for all Kansas River Projects. No shortages for the Projects are expected, even under the most dry weather conditions because of carryover storage in the various reservoirs.

The total water supply at each reservoir which will be available to meet demands on the reservoir amounts to the carryover storage from previous years plus the 1958 inflow. The carryover figure is easily determined; however, it is practically impossible to predict future inflows in areas where the major part of the reservoir inflow results from rain from flood runoff. For this reason, estimates of future inflows are based on a probability analysis of recorded runoff. The "most probable" inflow was assumed to be that point on the curve where the annual historical inflow was equaled or exceeded 50 percent of the time. Ten percent of all the historical annual flows have been less than the selected "reasonable minimum" and 10 percent have been greater than the selected "reasonable maximum." The probability curves were shown in last year’s Annual Operating Plan and are not reproduced in this report. The "most probable", "reasonable minimum", and "reasonable maximum" values used at each reservoir are shown in Table 3 on page 15. These values are shown graphically on Exhibits 23 through 31 (pages 40 to 48) for ready comparison with historical values.

Reservoir Operations - 1958

Storage limitations at all of the reservoirs for irrigation purposes will be limited to storage below the top of the irrigation pool at each reservoir as indicated in Table 1 on page 13. State laws regulating the use of water will also affect the amount and time of storing streamflows.

During winter months, when it is apparent that a reservoir will spill before the start of the next irrigation season, only that portion of the inflow will be stored continuously as will be required to fill most of the irrigation pool by the first of May. This will avoid extremes in reservoir releases. Also the reservoir level will be kept lower during winter months when high winds can cause damage to riprap by high wave action. Continuous releases through the river outlet at Bonny Dam during winter months is not desirable because of possible damage to the Hale Ditch outlet pipe by freezing water.

Estimates for the calendar year 1958 showing the probable effects on each reservoir under "most probable", "reasonable minimum", and "reasonable maximum" inflow conditions are shown in Exhibits 2 through 10 (pages 12 to 27). Seepage losses, which vary from 1 cfs at Swanson Lake to 8 cfs and Enders Reservoir, will be adequate to meet minimum flow requirements at Bureau operated reservoirs.
Bonny Reservoir

Carryover storage in Bonny Reservoir will be more than adequate to meet any 1958 irrigation requirements of supplemental storage water by the Hale Ditch. Controlled spills will occur during 1958 even under very low inflow conditions. This can occur as overflow through the gated spillway or by releases through the river outlet. Drawdowns by making releases to the river in advance of anticipated inflow conditions which will cause the irrigation pool to more than fill are also considered controlled spills. During freezing weather conditions, it is not desirable to make releases through the outlet works or over the spillway.

In the future, some reduction in fluctuation of reservoir levels may be obtained by not trying to keep the level at the top of the irrigation pool during the summer months. Since it is desirable to enter the winter months with a reservoir level three to four feet below the top of the irrigation pool, holding the reservoir level at about 3670 feet (2 feet below the top of the irrigation pool) during the summer months would make it necessary to make a drawdown of only one or two feet (instead of 3 or 4 feet) prior to winter operation. Of course, this plan of operation would be subject to revision during flood inflow or very dry weather conditions. The preferable time for fall drawdown will be the month of September.

Swanson Lake

Irrigation releases from Swanson Lake will be used primarily to serve lands under the Meeker, new Meeker-Driftwood, and Bartley Canals. If necessary, releases may be made to assist in serving canal systems down-stream. No shortages are anticipated during 1958. Surplus storage may be sold under temporary contracts to non-project systems. Swanson Lake will spill under all inflow conditions.

Enders Reservoir

Controlled spills will occur at Enders Reservoir during 1958. Some releases can be made to assist in satisfying irrigation requirements of the Meeker and the Bartley Canals, although this probably will not be necessary. Surplus storage may be supplied under temporary "Warren Act" contracts to non-project systems and to the Culbertson Canal system.

Harry Strunk Lake

Harry Strunk Lake will spill by the start of the 1958 irrigation season. The main irrigation releases will be to the Cambridge Canal. Storage releases of surplus water may be made under temporary contracts to supplement natural flow rights of pump irrigators in the Medicine Creek watershed.
Early spills will occur at Harlan County Reservoir, even under most dry inflow conditions. Irrigation releases will be made to the Franklin, Naponee, Franklin Pump, Superior and Courtland Canal in Nebraska. Also releases will be made to the Courtland Canal and to Lovewell Reservoir in Kansas.

The plan of irrigation development for the Bostwick Division in Nebraska and Kansas calls for irrigation use of Republican River flows by diverting them through the upper Courtland Canal. 1957 was the first year that releases from Harlan County Reservoir were made for Lovewell Reservoir but in the future some releases for this purpose may be expected each year. The timing and the amount of such transfers of storage will vary according to the weather conditions and the storage in both reservoirs. During the irrigation season, Harlan County Reservoir will be used to satisfy part of the irrigation requirements under all of the Courtland Canal in Nebraska and Kansas.

If conditions permit, transfers of the larger amounts of storage water usually will not be made except during the first and last months of the irrigation season. In most years, this will be May and September. However, unusual conditions may result in transfers a month before or a month after the irrigation season. Transfers of storage during winter months will be kept to a minimum because the canal needs to be dry during that period for maintenance work. Also diversion during extremely cold weather adds to maintenance costs of canal structures.

Minimum flow releases will be made in accordance with the statement of operational objectives for Harlan County Reservoir.

Lovewell Reservoir

Lovewell Reservoir was planned for regulation of Courtland Canal flows as well as for storage of the natural flows of White Rock Creek. The irrigation demands of lands under the lower Courtland Canal will be met by water from both sources. During periods of low water supply in Harlan County Reservoir and Lovewell Reservoir as much as possible of all the flow of the Republican River at the Superior-Courtland Diversion Dam that is not needed by the Superior Canal, Courtland Canal, or by downstream rights will be diverted into Lovewell Reservoir through the Courtland Canal. During extremely dry periods, such diversion may be continued through the non-irrigation season except for the months of January and February.

During periods of adequate carryover storage, such as now exists, diversions through the Courtland Canal during the non-irrigation season will be kept to a minimum. This will reduce operating and maintenance costs of the upper Courtland Canal. It is desirable that the reservoir
level at Lovewell be at an elevation of approximately 1578 feet or above to reduce the possibilities of erosion of the upstream face of the dam. If conditions permit, any drawdown of Harlan County Reservoir required to put the Lovewell elevation at 1578 feet at the end of the irrigation season will be done in September. If surplus water is available in Harlan County Reservoir and in the pickup below the Reservoir, the irrigation pool in Lovewell Reservoir will be filled (elevation 1582.6 feet) during the first month of the irrigation season. This probably will be during May.

Some releases will be made to the lower Courtland Canal during 1958 although part of the system is still under construction. Spills are very likely during the early part of the irrigation season. Some supplemental water may be sold under Warren Act Contracts.

Kirwin Reservoir

Kirwin Reservoir will be spilling under all but dry conditions. Releases will be made to the Kirwin Canal. The project area under the Kirwin Canal is extra large for the expected available water supply and successful operation of the project will be dependent at times upon several years of carryover reservoir storage. For this reason, it is very doubtful if supplemental storage water will be made available to non-project lands.

Webster Reservoir

Construction work on the Woodston Diversion Dam, about 26 miles below Webster Dam, will restrict reservoir releases to practically zero second-feet until about May 1, 1958 unless emergency flood conditions develop before then. Small inflows will be stored in the flood control pool during this construction period, provided that the Corps of Engineers determine that minor storage amounts in the flood control pool will not limit overall flood protection provided by the reservoir. During the 1958 irrigation season, most of the releases will be those necessary to keep the reservoir level from rising above the top of the irrigation pool, except for storage in the flood control pool during flood emergencies. Some releases may be made to supplement natural flow rights under Warren Act Contracts. No irrigation requirements for project lands are expected before 1960.

Cedar Bluff Reservoir

Carryover storage in Cedar Bluff Reservoir is much more than adequate to satisfy all expected demands on the reservoir during 1958. Water will be available to make storage releases to supplement natural flow rights of pump irrigators downstream and of the City of Russell, Kansas for municipal water.
Construction of a fish hatchery below Cedar Bluff Reservoir was authorized by Congress during 1957. We do not expect construction of the hatchery to be completed in time to place demands on the reservoir during 1958. The total annual use of water by the hatchery after completion is estimated to be 4,000 acre-feet.

Canal Operations - 1958 Estimates

A total of approximately 66,500 acres under irrigation units in the Kansas River Projects area may receive irrigation water in 1958. Of this total, 45,500 acres will be in Nebraska and 21,000 acres will be in Kansas. Expected acreages and probable canal diversion requirements under "most probable", "reasonable driest year" and "reasonable wettest year" are shown graphically in Exhibits 11 through 22 (pages 28 to 32). The canal requirements for the values used in each of the three types of years are based on probability curves from data taken from water supply studies. Estimated acreages to be irrigated in 1958 are also listed on Table 5 (page 17).

In addition to the above acreages, it may be possible to deliver surplus storage water under temporary contracts to non-project irrigation systems.

Some of the irrigation districts in the Kansas River Projects area will operate all or parts of the canal systems in their districts during 1958. Some canal operation and maintenance will be performed by the Bureau of Reclamation. Since the canal operations may vary according to the irrigation district under which they will be operated, the canal operations for 1958 are discussed under the various district headings.

Frenchman Valley Irrigation District

The Culbertson Canal and diversion dam will be operated by the Frenchman Valley Irrigation District. Rehabilitation of the canal has been started by the Bureau of Reclamation, and the Bureau will maintain the diversion dam and main canal during 1958.

H. & R. W. Irrigation District

The Bureau of Reclamation has contracted with the H. & R. W. Irrigation District to enlarge and extend the Culbertson Canal, operated by the Frenchman Valley Irrigation District, to serve a new irrigation unit. Construction on this system has been delayed and there will be no canal to operate in the H. & R. W. District in 1958.

Frenchman-Cambridge Irrigation District

In 1958 the Frenchman-Cambridge Irrigation District will operate and maintain the Bartley and Cambridge Canals (including the Bartley and Cambridge Diversion Dams) which are described as Block I of their system. The Bureau of Reclamation will operate and maintain the Meeker Canal (including the diversion dam) and the new Upper Meeker Canal. These will not
be turned over to the District until more of the canal system in the Meeker-Driftwood Unit is completed. See location map.

Nebraska-Bostwick Irrigation District

The Nebraska-Bostwick Irrigation District will operate and maintain their canal systems. These will include the Franklin, Naponee, Franklin Pump, Superior Canals, and the Courtland Canal laterals (including farm deliveries from the main canal).

The only parts of the Nebraska-Bostwick Canal system that will not be operated by the district in 1958 are the Superior-Courtland Diversion Dam and the main Courtland Canal between the diversion dam and the Nebraska-Kansas state line. These features will be operated and maintained by the Bureau of Reclamation in 1958 because they are also integral parts of the Kansas-Bostwick irrigation system now under construction.

Kansas-Bostwick Irrigation District

The Kansas-Bostwick Irrigation District will operate and maintain the laterals and farm turnouts served by the Courtland Canal between the Nebraska-Kansas state line and Lovewell Reservoir. For the next year or two, the Bureau will make deliveries to and maintain the main Courtland Canal.

Work on the Courtland Canal below Lovewell Reservoir will be completed enough to serve about 6,460 acres in 1958. The operation and maintenance will be performed by the Bureau of Reclamation because the canal system is still under construction.

Kirwin Irrigation District

The Kirwin Canal system will be completed in 1958, but operation and maintenance performed will be done by the Bureau of Reclamation in 1958.

Webster Irrigation District

The Osborne Canal system for the Webster Irrigation District is under construction. No operation and maintenance for irrigation is expected before 1960.
<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Elevation (Ft.)</th>
<th>Storage Allocations</th>
<th>Dead 1/</th>
<th>Irrigation 1/</th>
<th>Control Season (Approx. May 1, 1958)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>3635.5</td>
<td>3672.0</td>
<td>3710.0</td>
<td>3672.0</td>
<td>41,340</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>1,420</td>
<td>41,340</td>
<td>170,160</td>
<td>41,340</td>
<td>39,920</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>1,420</td>
<td>39,920</td>
<td>128,820</td>
<td>39,920</td>
<td></td>
</tr>
<tr>
<td>Swanson Lake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>2710.0</td>
<td>2752.0</td>
<td>2773.0</td>
<td>2752.0</td>
<td>120,160</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>4,100</td>
<td>120,160</td>
<td>253,950</td>
<td>120,160</td>
<td></td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>4,100</td>
<td>116,060</td>
<td>133,790</td>
<td>116,060</td>
<td></td>
</tr>
<tr>
<td>Enders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>3080.0</td>
<td>3112.3</td>
<td>3127.0</td>
<td>3112.3</td>
<td>44,480</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>8,470</td>
<td>44,480</td>
<td>74,520</td>
<td>44,480</td>
<td>36,010</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>8,470</td>
<td>36,010</td>
<td>30,040</td>
<td>36,010</td>
<td></td>
</tr>
<tr>
<td>Harry Strunk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>2335.0</td>
<td>2366.1</td>
<td>2386.2</td>
<td>2366.1</td>
<td>128,130</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>5,370</td>
<td>39,920</td>
<td>90,920</td>
<td>39,920</td>
<td>51,690</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>5,370</td>
<td>33,860</td>
<td>30,840</td>
<td>33,860</td>
<td></td>
</tr>
<tr>
<td>Harlan County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>1920.0</td>
<td>1946.0</td>
<td>1973.5</td>
<td>1946.0</td>
<td>128,130</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>97,200</td>
<td>350,120</td>
<td>850,000</td>
<td>350,120</td>
<td>50,460</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>97,200</td>
<td>252,920</td>
<td>499,880</td>
<td>252,920</td>
<td></td>
</tr>
<tr>
<td>Lovewell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>1562.07</td>
<td>1582.6</td>
<td>1595.3</td>
<td>1582.6</td>
<td>128,130</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>5,050</td>
<td>41,690</td>
<td>92,150</td>
<td>41,690</td>
<td>50,460</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>5,050</td>
<td>36,640</td>
<td>30,840</td>
<td>36,640</td>
<td></td>
</tr>
<tr>
<td>Kirwin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>1693.0</td>
<td>1728.4</td>
<td>1757.3</td>
<td>1728.4</td>
<td>128,130</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>6,380</td>
<td>95,180</td>
<td>314,550</td>
<td>95,180</td>
<td>50,460</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>6,380</td>
<td>88,800</td>
<td>219,370</td>
<td>88,800</td>
<td></td>
</tr>
<tr>
<td>Webster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>1855.5</td>
<td>1889.6</td>
<td>1923.7</td>
<td>1889.6</td>
<td>128,130</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>2,180</td>
<td>67,100</td>
<td>260,740</td>
<td>67,100</td>
<td>64,920</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>2,180</td>
<td>64,920</td>
<td>193,640</td>
<td>64,920</td>
<td></td>
</tr>
<tr>
<td>Cedar Bluff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (Ft.)</td>
<td>2090.0</td>
<td>2144.0</td>
<td>2166.0</td>
<td>2144.0</td>
<td>128,130</td>
</tr>
<tr>
<td>Total Acre Feet</td>
<td>8,260</td>
<td>185,090</td>
<td>376,950</td>
<td>185,090</td>
<td>176,830</td>
</tr>
<tr>
<td>Net Acre Feet</td>
<td>8,260</td>
<td>176,830</td>
<td>191,860</td>
<td>176,830</td>
<td></td>
</tr>
</tbody>
</table>

1/ Includes space for sediment storage.
2/ Elevation at outlet to Franklin Canal.
3/ Elevation of floor in stilling basin outlet to lower Courtland Canal. Need Elev. 1571.7 (16,760 A.F.) to supply full canal capacity.
Table 2

Precipitation at Dams During 1957

(Inches and Percent of Normal)

<table>
<thead>
<tr>
<th></th>
<th>Bonny</th>
<th>Trenton (Swanson L.)</th>
<th>Enders</th>
<th>Medicine Cr. (H. Strunk L.)</th>
<th>Harlan County</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>2.66</td>
<td>111%</td>
<td>2.28</td>
<td>91%</td>
<td>1.39</td>
</tr>
<tr>
<td>Sept.</td>
<td>.24</td>
<td>62%</td>
<td>.10</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td>1.35</td>
<td>182%</td>
<td>1.23</td>
<td>141%</td>
<td></td>
</tr>
<tr>
<td>Ncv.</td>
<td>.26</td>
<td>63%</td>
<td>.52</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>.24</td>
<td>62%</td>
<td>.10</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Jan.-Dec. 1/</td>
<td>20.40</td>
<td>130%</td>
<td>18.99</td>
<td>99%</td>
<td>22.73</td>
</tr>
<tr>
<td>May-Oct. 1/</td>
<td>15.64</td>
<td>135%</td>
<td>15.78</td>
<td>112%</td>
<td>17.80</td>
</tr>
</tbody>
</table>

Lovevall

<table>
<thead>
<tr>
<th></th>
<th>In.</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>.20</td>
<td>33%</td>
</tr>
<tr>
<td>Feb.</td>
<td>.24</td>
<td>28%</td>
</tr>
<tr>
<td>Mar.</td>
<td>3.12</td>
<td>248%</td>
</tr>
<tr>
<td>Apr.</td>
<td>2.93</td>
<td>132%</td>
</tr>
<tr>
<td>May</td>
<td>4.65</td>
<td>129%</td>
</tr>
<tr>
<td>June</td>
<td>5.51</td>
<td>114%</td>
</tr>
<tr>
<td>July</td>
<td>.77</td>
<td>27%</td>
</tr>
<tr>
<td>Aug.</td>
<td>3.56</td>
<td>133%</td>
</tr>
<tr>
<td>Sept.</td>
<td>1.40</td>
<td>52%</td>
</tr>
<tr>
<td>Oct.</td>
<td>1.50</td>
<td>103%</td>
</tr>
<tr>
<td>Nov.</td>
<td>.33</td>
<td>32%</td>
</tr>
<tr>
<td>Dec.</td>
<td>.40</td>
<td>52%</td>
</tr>
<tr>
<td>Jan.-Dec. 1/</td>
<td>24.61</td>
<td>99%</td>
</tr>
<tr>
<td>May-Oct. 1/</td>
<td>17.39</td>
<td>96%</td>
</tr>
</tbody>
</table>

Kirwin

<table>
<thead>
<tr>
<th></th>
<th>In.</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>.20</td>
<td>33%</td>
</tr>
<tr>
<td>Feb.</td>
<td>.24</td>
<td>28%</td>
</tr>
<tr>
<td>Mar.</td>
<td>3.12</td>
<td>248%</td>
</tr>
<tr>
<td>Apr.</td>
<td>2.93</td>
<td>132%</td>
</tr>
<tr>
<td>May</td>
<td>4.65</td>
<td>129%</td>
</tr>
<tr>
<td>June</td>
<td>5.51</td>
<td>114%</td>
</tr>
<tr>
<td>July</td>
<td>.77</td>
<td>27%</td>
</tr>
<tr>
<td>Aug.</td>
<td>3.56</td>
<td>133%</td>
</tr>
<tr>
<td>Sept.</td>
<td>1.40</td>
<td>52%</td>
</tr>
<tr>
<td>Oct.</td>
<td>1.50</td>
<td>103%</td>
</tr>
<tr>
<td>Nov.</td>
<td>.33</td>
<td>32%</td>
</tr>
<tr>
<td>Dec.</td>
<td>.40</td>
<td>52%</td>
</tr>
<tr>
<td>Jan.-Dec. 1/</td>
<td>24.61</td>
<td>99%</td>
</tr>
<tr>
<td>May-Oct. 1/</td>
<td>17.39</td>
<td>96%</td>
</tr>
</tbody>
</table>

Webster

<table>
<thead>
<tr>
<th></th>
<th>In.</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>.20</td>
<td>33%</td>
</tr>
<tr>
<td>Feb.</td>
<td>.24</td>
<td>28%</td>
</tr>
<tr>
<td>Mar.</td>
<td>3.12</td>
<td>248%</td>
</tr>
<tr>
<td>Apr.</td>
<td>2.93</td>
<td>132%</td>
</tr>
<tr>
<td>May</td>
<td>4.65</td>
<td>129%</td>
</tr>
<tr>
<td>June</td>
<td>5.51</td>
<td>114%</td>
</tr>
<tr>
<td>July</td>
<td>.77</td>
<td>27%</td>
</tr>
<tr>
<td>Aug.</td>
<td>3.56</td>
<td>133%</td>
</tr>
<tr>
<td>Sept.</td>
<td>1.40</td>
<td>52%</td>
</tr>
<tr>
<td>Oct.</td>
<td>1.50</td>
<td>103%</td>
</tr>
<tr>
<td>Nov.</td>
<td>.33</td>
<td>32%</td>
</tr>
<tr>
<td>Dec.</td>
<td>.40</td>
<td>52%</td>
</tr>
<tr>
<td>Jan.-Dec. 1/</td>
<td>24.61</td>
<td>99%</td>
</tr>
<tr>
<td>May-Oct. 1/</td>
<td>17.39</td>
<td>96%</td>
</tr>
</tbody>
</table>

Cedar Bluff

<table>
<thead>
<tr>
<th></th>
<th>In.</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>.20</td>
<td>33%</td>
</tr>
<tr>
<td>Feb.</td>
<td>.24</td>
<td>28%</td>
</tr>
<tr>
<td>Mar.</td>
<td>3.12</td>
<td>248%</td>
</tr>
<tr>
<td>Apr.</td>
<td>2.93</td>
<td>132%</td>
</tr>
<tr>
<td>May</td>
<td>4.65</td>
<td>129%</td>
</tr>
<tr>
<td>June</td>
<td>5.51</td>
<td>114%</td>
</tr>
<tr>
<td>July</td>
<td>.77</td>
<td>27%</td>
</tr>
<tr>
<td>Aug.</td>
<td>3.56</td>
<td>133%</td>
</tr>
<tr>
<td>Sept.</td>
<td>1.40</td>
<td>52%</td>
</tr>
<tr>
<td>Oct.</td>
<td>1.50</td>
<td>103%</td>
</tr>
<tr>
<td>Nov.</td>
<td>.33</td>
<td>32%</td>
</tr>
<tr>
<td>Dec.</td>
<td>.40</td>
<td>52%</td>
</tr>
<tr>
<td>Jan.-Dec. 1/</td>
<td>24.61</td>
<td>99%</td>
</tr>
<tr>
<td>May-Oct. 1/</td>
<td>17.39</td>
<td>96%</td>
</tr>
</tbody>
</table>

1/ Inclusive
TABLE 3

INFLOW INTO RESERVOIRS - 1957 RECORDS, 1958 ESTIMATES

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Actual</th>
<th>Adjusted 1/</th>
<th>1,000 Acre-Feet (Except Col. 4)</th>
<th>Percent of Average for Period of Record</th>
<th>Reasonable Minimum</th>
<th>Most Probable</th>
<th>Reasonable Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1957 Records</td>
<td>1958 Estimates 2/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonny</td>
<td>63.8</td>
<td></td>
<td>193.3% 33.0</td>
<td>18.5</td>
<td>26.2</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>Swanson Lake</td>
<td>191.3</td>
<td>196.3</td>
<td>143.2% 137.1 1/</td>
<td>68.0</td>
<td>119.0</td>
<td>205.0</td>
<td></td>
</tr>
<tr>
<td>Enders</td>
<td>51.8</td>
<td></td>
<td>104.0% 49.8</td>
<td>42.8</td>
<td>49.3</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td>Harry Strunk Lake</td>
<td>67.9</td>
<td></td>
<td>123.5% 55.0</td>
<td>33.0</td>
<td>51.7</td>
<td>82.0</td>
<td></td>
</tr>
<tr>
<td>Harlan County</td>
<td>506.4</td>
<td>642.7</td>
<td>130.5% 492.4 1/</td>
<td>260.0</td>
<td>455.6</td>
<td>780.0</td>
<td></td>
</tr>
<tr>
<td>Lovewell 3/</td>
<td>30.0</td>
<td></td>
<td>106.0% 28.3</td>
<td>3.4</td>
<td>17.9</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>Kirwin</td>
<td>121.4</td>
<td></td>
<td>218.0% 55.7</td>
<td>17.0</td>
<td>38.1</td>
<td>115.0</td>
<td></td>
</tr>
<tr>
<td>Webster</td>
<td>131.0</td>
<td></td>
<td>251.9% 52.0</td>
<td>12.5</td>
<td>33.9</td>
<td>98.0</td>
<td></td>
</tr>
<tr>
<td>Cedar Bluff</td>
<td>226.1</td>
<td></td>
<td>348.9% 64.8</td>
<td>12.4</td>
<td>36.9</td>
<td>138.0</td>
<td></td>
</tr>
</tbody>
</table>

1/ Actual records plus upstream depletions caused by reservoirs and canals in Missouri Basin Projects.
2/ Values determined from inflow frequency curve. A value of 90% on curve = reasonable minimum conditions, 50% = most probable conditions, and 10% = reasonable maximum conditions.
3/ Natural inflow. Does not include inflow from Courtland Canal.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonny-Inflow</td>
<td>-</td>
<td>1.9</td>
<td>2.1</td>
<td>2.6</td>
<td>3.0</td>
<td>23.4</td>
<td>6.6</td>
<td>13.4</td>
<td>3.2</td>
<td>0.9</td>
<td>2.7</td>
<td>1.9</td>
<td>2.1</td>
<td>63.8</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>2.8</td>
<td>16.6</td>
<td>15.4</td>
<td>5.5</td>
<td>8.2</td>
<td>7.0</td>
<td>1.8</td>
<td>0.4</td>
<td>0.4</td>
<td>59.4</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>35.1</td>
<td>35.2</td>
<td>37.8</td>
<td>39.8</td>
<td>40.6</td>
<td>45.4</td>
<td>42.2</td>
<td>48.0</td>
<td>41.8</td>
<td>35.3</td>
<td>37.2</td>
<td>38.8</td>
<td>125.8</td>
<td></td>
</tr>
<tr>
<td>Swanson-Inflow</td>
<td>-</td>
<td>4.8</td>
<td>7.9</td>
<td>10.6</td>
<td>17.3</td>
<td>47.1</td>
<td>33.4</td>
<td>33.8</td>
<td>9.8</td>
<td>6.6</td>
<td>5.4</td>
<td>6.9</td>
<td>8.0</td>
<td>191.3</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>38.8</td>
<td>36.7</td>
<td>13.6</td>
<td>25.9</td>
<td>6.8</td>
<td>1.9</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>125.8</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>73.5</td>
<td>76.6</td>
<td>84.4</td>
<td>92.8</td>
<td>108.1</td>
<td>118.8</td>
<td>123.7</td>
<td>135.4</td>
<td>115.7</td>
<td>111.9</td>
<td>113.4</td>
<td>117.3</td>
<td>122.8</td>
<td></td>
</tr>
<tr>
<td>Enders-Inflow</td>
<td>-</td>
<td>4.8</td>
<td>4.4</td>
<td>4.4</td>
<td>4.8</td>
<td>5.3</td>
<td>4.1</td>
<td>4.0</td>
<td>3.3</td>
<td>3.6</td>
<td>3.7</td>
<td>4.5</td>
<td>4.9</td>
<td>51.8</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>2.3</td>
<td>2.1</td>
<td>2.3</td>
<td>3.5</td>
<td>5.3</td>
<td>5.2</td>
<td>4.2</td>
<td>5.5</td>
<td>4.7</td>
<td>3.2</td>
<td>2.3</td>
<td>0.6</td>
<td>41.2</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>37.4</td>
<td>39.2</td>
<td>41.1</td>
<td>42.5</td>
<td>43.8</td>
<td>44.1</td>
<td>43.0</td>
<td>42.0</td>
<td>38.9</td>
<td>37.3</td>
<td>38.0</td>
<td>39.4</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td>Harry Strunk-Inflow</td>
<td>-</td>
<td>2.6</td>
<td>3.1</td>
<td>3.9</td>
<td>6.2</td>
<td>19.4</td>
<td>6.2</td>
<td>9.0</td>
<td>3.1</td>
<td>4.2</td>
<td>3.2</td>
<td>3.5</td>
<td>3.5</td>
<td>67.9</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>17.2</td>
<td>10.1</td>
<td>8.6</td>
<td>4.5</td>
<td>3.6</td>
<td>4.6</td>
<td>4.2</td>
<td>1.6</td>
<td>55.6</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>25.3</td>
<td>27.5</td>
<td>30.2</td>
<td>33.1</td>
<td>38.4</td>
<td>42.9</td>
<td>42.9</td>
<td>41.7</td>
<td>39.5</td>
<td>39.8</td>
<td>38.4</td>
<td>37.2</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>Harlan County-Inflow</td>
<td>-</td>
<td>4.5</td>
<td>9.5</td>
<td>11.6</td>
<td>21.4</td>
<td>118.3</td>
<td>207.7</td>
<td>55.9</td>
<td>12.7</td>
<td>18.8</td>
<td>14.0</td>
<td>18.5</td>
<td>13.5</td>
<td>506.4</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0.5</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>1.6</td>
<td>23.8</td>
<td>173.5</td>
<td>29.5</td>
<td>8.7</td>
<td>27.1</td>
<td>2.3</td>
<td>10.7</td>
<td>279.4</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>139.7</td>
<td>143.3</td>
<td>152.0</td>
<td>163.3</td>
<td>185.4</td>
<td>288.7</td>
<td>485.9</td>
<td>369.9</td>
<td>345.0</td>
<td>350.3</td>
<td>334.4</td>
<td>348.1</td>
<td>349.8</td>
<td></td>
</tr>
<tr>
<td>Lovewell-Natural Inflow</td>
<td>28.2</td>
<td>0</td>
<td>1.1</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>Canal Inflow</td>
<td>2/</td>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>27.9</td>
<td>0.2</td>
<td>27.9</td>
<td>0.2</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Inflow</td>
<td></td>
<td>28.2</td>
<td>0.2</td>
<td>1.5</td>
<td>0.9</td>
<td>27.9</td>
<td>0.2</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outflow</td>
<td></td>
<td>17.5</td>
<td>6.7</td>
<td>1.3</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>October 2, 1957</td>
<td>13.6</td>
<td>6.2</td>
<td>6.4</td>
<td>6.4</td>
<td>29.0</td>
<td>28.1</td>
<td>28.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirwin-Inflow</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>4.9</td>
<td>19.0</td>
<td>73.8</td>
<td>18.6</td>
<td>1.9</td>
<td>1.2</td>
<td>0.4</td>
<td>0.7</td>
<td>0.8</td>
<td>121.4</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.0</td>
<td>2.7</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>7.9</td>
<td>7.8</td>
<td>7.8</td>
<td>8.0</td>
<td>10.3</td>
<td>28.3</td>
<td>88.9</td>
<td>89.8</td>
<td>86.7</td>
<td>85.2</td>
<td>83.9</td>
<td>83.8</td>
<td>83.5</td>
<td></td>
</tr>
<tr>
<td>Webster-Inflow</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>4.4</td>
<td>19.8</td>
<td>58.7</td>
<td>20.0</td>
<td>13.2</td>
<td>9.9</td>
<td>1.5</td>
<td>1.9</td>
<td>1.4</td>
<td>131.0</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43.5</td>
<td>0.8</td>
<td>10.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>55.8</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>2.2</td>
<td>2.2</td>
<td>2.0</td>
<td>2.2</td>
<td>5.7</td>
<td>27.7</td>
<td>92.7</td>
<td>66.6</td>
<td>67.2</td>
<td>69.7</td>
<td>69.5</td>
<td>70.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cedar Bluff-Inflow</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>2.0</td>
<td>57.5</td>
<td>80.4</td>
<td>55.6</td>
<td>6.1</td>
<td>21.0</td>
<td>1.5</td>
<td>1.1</td>
<td>0.7</td>
<td>226.1</td>
</tr>
<tr>
<td>Outflow</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46.2</td>
<td>91.0</td>
<td>25.5</td>
<td>37.2</td>
<td>12.0</td>
<td>3.5</td>
<td>2.0</td>
<td>2.0</td>
<td>217.4</td>
</tr>
<tr>
<td>Content End of Mo.</td>
<td>121.1</td>
<td>120.3</td>
<td>120.6</td>
<td>121.1</td>
<td>123.6</td>
<td>180.7</td>
<td>257.4</td>
<td>231.4</td>
<td>206.4</td>
<td>208.6</td>
<td>194.8</td>
<td>192.7</td>
<td>189.9</td>
<td></td>
</tr>
</tbody>
</table>

Note: Inflow and outflow data are tentative records at inflow and outflow gaging stations. These monthly flow records do not take into account evaporation losses, bank storage losses of reservoir, reservoir gain from bank storage recovery, and pickup below inflow gages. These losses and gains are reflected in reservoir storage values.

1/ Inflow from White Rock Creek.
2/ Diversions by Courtland Canal from Republican River into Lovewell Reservoir.
<table>
<thead>
<tr>
<th>Irrigation Facilities</th>
<th>Acres Irrigated</th>
<th>Acre-feet Diverted (1957)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planned 1/1958</td>
<td>Est. 1957 2/ June</td>
</tr>
<tr>
<td>Frenchman-Cambridge Irrig. Dist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartley Canal</td>
<td>7,000</td>
<td>6,600</td>
</tr>
<tr>
<td>Cambridge Canal</td>
<td>15,600</td>
<td>15,600</td>
</tr>
<tr>
<td>Total District Operated</td>
<td>22,600</td>
<td>22,200</td>
</tr>
<tr>
<td>Meeker-Driftwood Canal</td>
<td>16,440</td>
<td>2,300</td>
</tr>
<tr>
<td>Meeker Canal</td>
<td>-</td>
<td>3,010</td>
</tr>
<tr>
<td>Total Bureau Operated</td>
<td>16,440</td>
<td>5,310</td>
</tr>
<tr>
<td>Total Frenchman-Cambridge</td>
<td>39,040</td>
<td>27,510</td>
</tr>
<tr>
<td>Nebraska-Bostwick Irrig. Dist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franklin Canal</td>
<td>11,750</td>
<td>7,560</td>
</tr>
<tr>
<td>Napolse Canal</td>
<td>1,670</td>
<td>1,420</td>
</tr>
<tr>
<td>Franklin Pump Canal</td>
<td>2,200</td>
<td>1,700</td>
</tr>
<tr>
<td>Superior Canal</td>
<td>6,130</td>
<td>5,790</td>
</tr>
<tr>
<td>Courtland Canal, (Nebr.) 3/</td>
<td>2,400</td>
<td>1,530</td>
</tr>
<tr>
<td>Total Nebraska-Bostwick</td>
<td>24,150</td>
<td>18,000</td>
</tr>
<tr>
<td>Kansas-Bostwick Irrig. Dist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courtland Can. (Kan.ab.Res.) 4/</td>
<td>15,270</td>
<td>10,030</td>
</tr>
<tr>
<td>Courtland Can. (Kan.bel.Rel.)</td>
<td>6,460</td>
<td>0</td>
</tr>
<tr>
<td>Total Kansas-Bostwick</td>
<td>16,490</td>
<td>10,028</td>
</tr>
<tr>
<td>Kirwin Irrigation District</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirwin Canal</td>
<td>11,500</td>
<td>4,500</td>
</tr>
<tr>
<td>Total for Bureau Constructed</td>
<td>89,960</td>
<td>66,500</td>
</tr>
<tr>
<td>Warren Act (Nebraska)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hale Ditch (Nebraska)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Planned acreage as of January 1, 1958
2/ Acres for which water was purchased.
3/ Total diversion less flow past Nebr.-Kan.State Line
4/ Flow past Nebr.-Kan.State line, less canal deliveries to Lovewell Reservoir.
5/ Canal not constructed or operated by Bureau but diverts flows directly from Bonny Reservoir.
6/ Outflow exceeded inflow because of lowering canal checks.
NOTE: This schematic drawing indicates the relative storage allocations of multiple purpose reservoirs constructed (or under construction) by the Bureau of Reclamation and the Corps of Engineers. The irrigation facilities were constructed (or rehabilitated) by the Bureau of Reclamation.

EXPLANATION

- **Diversion Dams**
- **Canals**
- **Pumping Plant**
- Storage below top of irrigation pool 1/
- Storage below top of conservation pool for Kanopolis and Tuttle Creek Reservoirs.

KANSAS RIVER SYSTEM

IRRIGATION AND FLOOD CONTROL FACILITIES EXISTING OR UNDER CONSTRUCTION

DECEMBER 12, 1957

R.E.A.
SWANSON LAKE
OPERATION HYDROGRAPHS

- Actual or estimate under most probable inflow conditions
- Estimate under reasonable minimum inflow conditions
- Estimate under reasonable maximum inflow conditions

Reservoir Content
1000 A.F.

Top Irrigation Pool

Top Dead Storage

Inflow

Outflow

Mean Monthly Flow
100 C.F.S.

ENDERS RESERVOIR
OPERATION HYDROGRAPHS

Reservoir Content
1000 A.F.

Mean Monthly Flow
100 C.F.S.

--- Actual or estimate under most probable inflow conditions
...... Estimate under reasonable minimum inflow conditions
——— Estimate under reasonable maximum inflow conditions

Top Irrigation Pool
Top Dead Storage

Inflow
Outflow
HARRY STRUNK LAKE
OPERATION HYDROGRAPHS

- Actual or estimate under most probable inflow conditions
- Estimate under reasonable minimum inflow conditions
- Estimate under reasonable maximum inflow conditions

Top Irrigation Pool
Top Dead Storage

Inflow
Outflow

1000 A.F.
100 A.F.
0

Reservoir
Content

Mean Monthly
Flow

100 C.F.S.
4
3
2
1
0

Exhibit 5
HARLAN COUNTY RESERVOIR
OPERATION HYDROGRAPHS

Reservoir Content
1000 A.F.

Top Irrigation Pool

Top Dead Storage

Scale Change

Mean Monthly Flow
100 C.F.S.

Actual or estimate under most probable inflow conditions

Estimate under reasonable minimum inflow conditions

Estimate under reasonable maximum inflow conditions

Reservoir
1000 A.F.

Mean Monthly Flow
100 C.F.S.
LOVEWELL RESERVOIR
OPERATION HYDROGRAPHS

- Actual or estimate under most probable inflow conditions
- Estimate under reasonable minimum inflow conditions
- Estimate under reasonable maximum inflow conditions

Reservoir Content
1000 A.F.

100 80 60 40 20 0

Reservoir 1000 A.F.

Inflow
Outflow

Top Irrigation Pool
Top Dead Storage

Mean Monthly Flow
100 C.F.S.

10 8 6 4 2 0

Mean Monthly Flow 100 C.F.S.

Exhibit 7
KIRWIN RESERVOIR
OPERATION HYDROGRAPHS

Actual or estimate under most probable inflow conditions
Estimate under reasonable minimum inflow conditions
Estimate under reasonable maximum inflow conditions

Top Irrigation Pool
Top Dead Storage
Inflow
Outflow

Reservoir Content
1000 A.F.

Reservoir Mean Monthly Flow
100 C.F.S.

Year

Exhibit 8
CEDAR BLUFF RESERVOIR
OPERATION HYDROGRAPHS

Reservoir Content
1000 A.F.

Top of Irrigation Pool

Actual or estimate under most probable inflow conditions
Estimate under reasonable minimum inflow conditions
Estimate under reasonable maximum inflow conditions

Top of Dead Storage

Mean Monthly Flow
100 C.F.S.

Inflow
Outflow
Scale Change

Scale Change
Exhibit 12

ACRE FEET DIVERTED or ACRES IRRIGATED

(Thousands)

MEEKER CANAL DIVERIONS AND ACRES IRRIGATED

13,800 A.F.
(Reasonable Driest Year)

9,600 A.F.
(Most Probable Year)

5,300 A.F.
(Wettest Year)

13,300 A.F.
(Estimated)

BARTLEY CANAL DIVERSION AND ACRES IRRIGATED

- 1960
- 1959
- 1958
- 1957
- 1956
- 1955
- 1954

(Estimated)

- 16,900 A.F. (Reasonable Driest Year)
- 11,700 A.F. (Most Probable Year)
- 6,800 A.F. (Reasonable Wettest Year)
- 6,600 Acres

BARTLEY CANAL DIVERSION AND ACRES IRRIGATED
Naponee Canal Diversions and Acres Irrigated

- 4,800 A.F. (Reasonable Driest Year)
- 3,200 A.F. (Most Probable Year)
- 1,600 A.F. (Reasonable Wettest Year)
- 1,420 A.C.

ACRE-FEET DIVERTED or ACRES IRRIGATED (Thousands)

Year:
- 1955: 1,700 A.F., 550 A.C.
- 1956: 2,040 A.F.
- 1957: 1,938 A.F., 760 A.C.
- 1958 (Estimated): 1,420 A.C.
- 1959: 1,938 A.F.

Naponee Canal Diversions and Acres Irrigated

Exhibit 16
FRANKLIN PUMP CANAL DIVERSSIONS AND ACRES IRRIGATED

- 5,700 A.F. (Reasonable Driest Year)
- 3,800 A.F. (Most Probable Year)
- 1,900 A.F. (Reasonable Wettest Year)
- 1,700 A.C.

ACRE-FEET DIVERTED or ACRES IRRIGATED (Thousands)

Exhibit 18

SUPERIOR CANAL DIVERGENS AND ACRES IRRIGATED

ACRE FEET DIVERTED or ACRES IRRIGATED

(Thousands)

1,940 A.F. 1,940 A.F.
300 Ac. 6,280 A.F.
1,490 A.F. 1,490 A.F.
2,840 Ac. 3,860 A.F.
960 A.F. 4,316 Ac.
15,000 A.F. 4,610 Ac.
13,190 A.F. 4,689 Ac.
10,493 A.F. 4,699 Ac.
17,200 A.F. (Reasonable Driest Year)
12,400 A.F. (Most Probable Year)
6,000 A.F. (Reasonable Wettest Year)
5,790 Ac.

(Estimated) 1959 1960
COURTLAND CANAL DIVER SIONS AND ACRES IRRIGATED IN NEBRASKA
TOTAL DIVER SIONS LESS FLOW AT NEBR.-KAN. STATE LINE

Acre-feet diverted or acres irrigated (thousands)

1952 1953 1954 1955 1956

3,900 A.F. (Reasonable Driest Year)
2,800 A.F. (Most Probable Year)
1,400 A.F. (Reasonable Wettest Year)
1,525 Ac.

3,900 A.F. (Reasonable Driest Year)
2,800 A.F. (Most Probable Year)
1,400 A.F. (Reasonable Wettest Year)
1,525 Ac.
COURTLAND CANAL DIVERGIONS AND ACRES IRRIGATED IN KANSAS ABOVE LOVEWELL
ACRE- FEET DIRECTED IS STATE LINE RECORDS LESS THE CANAL DELIVERIES TO LOVEWELL RESERVOIR
COURTLAND CANAL DIVERIONS AND ACRES IRRIGATED IN KANSAS BELOW LOVEWELL

- 23,600 A.F. (Reasonable Driest Year)
- 17,000 A.F. (Most Probable Year)
- 8,200 A.F. (Reasonable Wettest Year)
- 6,460 Acres

(Estimated)

<table>
<thead>
<tr>
<th>Year</th>
<th>Irrigated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>1,440</td>
</tr>
<tr>
<td>1958</td>
<td>5,530</td>
</tr>
<tr>
<td>1959</td>
<td>8,100</td>
</tr>
<tr>
<td>1960</td>
<td>12,000</td>
</tr>
<tr>
<td>1961</td>
<td>4,500</td>
</tr>
<tr>
<td>1962</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Kirwin Canal Diversion and Acres Irrigated

- 12,000 A.F. (Reasonable Driest Year)
- 8,100 A.F. (Most Probable Year)
- 5,000 A.F. (Reasonable Wettest Year)
- 4,500 Acres

Graph showing acre feet diverted or acres irrigated (in thousands) from 1957 to 1966.
ANNUAL INFLOW—SWANSON LAKE

Acre—Feet (Thousands)

Historical Records
Records Adjusted for Upstream Storage and Use.

5-Year Running Average (Adjusted)

Adjusted Average 137.1

No Record

Calendar Years

1922 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
ANNUAL INFLOW - ENDERS RESERVOIR

Acre-Feet (thousands) — 100 — 90 — 80 — 70 — 60 — 50 — 40 — 30 — 20 — 10 — 0

CALENDAR YEARS

Average 49.8

5 Year Running Average

1924 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
ANNUAL INFLOW - HARRY STRUNK LAKE

Acre - Feet (Thousands)

Acre - Feet (Thousands)

CALENDAR YEARS

5-Year Running Average

Average 55.0

Exhibit 26
ANNUAL INFLOW - HARLAN COUNTY RESERVOIR

Adjusted Average 492.4

5-Year Running Average (Adjusted)

Historical Records
Records adjusted for Upstream Storage and Use.

Acre-Feet (Thousands)

1,100
1,000
900
800
700
600
500
400
300
200
100
0

1929 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Adjusted Average

Acre-Feet (Thousands)
ANNUAL INFLOW - LOVEWELL RESERVOIR
(White Rock Creek)

Average (Natural Inflow)
28.3

5-Year Running Average

Inflow from White Rock Creek

Inflow from Courtland Canal

Acre-Feet (Thousands)

Exhibit 28

Calendar Years

1929 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
ANNUAL INFLOW - KIRWIN RESERVOIR

Acre Feet (Thousands)

280 -

200 -

180 -

160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0 -

Acre Feet (Thousands)

1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

CALENDAR YEARS

Average 55.7

5 Year Running Average

Maximum

Minimum