RECLAMATION Managing Water in the West

Annual Operating Plans

Colorado-Big Thompson Project and Western Division Systems Power Operations

Water Year 2013
Summary of Actual Operations

and

Water Year 2014
Annual Operating Plans

U.S. Department of the Interior Bureau of Reclamation Great Plains Region

Carter Lake

This report is the 62nd Annual Report for the Colorado-Big Thompson Project. Its purpose is to inform interested parties of the coordinated operation of the project. The report has two main parts: one which describes the actual operation of the project during Water Year (WY) 2013 and the other which presents the plan of operation for WY 2014.

This report meets the requirement of the Stipulation dated October 5, 1955, as amended October 12, 1955, and filed with the United States District Court for the District of Colorado in Civil Action Nos. 2782, 5016, and 5017 for an annual report of the Green Mountain Reservoir Operations and the Agreements in the Stipulation and Agreement of the Orchard Mesa Check Case (Colo. Water Div. 5, 91CW247) dated September 6, 1996, to produce a Historic Users Pool Annual Operating Plan.

COLORADO-BIG THOMPSON PROJECT ANNUAL OPERATING PLANS

TABLE OF CONTENTS

COLORADO-BIG THOMPSON PROJECT	iii
DESCRIPTION OF THE COLORADO-BIG THOMPSON PROJECT	2
SUMMARY OF OPERATIONS FOR WATER YEAR 2013	6
Review of Water Year 2013 Most-Probable Plan	6
Weather Conditions and their Impact on C-BT Operations	7
Maintenance and Outages Impact on C-BT Operation	10
Impact of the Grand Lake Water Clarity Initiative on C-BT Operations	11
Drought Impact on C-BT Operations	12
Flooding Impact on C-BT Operations	12
Comparison Between the Planned and Actual C-BT Operations for Water Year 2013	14
WATER YEAR 2013 OPERATIONS BY FACILITY	17
Green Mountain Reservoir	17
Willow Creek Reservoir	20
Granby Reservoir	22
Grand Lake/Shadow Mountain	23
Lake Estes	24
Foothill's Power Arm	27
Carter Reservoir	28
Horsetooth Reservoir	29
C-BT PLANNING AND CONTROL	30
ANNUAL OPERATING PLAN FOR THE FOLLOWING WATER YEAR	32
Most-Probable Inflow Forecast	32
Green Mountain Reservoir	32
Willow Creek Reservoir	32

Granby Reservoir	32
East Slope - Colorado-Big Thompson Project	33
Reasonable-Minimum Inflow Forecast	34
Green Mountain Reservoir	34
Willow Creek Reservoir	34
Granby Reservoir	34
East Slope - Colorado-Big Thompson Project	35
Reasonable-Maximum Inflow Forecast	36
Green Mountain Reservoir	36
Willow Creek Reservoir	36
Granby Reservoir	36
IRRIGATION REQUIREMENTS	38
MINIMUM REQUIRED RESERVOIR RELEASES	40
GREEN MOUNTAIN RESERVOIR OPERATIONS	42
GREEN MOUNTAIN HISTORIC USERS POOL AND THE ORCHARD MESA	CHECK
CASE SETTLEMENT	44
Background and Authority	44
Overview of the Stipulated Settlement	44
Management of the Historic User's Pool (HUP) Under the Operating Criteria	45
OPERATION SKIM	46
FLOOD RENEFITS	48

LIST OF FIGURES

Figure	1.	Adams Tunnel Cumulative Monthly Diversions; Planned and Actual	14
Figure	2.	Granby Reservoir End-of-the-Month Storage Contents; Planned and Actual	15
Figure	3.	Carter Reservoir End-of-the-Month Storage Contents; Planned and Actual	16
Figure	4.	Horsetooth Reservoir End-of-the-Month Storage Contents, Planned and Actual1	6
Figure	5.	Olympus Tunnel Cumulative Monthly Diversions; Planned and Actual1	7
Figure	6.	Comparison Between Green Mountain Reservoir Content in 2013 and Average	
		Content1	8
Figure	7.	2013 and Average Snow-Water Equivalent for the Green Mountain Reservoir Drainage	ge
		Area1	9
Figure	8.	2013 and Average Snow-Water Equivalent for Williow Creek Reservoir Drainage	
		Area	21
Figure	9.	2013 and Average Snow-Water Equivalent for the Granby Reservoir Drainage Area.2	22
Figure	10.	2013 and Average Snow-Water Equivalent for the Olympus Dam Drainage Area2	25
Figure	11.	Cumulative Computed Inflow to Lake Estes; Planned and Actual	6

APPENDIX A: DAILY RECORDS

Table 1.	Green Mountain Reservoir near Kremmling, WY 2013 Inflow
Table 2.	Elliot Creek Canal near Green Mountain Reservoir, WY 2013 Discharge
Table 3.	Green Mountain Reservoir near Kremmling, WY 2013 Content
Table 4.	Blue River below Green Mountain Reservoir, WY 2013 Discharge
Table 5.	Willow Creek Reservoir near Granby, WY 2013 Inflow
Table 6.	Willow Creek Reservoir near Granby, WY 2013 Content
Table 7.	Willow Creek Below Willow Creek Reservoir, WY 2013 Discharge
Table 8.	Willow Creek Pump Canal near Granby, WY 2013 Pump Discharge
Table 9.	Windy Gap Pumping Plant near Granby, WY 2013 Pump Discharge
Table 10.	Granby Reservoir near Granby, WY 2013 Inflow
Table 11.	Granby Reservoir near Granby, WY 2013 Content
Table 12.	Granby Reservoir near Granby, WY 2013 Releases
Table 13.	Farr Pumping Plant, Granby Reservoir, WY 2013 Pump Discharge
Table 14.	Shadow Mountain/Grand Lake near Grand, WY 2013 Content
Table 15.	Adams Tunnel East Portal near Estes Park, WY 2013 Discharge
Table 16.	Mary's Lake near Estes Park, WY 2013 Content
Table 17.	Big Thompson River above Lake Estes near Estes Park, WY 2013 Discharge
Table 18.	Olympus Dam near Estes Park, WY 2013 Inflow
Table 19.	Olympus Dam near Estes Park, WY 2013 Content
Table 20.	Big Thompson River below Olympus Dam near Estes Park, WY 2013 Discharge
Table 21.	Olympus Tunnel near Estes Park, WY 2013 Hydropower Diversions (Skim)
Table 22.	Olympus Tunnel near Estes Park, WY 2013 Priority Diversions
Table 23.	Olympus Tunnel near Estes Park, WY 2013 Discharge
Table 24.	Pinewood Reservoir near Loveland, WY 2013 Content
Table 25.	Flatiron Reservoir near Loveland, WY 2013 Content
Table 26.	Flatiron Reservoir Unit 3 Pump at Flatiron Reservoir, WY 2013 Pump Discharge
Table 27.	Charles Hansen Feeder Canal 930 Section below Flatiron Reservoir, WY 2013
	Discharge
Table 28.	Dille Tunnel near Drake, WY 2013 Hydropower Diversions
Table 29.	Dille Tunnel near Drake, WY 2013 Priority Diversions
Table 30.	Dille Tunnel near Drake, WY 2013 Discharge
Table 31.	Big Thompson Powerplant near Loveland, WY 2013 Discharge
Table 32.	Charles Hansen Feeder Canal Wasteway near Loveland, WY 2013 Discharge
Table 33.	Charles Hansen Feeder Canal 550 Section near Loveland, WY 2013 Discharge
Table 34.	Horsetooth Reservoir near Fort Collins, WY 2013 Content
Table 35.	Charles Hansen Supply Canal below Horsetooth Reservoir, WY 2013 Discharge
Table 36.	Carter Lake Reservoir near Berthoud, WY 2013 Content
Table 37.	Saint Vrain Canal below Carter Lake Reservoir, WY 2013 Discharge
Table 38.	Colorado-Big Thompson, WY 2013 Total Daily Water Deliveries

APPENDIX B: OPERATIONAL DATA

Table 1.	Pertinent Reservoir Data
Table 2.	2013 Monthly Summary of Blue River Operations
Table 3.	2013 Actual Project Operations
Table 4.	Flood Damage Prevented in 2013
Table 5A.	2014 Project Operating Plan for Most Probable Water Supply Condition
Table 5B.	2014 Project Operating Plan for Reasonable-Minimum Water Supply Condition
Table 5C.	2014 Project Operating Plan for Reasonable-Maximum Water Supply Condition

APPENDIX C: EXHIBITS

Exhibit 1.	Colorado-Big Thompson Project, Plan View Map
Exhibit 2.	Colorado-Big Thompson Project, Profile View Map
Exhibit 3.	Green Mountain Reservoir Projected Elevations
Exhibit 4.	Granby Reservoir Projected Elevations
Exhibit 5.	Adams Tunnel Projected Cumulative Diversion Volumes
Exhibit 6.	Olympus Tunnel Projected Cumulative Diversion Volumes
Exhibit 7.	Carter Lake Reservoir Projected Elevations
Exhibit 8.	Carter Reservoir Projected Cumulative Pumping Volume
Exhibit 9.	Horsetooth Reservoir Projected Elevations
Exhibit 10.	Horsetooth Reservoir Projected Cumulative Inflow Volumes

DESCRIPTION OF THE COLORADO-BIG THOMPSON PROJECT

The Colorado-Big Thompson Project (C-BT) is one of the largest and most complex natural resource developments undertaken by the Bureau of Reclamation. It consists of over 100 structures integrated into a transmountain water diversion system through which multiple benefits are provided.

The C-BT spreads over approximately 250 miles in the state of Colorado. It stores, regulates, and diverts water from the Colorado River west of the Rocky Mountains, providing supplemental water for irrigation of 720,000 acres of land east of the Rocky Mountains. It also provides water for municipal use, industrial use, hydroelectric power, and water-oriented recreation. Additionally, it provides storage of replacement water to the west slope for agricultural, recreation, and environmental uses including supplemental fish flow. This replacement water ensures that senior water rights on the west slope are not impacted by diversions to the east slope.

Major features of the C-BT include; dams, dikes, reservoirs, powerplants, pumping plants, pipelines, tunnels, transmission lines, substations, and other associated structures (Table 1, Exhibits 1 and 2).

Historically, the C-BT has diverted approximately 230,000 acre-feet (AF) of water annually (310,000 AF maximum) from the Colorado River headwaters on the western slope to the South Platte River basin on the eastern slope, for distribution to project lands and communities. The Northern Colorado Water Conservancy District (NCWCD) apportions the water used for irrigation to more than 120 ditches and 60 reservoirs. Twenty-nine communities receive municipal and industrial water from the C-BT. The Western Area Power Administration markets the electric power produced at the six powerplants.

The western portion of the C-BT consists of a series of reservoirs forming a runoff collection system. This system captures runoff from the high mountains and stores, regulates, and conveys the water to Adams Tunnel for delivery to the east slope, passing under the Continental Divide.

Another C-BT west slope feature is Green Mountain Reservoir, a repayment facility used to regulate flows in the Colorado River. Pursuant to authorities in Senate Document 80, (which authorized the C-BT), the 1984 Green Mountain Operating Policy and the agreements in the September 1996 Stipulation and Agreement of the Orchard Mesa Check Case settlement (Case No. 91CW247, Colorado Water Div. 5), the content of the Historic Users Pool (HUP) in Green Mountain Reservoir is evaluated during the summer to determine the availability of water surplus for the needs of historic beneficiaries. If it is determined that surplus water is available, it may be delivered based upon need, first to the federal Grand Valley Powerplant, and then to other uses based on a priority system or on specific agreements.

Irrigation systems on the Colorado River, above the Blue River confluence, were improved to enable continued use of existing rights. Releases are made from Lake Granby to maintain the fishery in the Colorado River.

The C-BT's principal Colorado River storage facilities on the west slope are Lake Granby, Grand Lake, and Shadow Mountain Reservoir. Willow Creek Reservoir located on Willow Creek, a tributary to the Colorado River below Lake Granby, is also a principal C-BT west slope facility. Willow Creek Pumping Plant lifts the water 175 feet. It then flows by gravity via the Willow Creek Feeder Canal to Lake Granby.

Completed in 1953, Willow Creek Reservoir has a total storage capacity of 10,600 AF. The uncontrolled spillway, located at the left abutment, has a maximum flow capacity of 3,200 cubic feet per second (cfs). The Willow Creek Feeder Canal begins at the left abutment and has a capacity of 400 cfs. The canal is used to transfer water to Granby Reservoir. Excess inflow of water into the reservoir is transferred by the Willow Creek Feeder Canal and pumped to Lake Granby for storage.

Granby Reservoir is located on the upper Colorado River, and was completed in 1950. The reservoir stores the flow of the Colorado River and water pumped from Willow Creek Reservoir. The reservoir has a total storage capacity of 539,800 AF. Flows through the spillway are controlled by two radial gates with a total release capacity of 11,500 cfs.

Granby Pumping Plant lifts the water 99 feet from Lake Granby to Granby Pump Canal. The canal conveys the water 1.8 miles to Shadow Mountain Lake, which also intercepts flows from the North Fork of the Colorado River. Shadow Mountain Lake connects with Grand Lake to make a single body of water, from which diversions flow into Adams Tunnel to be conveyed to the eastern slope. The Granby Pumping Plant has three units with a combined installed capacity of 1,200 cfs.

Emerging from Adams Tunnel into the East Portal Reservoir, the water flows across Aspen Creek Valley in a siphon and then under Rams Horn Mountain through a tunnel. At this point, it enters a steel penstock and falls 205 feet to Mary's Lake Powerplant. This powerplant is located on the west shore of Mary's Lake. The water is conveyed between Mary's Lake and Estes Powerplant, through Prospect Mountain Conduit and Prospect Mountain Tunnel.

Lake Estes is located on the Big Thompson River, and is formed by Olympus Dam, completed in 1949. It serves as an afterbay for the Estes Powerplant. The storage in Lake Estes and the forebay storage in Mary's Lake enable the Estes Powerplant to meet daily variations in energy demand. Lake Estes has a total capacity of 3,100 AF. It captures the discharge of Estes Powerplant, and inflow coming from the Big Thompson River. It also regulates river flow below the dam, and releases water to the Foothills Power System via Olympus Tunnel (550 cfs capacity). The Estes Powerplant has three hydroelectric units with a total capacity of 45 megawatts. The combined flow capacity for the three units is 1,300cfs. The spillway, located

on the right abutment, has five radial gates with a total discharge capacity of 21,200 cfs. The center gate has been automated, and is operated remotely from the Casper Control Center (CCC). During the winter months, C-BT water is diverted through Adams and Olympus Tunnels and routed through the Foothills Power System to terminal storage at Carter and Horsetooth Reservoirs. This entire operation is controlled remotely from the CCC.

Water from Lake Estes and the Big Thompson River is conveyed by Olympus Siphon and Tunnel, and Pole Hill Tunnel and Canal, to a penstock through which the water drops 815 feet to Pole Hill Powerplant. The flow is then routed through Pole Hill Powerplant afterbay, Rattlesnake Tunnel, Pinewood Lake, Bald Mountain Pressure Tunnel, and eventually dropped 1,055 feet through two penstocks to Flatiron Powerplant. This powerplant discharges into Flatiron Reservoir, which regulates the water for release to the foothills storage and distribution system. The afterbay storage in Flatiron Reservoir and the forebay storage in Pinewood Lake enable Flatiron Powerplant to regulate power releases to meet daily power loads.

Flatiron Reservoir pump/turbine lifts water as much as 297 feet, and delivers it through Carter Lake Reservoir Pressure Conduit and Tunnel to Carter Lake Reservoir. When the flow is reversed, the unit acts as a turbine-generator and produces electricity, discharging back into Flatiron Reservoir.

The Saint Vrain Supply Canal delivers water from Carter Lake Reservoir to the Little Thompson River, St. Vrain Creek, and Boulder Creek Supply Canal. The latter delivers water to Boulder Creek and Boulder Reservoir. The South Platte Supply Canal, diverting from Boulder Creek, delivers water to the South Platte River.

The Charles Hansen Feeder Canal (CHFC) transports water from Flatiron Reservoir to the Big Thompson River and Horsetooth Reservoir. The canal crosses the Big Thompson River in a siphon above the river and canyon highway. Water from the Big Thompson River can be diverted into the canal by Dille Diversion Dam one mile up the canyon mouth and used for power generation at Big Thompson Powerplant.

C-BT water deliveries and water diverted from the Big Thompson River for power generation purposes, are dropped through a chute from the feeder canal ahead of the siphon crossing, or are passed through the Big Thompson Powerplant to convert the available head to electricity.

Horsetooth Reservoir is located west of Fort Collins and is formed by Horsetooth Dam at the north end; Soldier, Dixon, and Spring Canyon Dams on the east; and Satanka Dike. An outlet at Soldier Canyon Dam supplies water to the city of Fort Collins, three rural water districts, Colorado State University, and the Dixon Feeder Canal for irrigation. The principal outlet from Horsetooth Reservoir is through Horsetooth Dam into the Charles Hansen Supply Canal. This canal delivers water to a chute discharging into the Cache La Poudre River and to a siphon crossing the river to supply the Windsor Reservoir and Canal Company. A turnout from the Supply Canal supplies the city of Greeley municipal water works. Water delivered to the river

replaces, by exchange, water diverted upstream to the North Poudre Supply Canal, which conveys it to the North Poudre Irrigation Company System.

SUMMARY OF OPERATIONS FOR WATER YEAR 2013

Review of Water Year 2013 Most-Probable Plan

The C-BT Most-Probable Annual Operating Plan (AOP 2013) for October 2013 was developed considering the effects of historical average runoff values, the expected demands and depletions of the NCWCD and Denver Water, pool levels recorded at the end of Water Year (WY) 2012, other average values, special operations, such as previously planned system outages and maintenance schedules, and an assumed NCWCD quota of 70 percent.

The AOP 2013 assumed diversions through the Adams Tunnel totaling 289,000 AF during WY 2013. Most of that water was planned to be diverted between January - May 2013, leaving sufficient capacity within the system to convey Big Thompson River skim water used for power generation, and possibly Big Thompson River priority water during the late spring and early summer months.

The skim operation, according to the AOP 2013, could convey a total estimated volume of 25,300 AF of water. The skim volume, combined with an estimated 62,800 AF of C-BT water to be delivered through the trifurcation at the Big Thompson River canyon mouth, could potentially keep the Big Thompson Powerplant generating power from May - September.

The Green Mountain Reservoir operational plan was developed considering the effects of upstream operations at Dillon Reservoir, forecasted depletions provided by Denver Water, average runoff values, anticipated system outages and planned special operations. Green Mountain Reservoir began the WY 2013 with an initial content of 76,700 AF. That content was expected to drop to 58,500 AF by late March, before rebounding and reaching a full pool by early July. According to the plan, the reservoir would physically fill in WY 2013 assuming a volume of inflow after depletions totaling 228,300 AF and depletions from Denver Water totaling 142,300 AF. The plan did not account for the Coordinated Reservoir Operations (CROS) in the spring, or the Grand Lake Water Clarity Initiative in July 2013.

The operations at Granby Reservoir are highly dependent on the runoff conditions on both sides of the Continental Divide. The conditions on the east slope have a direct effect on the diversions through the Adams Tunnel. The diversions through the Adams Tunnel affect the pumping operations at the Farr Pumping Plant, and consequently the reservoir levels at Granby Reservoir.

Granby Reservoir began the year with 333,600 AF in storage. Based on the diversion plans for the Adams Tunnel presented in the AOP 2013 the reservoir content was expected to drop to 185,000 AF by the end of April before rising to reach 326,400 AF by the end of July. Under the AOP 2013 Granby Reservoir was expected to finish the year with a storage content of 291,300 AF, significantly lower than its maximum capacity. The Farr Plant pumping volume to Shadow Mountain was expected to total 211,500 AF for the entire WY, with the bulk of the

pumping operation taking place between December and late April. Windy Gap pumping to Granby Reservoir was planned to total 15,000 AF during WY 2013. Meanwhile, pumping from Willow Creek to Granby was planned to total 46,200 AF, from May - June.

Carter Reservoir began the year with 54,638 AF of water in storage. Based on the AOP 2013 pumping to Carter Reservoir was to resume in late December, and continue through late May. Another pumping operation was planned for September, in preparation for the Carter Reservoir outlet works refurbishing project scheduled for the middle of October 2013. A total of 106,300 AF of water were planned to be pumped to Carter Reservoir during WY 2014. The AOP 2013 also assumed 3,000 AF of water stored at Carter Lake, which could be used for power generation at Flatiron Powerplant Unit 3 during November 2012 to satisfy water demands along the CHFC while the Pole Hill Canal joints were being sealed from November - December 2012. Deliveries of water from Carter Reservoir were expected to total 105,600 AF; 94,200 AF of that C-BT water; and 11,400 AF from the Windy Gap Project. The boat ramps were expected to stay operational during the entire WY, based on those projections.

After a severely dry summer in 2012 Horsetooth Reservoir began WY 2013 with only 56,600 AF of water in storage, 68.5 percent of the 30-year average. According to the AOP 2013 inflow to Horsetooth Reservoir was expected to total 149,000 AF by the end of September 2013, while the reservoir content was expected to rise from 56,600 AF to 146,000 AF by June 2013. Deliveries of water were anticipated to total 113,900 AF for the entire WY 2013, with 107,000 AF coming from the C-BT Project, and 6,900 AF from the Windy Gap Project. The boat ramps were also expected to stay in the water during the entire WY, based on the AOP 2013 projections.

Three versions of the Annual Operating Plan were developed in October 2012; the Maximum-Reasonable Plan, Most-Probable Plan, and Minimum-Reasonable Plan. Only the Most-Probable Plan was considered in this report.

Weather Conditions and their Impact on C-BT Operations

The fall and winter seasons were relatively dry in Colorado, keeping the snowpack below average for the entire season. Weather did not have a significant effect on C-BT operations during the fall and winter seasons.

The snowpack over the northern mountains of Colorado remained lower than the average from March - April. Table 1 provides a view of the snowpack condition on April 1 at some of the watersheds within the C-BT system. Based on the snowpack condition, the runoff forecast for April 1 was also below-average for most locations within the C-BT region. Table 2 provides the runoff forecasts for several C-BT facilities.

Table 1. Snow-Water Content for April 1, 2013

	Snow-Water Content							
Watershed	2013 (In.)	Avg. (In.)	% of Avg.					
Green Mtn. Res	10.9	14.0	78		78			
Willow C	8.4	9.3	90					
Lake. Granby	8.5	11.6	73		73		73	
Lake. Estes	6.0	9.8	61					

Table 2. Runoff Forecast for Several Locations within the C-BT Area

Forecast of Apr-Jul Volume (KAF)						
	Chance of Exceeding					
Forecast Point	95% Reaso n- able Min 1/	75%	50% Most Probable	25%	5% Reason- able Max 1/	Most Probable % Avg
Green Mtn. Res	152	178	197	215	242	72
Willow Crk. Res	23	30	36	41	49	75
Lake Granby	82	103	118	134	155	60
Big Thompson River Above Lake Estes	32	42	48	55	65	69
Big Thompson R. at Canyon Mouth	27	47	61	75	96	66

^{1/} The probability is estimated to be 9 chances in 10 that the actual volume will fall between the reasonable minimum and reasonable maximum.

The CROS for WY 2013 was cancelled early in the spring because of the unusually low runoff projections. The CROS is an important component of the C-BT operations. CROS can be described as an initiative supported by reservoir operators over the west slope, in an effort to augment Colorado River flows at the 15-Mile reach near Grand Junction, Colorado. The goal of the operation is to pass inflow during the peak of the runoff for the Colorado River to benefit endangered species of fish along that section of the river. CROS is voluntary and is planned in a

way that it does not affect water supply, or hinder filling reservoirs. During low runoff years, CROS is cancelled to aid in refilling depleted reservoirs.

By April 2013 a series of storms in Northern Colorado increased the snowpack totals to almost average levels at many locations. The snow produced by these storms over the foothills and eastern plains alleviated the persistent drought that had affected the region since fall 2011. The late spring storms and the cooler temperatures extended the peak of the snow season at many locations during 2013. After April 2013 temperatures in Northern Colorado did not begin to warm up again until the middle of May 2013. The colder weather also kept the snowpack higher than previously expected for the month of May.

The runoff season began in late April, fed mainly by the low elevation snowpack left by the spring snow storms. The Big Thompson River experienced a surge in runoff as early as April 26, 2013. The Big Thompson River produced 15,000 AF more than projected for the runoff season. Other watersheds also experienced similar increases in runoff, however the Blue River did not benefit as much as the Upper Colorado River and the Big Thompson River.

NCWCD declared a quota of 60 percent in April 2013 and that quota was held for the remainder of the WY. The quota assumed for the AOP 2013 was 70 percent. The 10 percent reduction in the quota represented 31,000 AF decrease in water diversions from the west slope. Therefore, adjustments to water diversions from the west slope had to be incorporated into the May version of the Annual Operating Plan for the C-BT.

The Grand Lake Water Clarity Initiative planned for WY 2013 was announced in June and was included in the June version of the C-BT Annual Operating Plan. The plan for WY 2013 resulted in a no-pumping operation for the Farr Pumping Plant which ended on September 3, 2013. The new plan incorporated minimum diversions through the Adams Tunnel for the months of July - August 2013.

The heavy snowfall pattern experienced during the spring over the east slope and the eastern plains affected water demands significantly during the summer months. After the spring storms ended in the middle of May. The weather turned dry, and the temperatures rose rapidly. Demands for C-BT water were low in May - July. The flows in the Big Thompson River were adequate to satisfy the water demands.

By August 2013 the weather turned extremely dry and hot. As the runoff diminished, the demands for C-BT water began to increase. The NCWCD quota was kept at 60 percent. The demands for C-BT water were concentrated from July - September 2013. The result was high deliveries of C-BT water during that period, from both Carter and Horsetooth reservoirs, as well as through the trifurcation at the Big Thompson River canyon mouth. Skim operations in the spring and these large deliveries kept the Big Thompson Powerplant generating power from May - September 2013.

During the Grand Lake Water Clarity Initiative, water from Carter Reservoir was used to supply the C-BT allotees along the Big Thompson River and the CHFC. Flatiron Unit 3 was operated intermittently as a generator from August - September 2013. This operation conveyed water from Carter Reservoir into Flatiron Reservoir to feed the CHFC. Almost 7,500 AF of water from Carter Lake were used during the Grand Lake Water Clarity Initiative to satisfy demands for C-BT water on the east slope. The Grand Lake Water Clarity Initiative required more than twice the volume than was initially projected in the AOP 2013.

The monsoon season was strong during the summer of WY 2013. It started earlier than usual, and ended later than usual. Its impact on C-BT operations was not very significant until September 2013.

Maintenance and Outages Impact on C-BT Operations

Fall maintenance during WY 2013 had a significant effect on operations, water diversions, and power generation, especially in November 2012. Maintenance and other repair projects were taking place at multiple facilities within the C-BT. Water diversions from the west slope were suspended on November 5, 2012. Lake Estes was drained to allow inspections and other work to take place at the Estes Powerplant. The work at the Estes Powerplant only took a few days, but the City of Estes Park took advantage of the low reservoir level to dredge the bottom of the reservoir. To allow the completion of these two projects, the reservoir level was kept low from November - December 2012.

The WY 2013 drawdown of Lake Estes was achieved by releasing the water in storage into the Big Thompson River canyon. Water released to the Big Thompson River was recaptured at the Dille Tunnel diversion dam, and redirected to Horsetooth Reservoir. Under normal circumstances, the water from Olympus Dam would have been conveyed via the Olympus Tunnel to maximize power generation. During the WY 2013 drawdown of Lake Estes, the Olympus Tunnel was not available to drain the reservoir. The Olympus Tunnel entered a clearance period shortly after November 5, 2012, to allow sealing of the Pole Hill Canal boxculvert joints. The Lake Estes drawdown and the Pole Hill Canal work began almost simultaneously. The Olympus Tunnel remained dry from November 5 - December 12, 2012, to complete the sealing of the Pole Hill Canal box-culvert joins.

Lake Estes remained drained until December 3, 2012, when water began to flow once again through the Adams Tunnel and into the reservoir. Flows through the Adams Tunnel were initially low to allow Lake Estes to rise slowly, protecting the Estes Powerplant turbines, and the coffer dam in front of the plant. The slow pace also allowed the completion of the annual maintenance for Mary's and Pole Hill powerplants. The reservoir reached its operational pool at elevation 7469.50 feet on December 10, 2012. By December 12, 2012 the Adams Tunnel and Olympus Tunnel were once again conveying 550 cfs.

There were no water diversions from the west slope between November 5 - December 3, 2012. Water stored at Pinewood Reservoir was used to continue delivering C-BT water to allotees along the CHFC during the maintenance season. Water from Carter Lake was not needed during that period. It was the first time in several years that Flatiron Unit 3 was not used as a generator during the fall maintenance period. The water stored at Pinewood was sufficient to satisfy the demands for C-BT water.

Pumping to Carter Lake began December 13, 2012 and continued until late February 2013. By late February 2013 an 18-day interruption took place to conduct testing at Flatiron Powerplant Unit 3 and to complete other pending work. The pumping operation resumed on March 12 - May 3, 2013. A third pumping operation began on June 27, 2013 in preparation for the Grand Lake Water Clarity Initiative operation scheduled from July - September 2013 and for the gate refurbishing work at the Carter Reservoir outlet works, planned for October - November 2013. A fourth pumping operation was attempted after the flooding event had occurred in September 2013 but was abandoned when diversions of water from Grand Lake were suspended. Pumping for the year finally ended on September 16, 2013.

The flow of water into Horsetooth Reservoir was maintained during the entire WY. Water flows were relatively high during October 2012. By early November 2012 the flows in the CHFC had been reduced to minimum conditions. Once the fall maintenance season ended for C-BT facilities by December 2012, the flows to Horsetooth Reservoir were increased. The CHFC 550 Section maintained flows between 100 - 200 cfs during January - February 2012 while pumping to Carter Reservoir was taking place. During February 2013, when testing and repair work of Flatiron Unit 3 began, the flows reached almost 500 cfs.

March 27 - April 19, 2013, the CHFC 930 Section underwent its annual maintenance. Water for the CHFC 550 section had to be bypassed around the Southern Power Arm of the system using the Big Thompson River as a conveyance. The Dille Tunnel diversion dam near the mouth of the Big Thompson River Canyon recaptured the water. Only minimum flows were bypassed to limit any power generation losses. The water recaptured by the Dille Tunnel diversion structure was sent to Horsetooth Reservoir via the CHFC 550 Section. Flows averaged between 40 - 50 cfs during the three weeks of maintenance work at the CHFC 930 Section. Once the maintenance of the CHFC 930 Section was completed higher flows to Horsetooth resumed.

Impact of the Grand Lake Water Clarity Initiative on C-BT Operations

The Grand Lake Water Clarity Initiative had a significant effect on C-BT operations, including east slope water conveyance and power generation.

Several factors contributed to successful C-BT operations during the Grand Lake Water Clarity Initiative. First, the water diversions from the west slope began relatively early in the WY, and continued almost uninterrupted until late July. The long water diversion season allowed reservoir storage at Carter and Horsetooth to be sufficient to satisfy demands for C-BT water,

despite the low flows through the Adams Tunnel from July - September 2013. Also, the 60 percent quota decreed by NCWCD in the spring was not increased during the summer. This kept demands for C-BT water relatively low during the peak demand period. Finally, the wet spring on the east slope and the eastern plains also helped to keep demands relatively low during May - July 2013.

Carter Reservoir supplied most of the C-BT water used to satisfy demands along the CHFC and the Big Thompson River during the Grand Lake Water Clarity Initiative. Therefore, Carter Lake level dropped more than the Horsetooth reservoir level. Nevertheless, recreation at Carter and Horsetooth reservoirs was very successful during WY 2013. The boat ramps remained in the water the entire summer and until the end of September.

Drought Impact on C-BT Operations

The drought affecting Colorado since 2011, had a more profound effect on C-BT operations in the Colorado River Basin than along the east slope. Adequate water supply combined with the low quota declared by NCWCD kept the demands for C-BT water on the east slope low during WY 2013. On the west slope the dry conditions created concerns among water managers. The dry conditions during the early spring caused the cancellation of the CROS, and forced the HUP season into an early start. Green Mountain Reservoir did not have a physical fill during WY 2013 for the second year in a row, although it did achieve a "paper fill". As projected in the AOP 2013 Granby Reservoir did not achieve a physical fill during WY 2013.

Flooding Impact on C-BT Operations

During September 2013 a series of storms from the Gulf of Mexico carried large amounts of moisture to Northeastern Colorado. Typical precipitation averages for mountain areas draining into Estes Park are two inches or less during the month of September. Annually, the region might see as much as 16 inches. Records show 12 inches of rain or more at various locations within the Big Thompson River watershed. From September 9-16, rain fell in record amounts, elevating the region from drought status to above average seasonal precipitation. Soils became saturated resulting in the highest runoff in more than 75 years of operating history.

On September 12, shortly before midnight, inflows to Lake Estes peaked between 4,600-5,300 cfs. As a result, outflow from Lake Estes through Olympus Dam to the Big Thompson Canyon reached an estimated 5,283 cfs. This set a new inflow/outflow record for Olympus Dam.

Reclamation maintained controlled releases from Olympus Dam to the Big Thompson Canyon throughout the rain and flood event. In concordance with Reclamation Directive and Standards, Eastern Colorado Area Office (ECAO) personnel followed the Emergency Action Plan and the Standing Operating Procedures for Lake Estes and Olympus Dam. Staff also maximized use of the east slope C-BT system as conditions allowed. The southern power arm from Pole Hill Powerplant to Flatiron Reservoir captured and stored runoff, which otherwise would have contributed to Little Thompson River and Cottonwood Creek flooding.

All C-BT dams performed well during the flooding and remained safe. However, the following east slope facilities were affected: East Portal, Lake Estes, Pole Hill Afterbay, Little Hells Diversion Dam, Dille Diversion Tunnel, Big Thompson Siphon, and the Big Thompson Power Plant.

The worst impacts were to facilities at the mouth of the Big Thompson Canyon. Over 11 feet of sediment were deposited by the flood across the canyon mouth. Sediment buried the tail race at the Big Thompson Powerplant and the trunk of a tree was driven part way through the plant's upstream side. Pinewood and Flatiron reservoirs received a large influx of sediment and debris. The storm also caused sedimentation at Lake Estes, especially along the Fish Creek arm of the reservoir.

Several stream gages used in east slope C-BT operations were affected including the *Big Thompson River above Lake Estes*, the *Big Thompson River below Lake Estes*, the *North Fork of the Big Thompson River at Drake*, and the *Big Thompson River at the Canyon Mouth*. Some steam gages were washed away; others were damaged. The *North Fork of the Big Thompson River at Drake* gage and the defunct *Fish Creek near Lake Estes* gage were buried in several feet of sediment. Other stream stations were overwhelmed by high flows and their measurements were lost. The *Dille Tunnel* gage was inundated and its data lost. The *Wind River* and *Wind River Bypass* gages were also severely affected but survived the event.

The east slope of the C-BT remained partially operational throughout the rain and flood event. Diversion from the west slope to the east slope via the Adams Tunnel was shut down on the morning of September 12. Deliveries were made from local runoff September 16-26 and from Flatiron and Pinewood storage September 26 - October 3. From October 4 - December water deliveries were made from Carter Lake via Flatiron Unit 3. Reclamation was able to generate hydropower during all of these deliveries.

On September 16, ECAO activated a Damage Assessment and Recovery Team to inspect and evaluate damaged facilities. Crews from the Provo Area Office, Mount Elbert Powerplant, and the Pueblo Field Office assisted C-BT Operations and Maintenance staff in returning affected facilities to service. The Town of Estes Park led recovery efforts around the shores of Lake Estes. Fill material for reconstruction of Fish Creek Road was dredged from the Lake Estes inlet where the Big Thompson River enters the small reservoir. Dredged material was used to restore public facilities and access to utility services.

Long-term work for the Dille Diversion and the Big Thompson Powerplant is being scheduled as specific needs continue to evolve. On December 12, 2013 short-term repairs were completed and the C-BT Project resumed regular operations.

Reports provided by the Natural Resources Conservation Service on December 19, 2013 demonstrate peak flows during the flood were measured in the North Fork of the Big Thompson Canyon near Drake, Colorado at 18,400 cfs. Flood outflows are estimated in the same report to have peaked at the mouth of the canyon between 28,000-32,000 cfs. Other indirect

measurement estimates continue to be developed by the State of Colorado, USGS and Reclamation's Technical Service Center.

Comparison Between the Planned and Actual C-BT Operations for WY 2013

The AOP 2013 assumed diversions through the Adams Tunnel totaling 288,900 AF based on a 70 percent quota. This did not include a Grand Lake Water Clarity Initiative operation, but considered factors such as an average snowpack and runoff, and a regular maintenance schedule. The quota for the WY 2013 was actually set at 60 percent. The Grand Lake Water Clarity Initiative curtailed diversions of water from the west significantly for over six weeks in the summer. The September 2013 flood forced a shutdown of the Adams Tunnel until the end of the WY. Those factors affected the final volume of diversions from the west slope. Towards the end of September 2013 the total diversion volume through the Adams Tunnel for the WY 2013 had reached 237,730 AF, approximately 51,170 AF less than projected. Figure 1 shows a comparison between the cumulative volume of diversions from the west slope, as they were projected in the AOP 2013, and the actual volume.

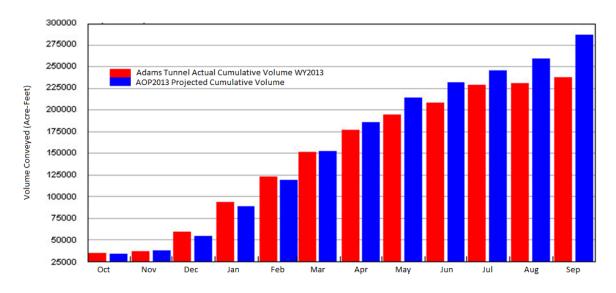


Figure 1. Adams Tunnel Cumulative Monthly Diversions; Planned and Actual.

Despite the lower diversion through the Adams Tunnel, all the water delivery targets and goals for the C-BT were met. The expected deliveries for C-BT water for WY 2013 totaled 242,700 AF, which included 223,800 AF of C-BT water, and 18,900 AF of Windy Gap Project water. According to NCWCD, the WY 2013 C-BT deliveries totaled 195,528 AF in WY 2013, approximately 47,200 AF less than projected. The total volume delivered included 169,071AF of C-BT water; 19,349AF of Windy Gap water; and 7,108 AF of carriage contract water. The C-BT water delivered included 55,120 AF of carryover C-BT water from WY 2012. The lower volume is attributed mainly to the low quota and reduced demands resulting from the wet spring and early fall seasons.

The AOP 2013 projected combined storage content for Granby, Horsetooth and Carter reservoir towards the end of September 2013 was 426,400 AF, 53 percent of the total capacity. The 30-year end of September average content for those three reservoirs is 556,290 AF, 69.2 percent of the total capacity. The end-of-water-year combined storage was 515,453 AF; 93 percent of average and 89,053 AF higher than projected. The higher volume can be attributed to the low quota and reduced demands resulting from the wet conditions in the late spring and early fall. Figures 2, 3, and 4 compare the planned AOP 2013 end-of-the-month storage to actual storage for Granby, Carter, and Horsetooth Reservoirs.

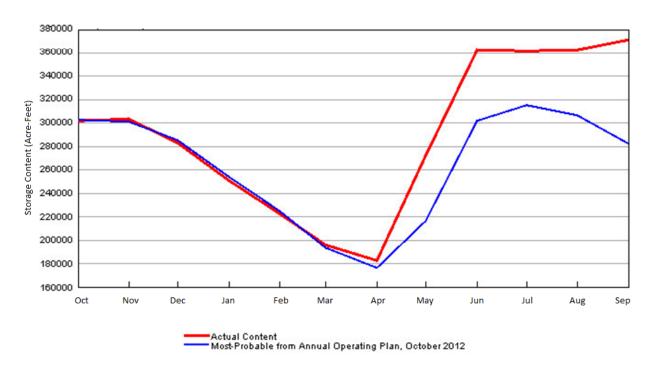


Figure 2: Granby Reservoir End-of-the-Month Storage Contents; AOP 2013 and Actual.

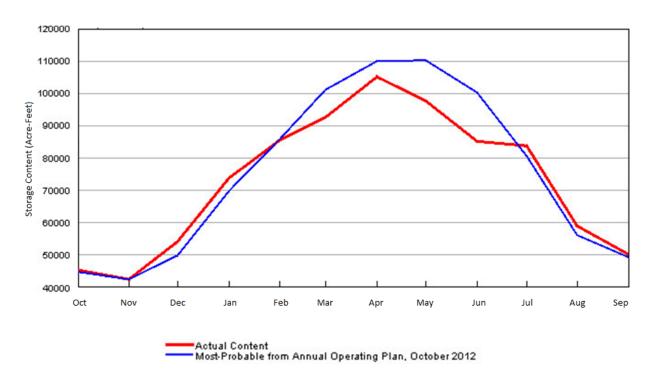


Figure 3: Carter Reservoir End-of-the-Month Storage Contents; AOP 2013 and Actual.

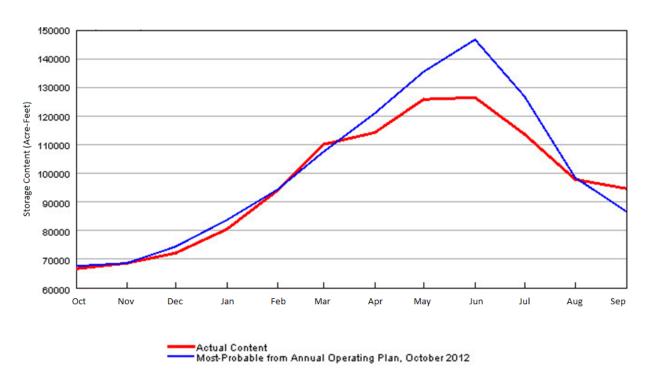


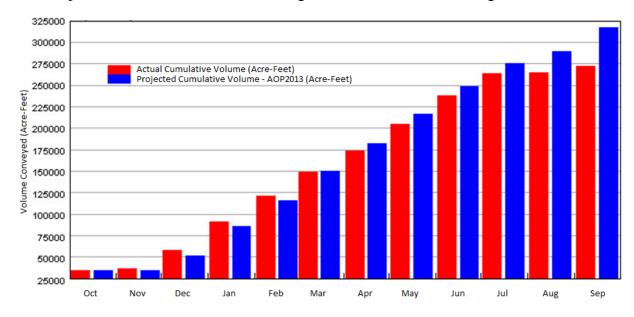
Figure 4: Horsetooth Reservoir End-of-the-Month Storage Contents; AOP 2013 and Actual.

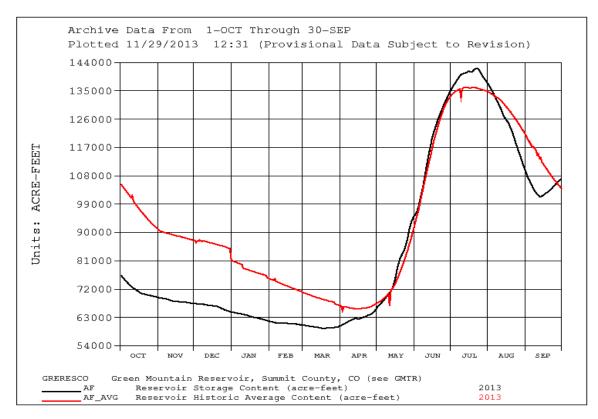
The C-BT powerplants produced a total of 599.1 gigawatt-hours of electricity during WY 2013. The average cumulative gross power generation for a WY is 599.4 gigawatt-hours. The

AOP 2013 contained projections showing a cumulative gross generation of 614.4 gigawatthours. Lower quota for the WY reduced the volume of water needed for deliveries to the east slope, reducing the diversions from the west. These numbers do not include the 1.7 gigawatts of power generated by Flatiron Unit 3 during WY 2013.

The Olympus Tunnel skimmed a total of 37,493 AF during WY 2013. The skimmed water was used to generate power at Pole Hill, Flatiron, and the Big Thompson powerplants. An estimated total of 64,000 megawatts were generated by this operation. The Dille Tunnel skim operation diverted a total of 5,415 AF of water during WY 2013. This volume of water was used to generate power at the Big Thompson Powerplant near the Big Thompson River canyon mouth. It is estimated that this operation produced an additional 860 megawatts of power. Figure 5 presents the cumulative volumes of water passed through the Olympus Tunnel during WY 2013, planned and actual.

Despite the difficult conditions, facility outages and maintenance schedules, special operations and the September flood, the C-BT met all its goals and commitments during WY 2013.




Figure 5: Olympus Tunnel Cumulative Monthly Diversions AOP 2013 and Actual

WY 2013 OPERATIONS BY FACILITY

Green Mountain Reservoir

The Green Mountain Reservoir contributing watershed experienced well-below average snowfall, with the snowpack being just 78 percent of average on April 1, 2013. 140 percent of average precipitation during April 2013 brought the basin's snowpack to near normal levels by May 1, 2013. Figure 6 shows the storage content for the reservoir during WY 2013 compared to

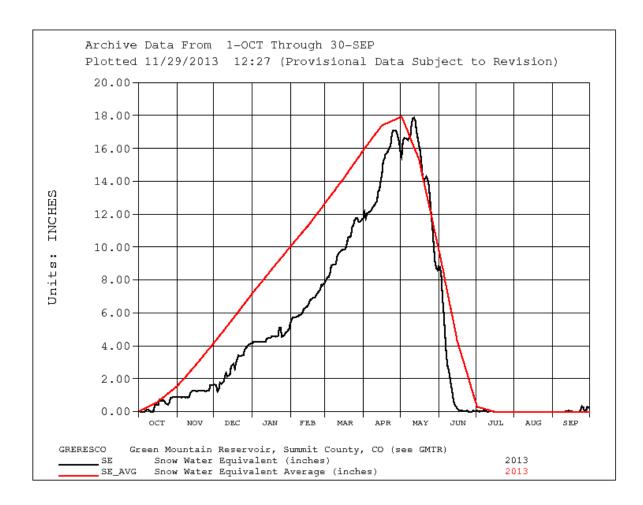

the 30-year average. Figure 7 shows the basin snow-water equivalent for WY 2013 compared to the 30-year average. The April 1, 2013 undepleted inflow forecast for Green Mountain Reservoir was 197,000 AF for the April - July period. The actual undepleted inflow was 211,000 AF. Despite the inflow volume, the reservoir fell short of achieving a physical fill by approximately 10,000 AF. This resulted from upstream depletions of over 120,000 AF and reservoir releases to meet senior downstream water right calls. The runoff for the Blue River began in late April 2013. The inflow to Green Mountain Reservoir reached its peak on June 12 with a daily average flow of 1,262 cfs.

Figure 6: Comparison Between Green Mountain Reservoir Content in WY 2013 and the Average Historical Content.

Considering the very low snowpack and resultant low runoff projections, start-of-fill for 2013 was declared as April 1, 2013. On that date the reservoir held 60,358 AF in storage, well below its historic 65,000 AF start-of-fill target. Pursuant to the State Engineers Office's Interim Policy, "Administration of Green Mountain Reservoir for 2013", dated May 1, 2013, Green Mountain Reservoir achieved a "paper fill" on June 7, 2013. By that date, out-of-priority depletions by Denver Water and Colorado Springs Utilities totaled 49,035 AF. A provision of the interim policy allows Green Mountain Reservoir to continue storing its inflow under a 1955 exchange right after "paper filling" to reduce the amount of water owed by the Cities. Under this provision, Green Mountain Reservoir stored an additional 40,544 AF between June 7 - July 23,

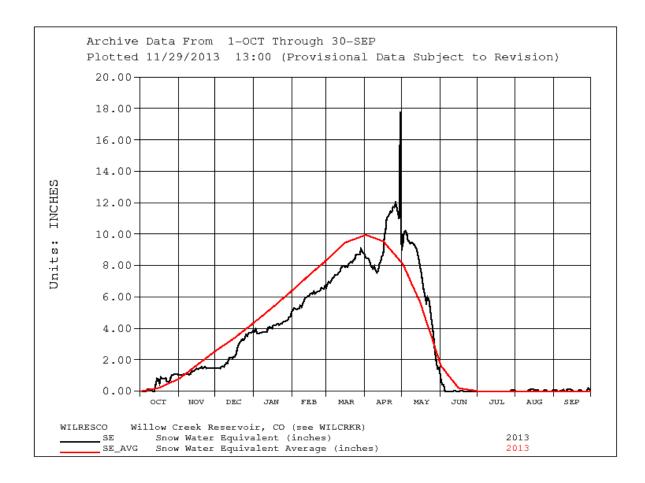
reducing the amount owed by the Cities to 8,491 AF. This water was repaid by the Cities in the form of a direct release from Dillon Reservoir and substitution releases from Williams Fork Reservoir and Wolford Mountain Reservoir between August 1 - October 31, 2013.

Figure 7: 2013 and 30 Year Average Snow-Water Equivalent for the Green Mountain Reservoir Drainage Area.

By continuing to store under the 1955 exchange right, Green Mountain Reservoir was able to reach a maximum physical content for the year on July 22, with a total of 142,104 AF in storage. Because the reservoir achieved a "paper fill", water was available to fully satisfy each of the following: the 52,000 AF Colorado-Big Thompson Project replacement pool; the 5,000 AF Silt Project reservation; the 66,000 AF HUP allocation; and the 20,000 AF set aside for contracts.

The maximum drawdown rate limitations, initially put in place in 2003 to alleviate landslide concerns, were continued in 2013. These drawdown rate limitations were to be initiated when the reservoir's water surface elevation dropped below 7880.0 feet. The 2013 available supply

and demands were such that the water surface elevation remained above 7880.0 feet during the entire irrigation season. Therefore, the drawdown rate limitations were never triggered.


While the interim policy requires that upstream depletions by Green Mountain Reservoir beneficiaries junior to Green Mountain Reservoir be charged against the "paper fill" of Green Mountain Reservoir, those depletions were not charged against this year's HUP allocation. Therefore, the entire 66,000 AF HUP allocation remained available when the reservoir achieved its "paper fill" on June 7, 2013.

In response to the dry conditions and the needs of the HUP beneficiaries, HUP surplus releases to benefit the endangered fish in the 15-Mile Reach were not made available until October 3, 2013. During October 3 - 31, 2013 Green Mountain Reservoir HUP surplus releases totaled 2,514 AF. As a result of extremely low streamflow conditions in mid-April, releases to augment the water rights of HUP beneficiaries downstream of Green Mountain Reservoir between April 13, 2014 and October 3, 2014 totaled 13,166 AF. The conservation efforts of the Grand Valley irrigators and the resumption of wetter conditions in the fall limited HUP releases to support the Cameo call to only 17,644 AF this year, in spite of the much-below average streamflow conditions throughout the summer. Together, the release for HUP beneficiaries, the direct HUP release to support the Cameo call, and the HUP surplus release to benefit the endangered fish totaled 33,324 AF in 2013. In October 2013 the HUP balance was 32,676 AF.

Both generators at the Green Mountain Powerplant were available for the entire year. The spillway was not used for flood operations, or to deliver water. There were no significant outages at Green Mountain Powerplant during WY 2013 outside of scheduled annual maintenance periods for each turbine. There were some short unit interruptions lasting only a few hours, but water deliveries were not compromised at any time. By the end of the WY 2013 Green Mountain Reservoir had a storage content of 107,059 AF, approximately 3,000 AF lower than the AOP 2013 projection. Recreation activities were relatively normal at Green Mountain Reservoir during WY 2013.

Willow Creek Reservoir

The Willow Creek contributing watershed maintained a below-average snowpack during the entire winter and early spring seasons. Figure 8 illustrates a comparison between the average historical snow-water equivalent and the actual. The snow-water content peaked in late March 2013 and began to drop steadily for a couple of weeks. But towards the middle of April 2013 a series of spring snow storms brought new snow, increasing the snowpack by up to 12 inches of snow-water equivalent. With the added snowpack and fresh snow at lower elevations, the runoff began in late April 2013. The runoff continued rising rapidly, with the WY 2013 peak daily average inflow of 901 cfs occurring on May 18, 2013.

Figure 8: 2013 and 30-Year Average Snow-Water Equivalent 30-year Average for the Willow Creek Reservoir Drainage Area.

Reservoir operations were relatively normal during most of the year. There were no flood or drought operations at Willow Creek during WY 2013. The reservoir level began the WY at elevation 8,127.05 feet. By the middle of November, the reservoir had been drawn down to 8,116.93 feet, in preparation for winter operations. Willow Creek Canal was later winterized, and the canal pumps were turned off. The reservoir level was lowered again in early April, in preparation for the spring runoff. The runoff during May - June 2013 increased the reservoir level to the WY 2013 peak of 8128.69 feet. During July 2013 the reservoir level was lowered to 8117.13 feet on July 19, 2013 for refurbishing work of the outlet works gate mechanism. From that point on, the reservoir level began a slow climb, finishing the year at elevation 8,125.70 feet.

A total of 42,381 AF of water was pumped from Willow Creek to Granby during WY 2013. A total of 11,778 AF was released into Willow Creek below the dam. The WY 2013 maximum daily average release of 412 cfs occurred on May 17, 2013; the day before the peak of the inflow.

Granby Reservoir

The snowpack within the Upper Colorado River watershed above Granby Reservoir was below average during the first few months of the WY 2013. In early April, the prospects for an average runoff season were poor. The snowpack was already beginning to melt, and expectations for fresh snow were low. Spring snowstorms moved into the area in late April and early May increasing the snowpack in the Granby Reservoir contributing watershed by more than 4 inches of snow-water equivalent. Figure 9 compares the WY 2013 and 30 year average snow-water equivalent for the Granby Reservoir drainage area.

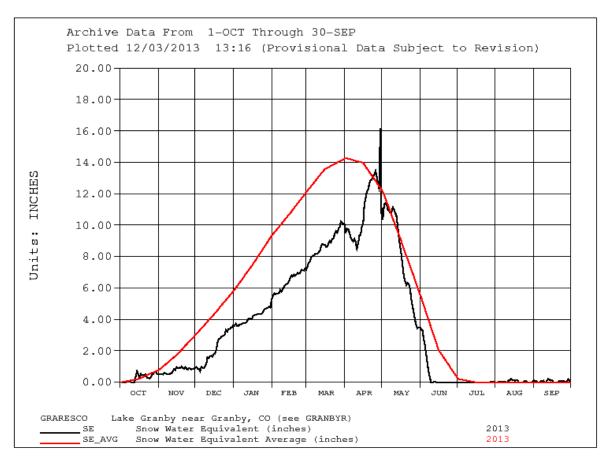


Figure 9: 2013 and 30-Year Average Snow-Water Equivalent for the Granby Reservoir Drainage Area.

Precipitation over the Upper Colorado River basin ended in the middle of May 2013. Runoff intensified soon after, as temperatures began to warm up. The summer months turned out to be relatively dry, with temporary bursts of monsoonal precipitation. The weather over the area remained dry and hot until early September 2013.

The hot and dry summer season ended with a storm in the middle of September 2013 which produced six days of light but continual precipitation. The storm produced sufficient runoff to

increase the Granby Reservoir content by more than 13,000 AF during the last two weeks of the WY.

Granby Reservoir began the year with a water surface elevation of 8248.35 feet and a storage content of 333,587 AF, 80 percent of the 30-year average. The Adams Tunnel diversions, which had been maintained during the hot and dry WY 2012, continued during the months of October - November 2012. The Farr Pumping Plant continued to pump water from Granby to Shadow Mountain during that period to feed the Adams Tunnel diversions. Granby Reservoir content had dropped to 299,937 AF by November 4, 2012.

The maintenance season for C-BT facilities put a stop to the Adams Tunnel diversions for several weeks between November - December 2012. The diversions through the Adams Tunnel finally resumed on December 3, 2012 as maintenance work was completed. The Adams Tunnel flow was limited to 80 cfs from December 3 – December 12, 2012. The Farr Pumping Plant resumed full pumping operation on December 12.

Once the Adams Tunnel operations resumed in December 2012 the diversions continued. Granby Reservoir content dropped to its WY 2013 minimum of 181,311 AF on April 28, 2013. The runoff season began in late April, while the diversions to the east slope diminished. Diversions of water through the Adams Tunnel were intermittent during May - September, driven by conditions over the east slope and a low 60 percent quota. Granby Reservoir reached its maximum level for the year on September 30, at elevation of 8254.70 feet with a storage content of 371,018 AF, 94 percent of the 30-year average.

Granby Reservoir finished WY 2013 with a total of 16.87 inches of precipitation, just under the 30-year average. The total natural inflow to Granby Reservoir was 238,600 AF, 96 percent of the 30-year average.

Grand Lake/Shadow Mountain

Grand Lake and Shadow Mountain Reservoir had relatively normal operations until July 2013 when the Grand Lake Water Clarity Initiative started.

The Grand Lake Water Clarity Initiative for WY 2013 was approved in June 2013. The operation was in place July 23, 2013-September 3, 2013. During the operation, diversions from the west slope through the Adams Tunnel were limited to just a portion of the native inflow to Grand Lake, in an attempt to maintain a small, positive flow from Grand Lake into Shadow Mountain. The pumping of water from the Farr Plant was discontinued during the operation. The low diversions through the Adams Tunnel required that C-BT deliveries on the CHFC and to the Big Thompson River be made using Carter Lake storage. All the ECAO water delivery commitments were met throughout the duration of the Grand Lake Water Clarity Initiative. Power generation was affected by the Grand Lake Water Clarity Initiative, with an estimated 16,000 MWh deferred by Mary's, Estes, Pole Hill and Flatiron powerplants from July 23 -

September 3, 2013. The loss in power output was a result of insufficient runoff to divert from Grand Lake and the Big Thompson River.

Soon after the Grand Lake Water Clarity Initiative ended on September 3, 2013 Grand Lake and Shadow Mountain Reservoir were affected by very high runoff and east-slope flood conditions, which forced high releases through the Shadow Mountain radial gates. Releases for the month of September 2013 totaled 16,849 AF; much higher than the normal 2,100 AF.

Lake Estes

The snowpack within the Big Thompson River watershed never reached average during WY 2013. It was a cold, dry winter season for the east slope of the C-BT. Nevertheless, WY 2013 cannot be categorized as a dry year for the Big Thompson River. Two separate weather disturbances, one in the spring and one in the fall of 2013, brought high levels of precipitation, increasing the cumulative precipitation totals to well above average. In WY 2013 the Big Thompson River watershed above Lake Estes had accumulated almost 30 inches of precipitation, according to precipitation readings taken by one of the National Weather Service cooperators in the area. The 30-year average for that station is 18.8 inches. Figure 10 compares the WY 2013 and 30-year average snow-water equivalent for the Olympus Dam drainage area.

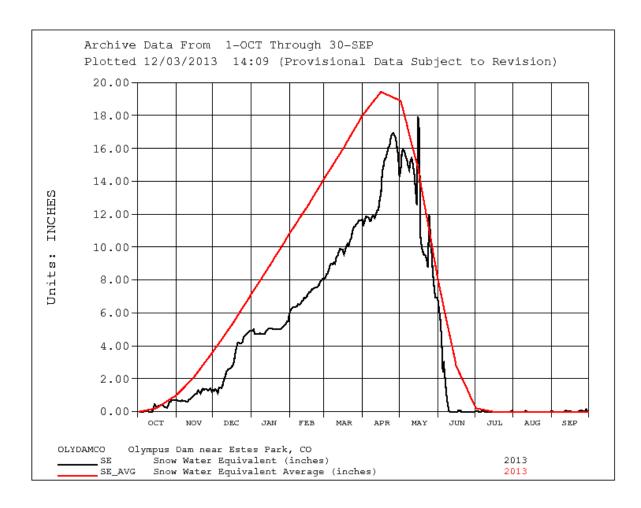


Figure 10: 2013 and 30 Year Average Snow-Water for the Olympus Dam Drainage Area

The weather remained cold until the beginning of the spring. During March 2013 the temperatures began to warm up, promising an early runoff season but by April 2013 a series of spring storms brought much needed snowfall to the area. The pattern continued for over a month, during April - May 2013, bringing significant snow and cooler temperatures to the foothills and eastern plains.

Runoff increased by late April 2013 as the lower elevation snowpack began to melt off. Temperatures began to rise rapidly in the middle of May 2013 and runoff increased. The inflow to Lake Estes continued to increase until the middle of June, peaking on June 10, 2013 at 748 cfs.

The total runoff produced by the Big Thompson River contributing area above Olympus Dam during April - July 2013 was 63,461 AF, slightly below the projected 67,000 AF. The September 2013 flood event increased the total inflow for the WY 2013 at Lake Estes to 114,660 AF, much higher than the 87,599 AF projected in the AOP 2013. Figure 11 shows a comparison between the cumulative inflow to Lake Estes, as projected in the AOP 2013, and the actual volume of inflow.

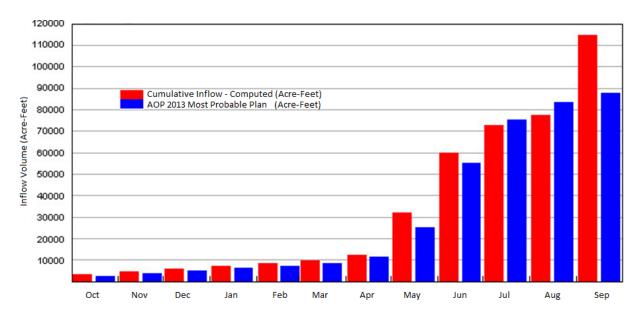


Figure 11: Cumulative Computed Inflow to Lake Estes AOP 2013 and Actual.

In early July 2013 a strong monsoon pattern settled over the region, bringing afternoon and evening showers to the mountains. The precipitation was insufficient to increase the inflow to Lake Estes. The weather over the foothills and eastern plains remained hot and dry. Eastern plains temperatures remained at more than 95 °F during July-September 2013. The Front Range also experienced an extended monsoon season during 2013 lasting until September. These conditions may have contributed to the rainfall event and massive flooding experienced over the Front Range in the middle of September 2013.

Most of the Big Thompson River water diverted through the Olympus Tunnel during WY 2013 was classified as skim water, although decreed water for the cities of Loveland and Berthoud was also captured. The C-BT did not enter priority to capture and store Big Thompson River water during the runoff season of WY 2013. However, during the September 2013 flood event, the C-BT captured an estimated total of 8,582 AF of water, which was stored at Carter and Horsetooth reservoirs. Some of that water was accounted as captured by the Olympus Tunnel.

Estes Powerplant Unit 3 was under clearance for most of WY 2013 for headcover repair. The unit was made available July 2013, just a few days before the Grand Lake Water Clarity Initiative operation started. The repair work was successful, and the unit was tested shortly after the Adams Tunnel flows were reduced for the Grand Lake Water Clarity Initiative in July 2013.

During the period September 10 - September 15, 2013 an average of 12 inches of rain fell over the Big Thompson River contributing area. In response to the unprecedented inflow to Lake Estes, releases from Olympus Dam were increased steadily to pass inflows. Diversion from the west slope was suspended at the beginning of the flood. A flow of 550 cfs was maintained through the Olympus Tunnel for most of the day on September 12, 2013; helping to alleviate

flooding below Olympus Dam. Free river conditions were declared, enabling the C-BT to capture some east slope priority water.

As the flooding continued on September 12, 2013 adjustments to the operations had to be made to protect C-BT facilities. Power generation at Estes Powerplant was initially suspended at midnight on September 11, 2013. But on September 12, 2013 the Mary's Lake level continued to rise in response to the high flows coming from Wind River. Power generation of 5 MW with one unit at Estes Powerplant was restored to lower the level of Mary's Lake. Wind River is a tributary of the Big Thompson River, and therefore a contributor to the Lake Estes inflow.

Another adjustment took place the afternoon of September 12, 2013. Flows in the Olympus Tunnel were reduced because of local rain runoff around the Pole Hill Powerplant. Olympus Tunnel flow was suspended on September 13, 2013.

The high inflow into Lake Estes continued for many days after the flood was considered to be over. All water entering Lake Estes was passed to the river below the dam for the remainder of WY 2013; the Olympus Tunnel did not convey any water. The Adams Tunnel also remained dry for the rest of September 2013.

The September 2013 flood caused significant sedimentation at Lake Estes. The high flows also affected the function of the stream gage at the Big Thompson above Lake Estes and the gage directly below Olympus Dam. Significant sedimentation and channel re-shaping took place at both locations. A new elevation-capacity table for Lake Estes may be developed in the near future to determine how much storage capacity was lost and at what elevations.

Foothill's Power Arm

Operations along the Foothill's Power Arm were relatively normal during WY 2013 until the September flood.

From the water accounting point of view, the WY 2013 began with Olympus Tunnel conveying water at full capacity on October 1, 2012; a continuation of operations from the WY 2012. The tunnel flow was suspended in November 2012 to allow the contractors to complete the work of sealing the Pole Hill Canal box culvert joints. The job was successful, and the leaks were stopped. The Olympus Tunnel outage also allowed the annual maintenance of Pole Hill Powerplant to be completed during November - December 2012.

Normal operations for Olympus Tunnel resumed on December 12, 2012. From December 2012 - July 2013 the Olympus Tunnel operated at full capacity, except for minor interruptions and small adjustments in flow. Grand Lake Water Clarity Initiative began thereafter.

When the Grand Lake Water Clarity initiative ended on September 3, 2013 the tunnel resumed operations. It was shut down on September 13 in response to the flooding situation around the Pole Hill Powerplant.

As part of the skim operation, the Olympus Tunnel diverted a total of 37,493 AF of Big Thompson River water during WY 2013 for hydropower generation, producing an estimated 60,000 MWh. The power was generated at Pole Hill, Flatiron and the Big Thompson powerplants. The skimmed water was returned to the Big Thompson River through the Big Thompson Powerplant and/or Wasteway at the CHFC trifurcation.

Flatiron Unit 2 was unavailable for most of the WY 2013. The unit became available on June 21, 2013. Flatiron Unit 1 was used to convey all the C-BT water while Unit 2 was being repaired. The unavailability of Flatiron Unit 2 prevented peaking generation operations because Unit 1 was normally operated at full capacity.

The CHFC 930 Section underwent its annual maintenance during the period March 27-April 19, 2013. During that time, the CHFC 550 section used C-BT water captured at the Dille Tunnel diversion dam in the Big Thompson Canyon to meet all the demands from C-BT allotees. The maintenance work scheduled for the CHFC 550 Section in late September/early October was cancelled as a result of the September 2013 flood.

Pumping to Carter Reservoir continued during the CHFC 930 Section outage. The Adams Tunnel continued conveying water from the west slope at a reduced rate to satisfy the needs of the Flatiron pump and the demands along the CHFC.

The bifurcation at Flatiron Powerplant was not used during WY 2013. The Flatiron Unit 3 pump was always available when needed.

Carter Reservoir

Carter Reservoir began WY 2013 with 54,638 AF of water in storage, dropping to 41,049 AF by December 2012.

Pumping to Carter Reservoir began on December 13, 2012. The operation was temporarily interrupted on February 23, 2013 to accommodate testing and repair work for Flatiron Unit 3. The February stoppage also served a secondary purpose; to strategically position Carter Reservoir in preparation for the three week outage of the CHFC 930 Section in late March. By interrupting the pumping operation for 3 weeks in February-March, critical reservoir capacity was reserved for pumping operations during the scheduled CHFC930 Section annual maintenance in March-April. Pumping resumed on March 12.

The initial pumping session at Flatiron Powerplant ended on May 3 with the Carter Reservoir content at 106,115 AF. A second pumping session was started on June 28. The pump was run

from June 28 – July 21, storing sufficient water at Carter Reservoir to accommodate maintenance on its outlet works gate later in the fall. The pump stoppage on July 21 preceded the beginning of the Grand Lake Water Clarity Initiative.

During the Grand Lake Water Clarity Initiative water from Carter Lake was used to satisfy demands for C-BT water along the CHFC and the Big Thompson River. Flatiron Unit 3 generated power while conveying water to Flatiron Reservoir. A total of 1,600 MW of electric power were produced during the August through September period. Another 100 MW were also produced in November 2012.

Flatiron Unit 3 pumped a total of 97,237 AF of water during WY 2013 using 31,172 MW of energy to complete the task. The 30-year average pumping volume is 85,020 AF. The extra pumping was needed in preparation for the Grand Lake Water Clarity Initiative.

A total of 87,385 AF of water were delivered from Carter Reservoir during WY 2013, comprised of 78,401 AF of C-BT water and 8,983 AF of Windy Gap Project water.

During the September 2013 flood, Carter Reservoir received a significant amount of precipitation and local runoff. It is estimated that during September 11 - September 15, Carter Reservoir captured 1,150 AF of water from local runoff and precipitation. Carter Reservoir also stored 1,246 AF of priority water pumped from Flatiron Reservoir during September 2013. Some of this water was local flood runoff captured at Pinewood and Flatiron reservoirs.

Carter Reservoir ended the WY with 49,912 AF of water in storage, 90 percent of the 20-year average, well positioned to accommodate the refurbishing work at the outlet works gates later in the fall. Recreation at Carter Reservoir was successful all season, with all the boat ramps in the water through the summer and fall months.

Horsetooth Reservoir

Horsetooth Reservoir began WY 2013 with 56,639 AF of water in storage. The reservoir content rose over 10,000 AF during the first 16 days of October 2012 before stabilizing. From October - December its content remained relatively unchanged. When diversions from the west slope resumed in the middle of December, the reservoir level began to rise once again. Horsetooth Reservoir continued to rise until reaching its maximum content for WY 2013 on June 26, a volume of 127,051 AF, 81 percent of full capacity, and 104 percent of the 30-year average.

During the September 2013 flood, Horsetooth Reservoir received a significant amount of precipitation and local runoff. It is estimated that during September 11 -September 15, Horsetooth captured 3,053 AF of local runoff and precipitation.

Deliveries from Horsetooth Reservoir totaled 74,365 AF during WY 2013; 64,666 AF of C-BT water and 9,699 AF of Windy Gap Project water. Inflow to Horsetooth Reservoir via the CHFC

totaled 118,429 AF during WY 2013. Hoorsetooth Reservoir finished the WY 2013 with 94,523 AF in storage, 114 percent of the 30-year average.

Horsetooth Reservoir was able to store 3,133 AF of priority water. Some of this water was captured at Pinewood and Flatiron reservoirs from local runoff during the September flood. The rest of the priority water was captured via the Olympus Tunnel at the beginning of the September flood.

The recreation season at Horsetooth Reservoir was successful during WY 2013. All of the boat ramps remained in the water the entire recreation season.

C-BT PLANNING AND CONTROL

The C-BT is operated for the purpose for which it was authorized and constructed; to provide supplemental municipal and industrial water supply, irrigation water supply and hydroelectric power production.

The integrated operation of the C-BT is planned and coordinated by the Water Resources Group ECAO in Loveland, Colorado. Staff at this office collects and analyzes information daily and makes the decisions necessary for successful operation of the C-BT. This continuous water management function involves coordination between the Division of Water Resources of the state of Colorado, NCWCD, Upper Colorado and Great Plains regions of the Bureau of Reclamation, the Western Area Power Administration (Department of Energy), other Bureau of Reclamation groups, and many other local, state, and Federal agencies.

Experience has proven that proper use of the available water resource in a multi-purpose project such as the C-BT can be achieved only through careful budgeting and management of the anticipated water supply. One product of this budgeting and management process is an AOP.

The C-BT water operations are planned on a WY basis (October 1 - September 30). The AOP is prepared in early October of each year. AOPs are prepared for reasonable-maximum, most-probable and reasonable-minimum runoff conditions of water supply and associated requirements. The C-BT is operated to optimize the most-probable water supply without jeopardizing the operational position should either the reasonable-maximum or the reasonable-minimum water supply conditions occur. The plan is reviewed and revised as necessary during the year as new information or changing conditions occur. Computer programs and models are used by ECAO to develop the AOP and water supply forecasts.

ANNUAL OPERATING PLAN FOR WATER YEAR 2014

Most-Probable Inflow Forecast

Green Mountain Reservoir

Green Mountain Reservoir began WY 2014 with 107,000 AF in storage, 92 percent of average. Under the most-probable runoff scenario the reservoir content will gradually decline as the year progresses, reaching its 70,000 AF carryover storage target by March 31 and then begin refilling. By the end of May 2014 the reservoir content is expected to have increased to 110,000 AF. Under the most-probable runoff scenario the reservoir is expected to reach a physical fill by early July. Its storage content by the end of July is expected to be 145,000 AF.

Under the most-probable runoff forecast scenario, Green Mountain Reservoir may be able to participate in CROS during the spring of 2014. CROS is an interagency cooperative effort to enhance the spring peak flow along the 15-Mile-Reach of the Colorado River for the benefit of endangered fish species. The operational principle is to bypass excess reservoir inflow at the time of peak flow in the 15-Mile Reach without jeopardizing the ability to fill the reservoir. The final decision on CROS participation will be made in May. Regardless of whether Green Mountain participates in CROS during 2014, the reservoir is expected to fill by early July 2014. Using projected inflows and releases for August -September, Green Mountain's reservoir storage content is projected to drop to approximately 105,000 AF by the end of September.

Under the most-probable runoff scenario, the upstream Blue River depletions by the cities of Denver and Colorado Springs are projected to be about 110,000 AF during the WY 2014.

Willow Creek Reservoir

Willow Creek Reservoir is beginning WY 2014 with 9,300 AF in storage, 105 percent of average. Under the most-probable runoff condition scenario, pumping operations from Willow Creek Reservoir to Granby Reservoir are projected to begin in April 2014. The Willow Creek Canal pumps are expected to operate from April - July. Peak runoff is projected to occur during the month of May 2014. Under the most-probable runoff condition scenario, river releases should average 7 cfs during most of WY 2014, with higher releases occurring during May - July 2014 to meet local irrigation demands. By the end of WY 2014 the Willow Creek Reservoir storage content should be approximately 9,000 AF.

Granby Reservoir

Granby Reservoir is beginning WY 2014 with 371,000 AF in storage, 89 percent of average. Under the most-probable runoff scenario the Granby Reservoir storage content is projected to reach its yearly minimum of approximately 242,000 AF by the end of April 2014. Runoff is expected to begin in late April - May 2014. Native runoff along with pumping from Willow Creek Reservoir will increase the Granby Reservoir level rapidly in May -June 2014. Under the most-probable runoff condition scenario the Windy Gap Project pumps should remain off-line until April. Windy Gap Project pumping in April-June 2014 is expected to total 15,000 AF. Granby Reservoir should reach a maximum content for the year of about 401,000 AF in July 2014, with a water surface level of 8,259.6 feet.

Under the most-probable runoff scenario, Granby Reservoir is not projected to spill in WY 2014. For this reason, Granby Reservoir will not participate in CROS during the spring of 2014. By September 30, 2014, Granby Reservoir's content is expected to drop to 374,000 AF. The most-probable runoff forecast assumes that some pumping from Farr Pumping Plant to Shadow Mountain will occur during August - September 2014. Any decision regarding alternative summer Farr Pumping Plant operations for Grand Lake Water Clarity Initiatives will be made once improved hydrologic and demand projections are developed later in the spring.

East Slope - Colorado-Big Thompson Project

Under the WY 2014 most-probable runoff scenario, irrigation, municipal and industrial demands for C-BT and Windy Gap Project water total 209,000 AF. This demand includes water to be delivered from Horsetooth Reservoir, Carter Reservoir, the CHFC trifurcation, and other sections of the C-BT conveyance system. This total includes C-BT Project deliveries of 194,400 AF and Windy Gap Project deliveries of 14,600 AF.

Pumping to Carter Reservoir will begin in late December 2013 after flood related maintenance and inspection work is completed and the Foothills Power system is brought back into operation. The Flatiron Unit 3 pump to Carter Reservoir is expected to operate until early May 2014. Under the most-probable runoff scenario, Carter Reservoir is expected to reach its maximum level for the WY about the end of April 2014, with a storage content of approximately 107,000 AF. Beginning in May 2014, the reservoir's content is expected to drop steadily in response to increased water demand and termination of pumping. Pumping to Carter Reservoir is not expected to resume until September 2014. The total volume pumped to Carter Reservoir in WY 2014 is expected to be 94,900 AF. Under this scenario a total of 86,100 AF is expected to be delivered from Carter Reservoir this year. The total delivery includes 8,400 AF of Windy Gap Project water. By the end of the WY the reservoir content is expected to have fallen to 49,000 AF.

The CHFC 930 Section may undergo maintenance during the first two weeks of April 2014. If this maintenance occurs, the inflow to Horsetooth Reservoir will drop significantly. Maintenance on the CHFC 550 Section will likely occur in September 2014. The maintenance on this canal section normally lasts two weeks.

Deliveries of C-BT and Windy Gap Project water from the CHFC to the Big Thompson River are expected to total 14,600 AF. Deliveries from the CHFC are made from the trifurcation located at the Big Thompson River Canyon Mouth using the Big Thompson Powerplant and the Wasteway chute.

Under the most-probable runoff scenario, Horsetooth Reservoir will reach a maximum storage content of 150,000 AF by early June 2014. The reservoir content will then decline throughout the summer, reaching a content of 115,600 AF by the end of September 2014. Approximately 100,900 AF will be delivered from Horsetooth Reservoir during WY 2014, including 6,200 AF of Windy Gap Project water.

Reasonable-Minimum Inflow Forecast

Green Mountain Reservoir

Green Mountain Reservoir is beginning WY 2014 with 107,000 AF in storage, 92 percent of average. Under the minimum reasonable runoff conditions scenario the reservoir content will gradually decline as the year progresses, reaching its 70,000 AF carryover storage target by March 31, 2014 and then begin refilling. By the end of May 2014 the reservoir content is expected to have increased to 96,500 AF. Under the minimum reasonable runoff scenario the reservoir is expected to reach a "paper fill", but not a physical fill. The storage content is projected to reach a maximum of 116,000 AF by late June 2014 and decline to 104,000 by the end of July 2014.

Since Green Mountain Reservoir would not reach a physical fill under the minimum reasonable runoff scenario, it is not projected to participate in CROS during the spring of 2014. CROS is an interagency cooperative effort to enhance the spring peak flow along the 15-Mile-Reach of the Colorado River for the benefit of endangered fish species. The operational principle is to bypass excess reservoir inflow at the time of peak flow in the 15-Mile Reach without jeopardizing the ability to fill the reservoir. The final decision on CROS participation will be made in May 2014. Regardless of whether Green Mountain participates in CROS during 2014, the reservoir is expected to fill by early July 2014. Using projected inflows and releases for August and September 2014, Green Mountain Reservoir storage content is projected to drop to approximately 75,000 AF by the end of September 2014.

Under the reasonable minimum runoff scenario, the upstream Blue River depletions by the cities of Denver and Colorado Springs are projected to be about 60,600 AF during the WY 2014.

Willow Creek Reservoir

Willow Creek Reservoir is beginning WY 2014 with 9,300 AF in storage, 105 percent of average. Under the minimum reasonable runoff scenario, pumping operations from Willow Creek Reservoir to Granby Reservoir will begin in April 2014. The Willow Creek Canal pumps are expected to operate from April -August 2014. Peak runoff is projected to occur during the month of May 2014. Under the minimum reasonable runoff condition scenario, river releases should average 7 cfs for most of WY 2014, with higher releases occurring between May -July 2014 to meet local irrigation demands. By the end of WY 2014 the Willow Creek Reservoir storage content should be approximately 9,000 AF.

Granby Reservoir

Granby Reservoir is beginning WY 2014 with 371,000 AF in storage, 89 percent of average. Under the minimum reasonable runoff scenario the Granby Reservoir storage content is projected to reach its yearly minimum of 239,000 AF by the end of April 2014. Runoff is expected to begin in late April - May 2014. Native inflows and pumping from Willow Creek Reservoir will increase the reservoir level rapidly in May - June. Under the minimum reasonable runoff scenario the Windy Gap Project pumps should remain off-line until May. Windy Gap Project pumping in May 2014 is expected to total 5,000 AF. Granby Reservoir is projected to

reach a maximum content for the year of 294,000 AF in June 2014, with a water surface level of 8241.3 feet.

Under the minimum reasonable runoff scenario Granby Reservoir is not projected to spill in WY 2014. For this reason, Granby Reservoir is not anticipated to participate in CROS during the spring of 2014. By September 30, 2014 Granby Reservoir's content is expected to drop to 254,000 AF. The minimum reasonable runoff scenario assumes that some pumping from Farr Pumping Plant to Shadow Mountain will occur in August - September, 2014. Any decision regarding alternative summer Farr Pumping Plant operations for Grand Lake Water Clarity Initiatives will be made once improved hydrologic and demand projections are developed later in the spring.

East Slope - Colorado-Big Thompson Project

Under the WY 2014 minimum reasonable runoff scenario, irrigation, municipal and industrial demands for C-BT and Windy Gap Project water total 228,600 AF. This demand includes water to be delivered from Horsetooth Reservoir, Carter Reservoir, the CHFC trifurcation, and other sections of the C-BT conveyance system. This total includes C-BT Project deliveries of 214,000 AF and Windy Gap Project deliveries of 14,600 AF.

Pumping to Carter Reservoir will begin in late December, once flood related maintenance and inspection work is completed and the Foothills Power system is brought back on line. The Flatiron Unit 3 pumping to Carter Reservoir is expected to continue until early May 2014. Under the most-probable runoff scenario, Carter Reservoir is expected to reach its maximum level at the end of April 2014, with a storage content of 106,000 AF. Beginning in May 2014, the reservoir content is expected to drop steadily through June in response to increased water demand and termination of pumping. Pumping to Carter Reservoir is expected to resume in July and continue into August 2014. The total volume pumped to Carter Reservoir in WY 2014 is expected to be 102,600 AF. Under this scenario a total of 93,500 AF is expected to be delivered from Carter Reservoir this year. The total delivery includes 8,400 AF of Windy Gap Project water. By the end of the WY the reservoir content is expected to have fallen to about 49,000 AF.

The CHFC 930 Section may undergo maintenance during the first two weeks of April 2014. If this maintenance occurs, the inflow to Horsetooth Reservoir will drop significantly. Maintenance on the CHFC 550 Section will likely occur sometime in September 2014. The maintenance on this canal section normally lasts two weeks.

Deliveries of C-BT and Windy Gap Project water from the CHFC to the Big Thompson River are expected to total 16,700 AF. Deliveries from the CHFC are made from the trifurcation located at the Big Thompson River Canyon Mouth using the Big Thompson Powerplant and the Wasteway chute.

Under the minimum reasonable runoff scenario, Horsetooth Reservoir will reach a maximum storage content of 150,000 AF by early June 2014. The reservoir content will then decline throughout the summer, reaching a content of 103,900 AF by the end of September 2014. Approximately 110,700 AF will be delivered from Horsetooth Reservoir during WY 2014, including 6,200 AF of Windy Gap Project water.

Reasonable-Maximum Inflow Forecast

Green Mountain Reservoir

Green Mountain Reservoir is beginning WY 2014 with 107,000 AF in storage, 92 percent of historical average. Under the maximum reasonable runoff scenario the reservoir content will gradually decline as the year progresses, reaching its 65,000 AF carryover storage target by April 30, 2014 and then begin refilling. By end of May 2014 the reservoir content is expected to have increased to 80,000 AF and 135,000 AF by the end of June. Under the maximum reasonable runoff scenario the reservoir is expected to reach a physical fill by the middle of July 2014. Its storage content by the end of July 2014 is expected to be 150,000 AF.

Under the maximum reasonable runoff scenario, Green Mountain Reservoir is projected to participate in CROS during spring of 2014. CROS is an interagency cooperative effort to enhance the spring peak flow along the 15-Mile-Reach of the Colorado River for the benefit of endangered fish species. The operational principle is to bypass excess reservoir inflow at the time of peak flow in the 15-Mile Reach without jeopardizing the ability to fill the reservoir. The final decision on CROS participation will be made in May 2014. Regardless of whether Green Mountain participates in CROS during 2014, the reservoir is expected to fill by the middle of July 2014. Using projected inflows and releases for August - September 2014, Green Mountain Reservoir storage content is projected to drop to approximately 115,000 AF by the end of September 2014.

Under the most-probable runoff scenario, the upstream Blue River depletions by the cities of Denver and Colorado Springs are projected to be 79,700 AF during the WY 2014.

Willow Creek Reservoir

Willow Creek Reservoir is beginning WY 2014 with 9,300 AF in storage, 105 percent of average. Under the maximum reasonable runoff condition scenario, pumping operations from Willow Creek Reservoir to Granby Reservoir will begin in April 2014. The Willow Creek Canal pumps are expected to operate from April - September 2014. The peak runoff is projected to occur during the month of July. Under the maximum reasonable runoff scenario, river releases should average 7 cfs during most of WY 2014, with higher releases occurring between May - July 2014 to meet local irrigation demands. By the end of WY 2014 the Willow Creek Reservoir storage content is projected to be 9,000 AF.

Granby Reservoir

Granby Reservoir is beginning WY 2014 with 371,000 AF in storage, 89 percent of average. Under the maximum reasonable runoff scenario the Granby Reservoir storage content is projected to reach its yearly minimum of approximately 242,000 AF by the end of April 2014. Runoff is expected to begin in late April - May 2014. Native runoff along with pumping from Willow Creek Reservoir will increase the reservoir level rapidly in May - July. Under the maximum reasonable runoff scenario the Windy Gap Project pumps should remain off-line until April. Windy Gap Project pumping in April-June 2014 is expected to total 20,000 AF. Granby Reservoir should reach a maximum content for the year of about 529,000 AF in August 2014 with a water surface level of 8,278.5 feet.

Under the maximum reasonable runoff scenario Granby Reservoir is not projected to spill in WY 2014. For this reason, Granby Reservoir is not projected to participate in CROS during spring of 2014. By September 30, 2014 Granby Reservoir content is expected to drop to 525,000 AF. Very little pumping from Farr Pumping Plant to Shadow Mountain is projected from August - September 2014. Any decision regarding alternative summer Farr Pumping Plant operations for Grand Lake Water Clarity Initiative will be made once improved hydrologic and demand projections are developed later in the spring.

East Slope - Colorado-Big Thompson Project

Under the WY 2014 maximum reasonable runoff scenario, irrigation, municipal and industrial demands for C-BT and Windy Gap Project water total 192,300 AF. This demand includes water to be delivered from Horsetooth Reservoir, Carter Reservoir, the CHFC trifurcation and other sections of the C-BT conveyance system. This total includes C-BT Project deliveries of 177,700 AF and Windy Gap Project deliveries of 14,600 AF.

Pumping to Carter Reservoir will begin in late December 2014, after flood related maintenance and inspection work is completed and the Foothills Power system is brought back into operation. The Flatiron Unit 3 pumping to Carter Reservoir is expected to continue until early May 2014. Under the maximum reasonable runoff scenario, Carter Reservoir is expected to reach its maximum level for the WY at the end of April 2014 with a storage content of 107,000 AF. Beginning in May 2014, the reservoir content is expected to drop steadily in response to increased water demand and termination of pumping. Pumping to Carter Reservoir is not expected to be necessary for the remainder of the WY. The total volume pumped to Carter Reservoir in WY 2014 is expected to be 88,300 AF. Under this scenario a total of 79,500 AF is expected to be delivered from Carter Reservoir this year. The total delivery includes 8,400 AF of Windy Gap Project water. By the end of the WY the reservoir content is expected to have fallen to 49,000 AF.

The CHFC 930 Section may undergo maintenance during the first two weeks of April 2014. If this maintenance occurs, the inflow to Horsetooth Reservoir will drop significantly. Maintenance on the CHFC 550 Section will likely occur sometime in September 2014. The maintenance on this canal section normally lasts two weeks.

Deliveries of C-BT and Windy Gap Project water from the CHFC to the Big Thompson River are expected to total 12,800 AF. Deliveries from the CHFC are made from the trifurcation located at the Big Thompson River Canyon Mouth using the Big Thompson Powerplant, and the Wasteway chute.

Under the maximum reasonable runoff scenario, Horsetooth Reservoir will reach a maximum storage content of 150,000 AF by late May 2014. The reservoir content will then decline throughout the summer, reaching a content of 97,200 AF by the end of September 2014. Approximately 93,100 AF will be delivered from Horsetooth Reservoir during WY 2014, including 6,200 AF of Windy Gap Project water.

IRRIGATION REQUIREMENTS

The amount of water that is made available to the C-BT for irrigation will be determined by NCWCD. This determination will be subject to change by agreement throughout the remainder of the irrigation season. Changes may occur as a result of substantial changes in the prevailing climatic, demand or operational conditions. Irrigation requirements for the three inflow conditions were estimated by analyzing actual use under a variety of actual runoff conditions.

Estimated supplemental irrigation deliveries from Green Mountain Reservoir to irrigators in the Colorado River Basin are included in the release from Green Mountain Reservoir according to the "Operating Criteria for Green Mountain Reservoir."

MINIMUM REQUIRED RESERVOIR RELEASES

January 19, 1961, the Secretary of the Interior established specific guidelines for water releases out of Lake Granby to satisfy fish habitat requirements. A release from Lake Granby of 20 cfs is required from October - April of each year. During the remaining months of the year, the control point is almost 3 miles downstream from the dam at the YMCA gauging station.

A minimum flow requirement of 75 cfs, 40 cfs during August, and 20 cfs during September is maintained at the YMCA gauge downstream of Lake Granby. The flow during the May-September period can be progressively reduced if the inflow during the WY to Shadow Mountain Lake, Grand Lake, and Lake Granby (less the decreed rights in the reach of the Colorado River between Granby Dam and the mouth of the Fraser River) and the water capable of being pumped from Willow Creek Reservoir during that year is forecasted to be 230,000 AF or less.

According to the "Principles to Govern the Release of Water at Granby Dam to Provide Fishery Flows immediately Downstream in the Colorado River" signed by the Secretary of the Interior and Commissioner of the Bureau of Reclamation in 1961, the following reduction of fishery flows below Lake Granby will apply on the basis of a forecast to be made by the Bureau of Reclamation during the last week in April, using information from all available sources.

Forecast Inflow	Percentage Reduction
<u>in AF</u>	in Minimum Release
220,000 - 230,000	15
210,000 - 220,000	20
195,000 - 210,000	25
Less than 195,000	30

Adjustments will be made in the reductions, when appropriate, based on revised forecasts and consideration of actual flows during May - July. A copy of the document is included in the Standard Operating Procedures (SOP) for Granby Dams and Reservoir, Appendix A, Exhibit 4. Also according to the SOP, Willow Creek below Willow Creek Reservoir is not considered a fishery resource since an irrigation ditch a short distance below the dam typically uses the entire flow in the late summer months. In the Secretarial determination minimum instream flow requirements for Willow Creek were not provided. However, a release of 7 cfs or inflow (whichever is the lesser) from Willow Creek Reservoir is required between October 1 -April 30 to augment fish habitat flows in the Colorado River.

In accordance with the SOP for Shadow Mountain Reservoir, Chapter 4, Section D, minimum releases from Shadow Mountain Lake of 35 cfs during September - October, 45 cfs during November and December, 20 cfs from January through May, 50 cfs in June - July, and 40 cfs in August or inflow (whichever is the lesser) must be maintained to protect fish and wildlife in the Colorado River above Lake Granby.

The minimum release required out of Green Mountain Reservoir is determined by senior adjudicated water rights downstream from the reservoir. Inflow to Green Mountain Reservoir is

released, as required, to meet these downstream rights. Releases are maintained at all times to be adequate for the preservation of fish habitat.

The State of Colorado's Division of Wildlife, and the United States Fish and Wildlife Service have recommended the following minimum release schedule for Lake Estes. This schedule meets the flow requirements of native fish along the Big Thompson River.

Minimum Releases (cfs)	Period
25	November 1 - April 15
50	April 16 - April 30
100	May 1 - May 15
125	May 16 - August 15
100	August 16 - August 31
75	September 1 - September 15
50	September 16 - October 31

Diversion of flows from the Big Thompson River at Lake Estes for power production is generally restricted to the May 15 - September 15 period, since runoff during the remaining period of the year usually is much less than the recommended minimum flows. Releases in excess of inflows are not required.

GREEN MOUNTAIN RESERVOIR OPERATIONS

Paragraph 6 of the October 5, 1955 Stipulation in the decree for the Consolidated Cases Nos. 2782, 5016, and 5017 in the United States District Court for the District of Colorado (Blue River Decree), calls for periodic plans for the operation of Green Mountain Reservoir to be developed. This plan addresses this requirement.

Provisions guiding the operations of Green Mountain Reservoir are contained in the following documents. Operations will be consistent with the applicable provisions in the following documents:

Manner of Operation of Project Facilities and Auxiliary Features, Senate Document No. 80, 75th Congress, 1st Session

Consolidated Cases Nos. 2782, 5016, and 5017

October 12, 1955, Stipulation and Decree

April 16, 1964, Stipulation and Decree

Operating Policy for Green Mountain Reservoir, Colorado-Big Thompson Project, published in the Federal Register, Vol. 48, No. 247, December 22, 1983,

September 4, 1996, Stipulation and Agreement in Colorado Water Div. 5, Case No. 91CW247 (Orchard Mesa Check Case), and attached HUP Operating Criteria.

The General Operations Guided By These Provisions Are Given Below:

- 1. Winter Operation (November-March)
 - a. Bypass inflow to supply downstream vested senior rights.
- b. Make releases to replace water diverted or stored out of priority by the C-BT collection system, as required.
 - c. Make releases for west slope irrigation and domestic uses per Green Mountain Operating Policy and the HUP Operating Criteria.
 - d. Make releases for water service contracts pursuant to the Operating Policy.
 - e. Maximize power generation, while maintaining:
 - i. Adequate storage to meet the anticipated needs under the guiding documents.
 - ii. A minimum power head consistent with the integrated system power operations.

2. Operation during Snowmelt Period (April-July)

- a. Bypass inflow to supply downstream vested senior rights.
- b. Make releases to replace water diverted or stored out of priority by the C-BT collection system, as required.
- c. Make releases for west slope irrigation and domestic uses per Green Mountain Operating Policy and the HUP Operating Criteria.
- d. Make releases for water service contracts pursuant to the Operating Policy.
- e. Participate in the Coordinated Reservoir Operations effort to enhance peak flows for the Colorado River Endangered Fishes. Reduce releases from traditional levels before and after the peak flow period on the Colorado River in the Grand Junction area. During peak flow period, release the lesser of inflows or turbine capacity for approximately a 10-day period.

- f. Fill without spilling to maximize power generation by using the storage and power rights concurrently.
- g. On or before June 30 each year, meet with Managing Entities established under the settlement of the Orchard Mesa Check Case to assess availability of surplus water in the Historic Users Pool (HUP).
- h. Confer with Managing Entities on a regular basis through the irrigation season to assess availability of surplus water in the Historic Users Pool (HUP).
- i. If a surplus condition is declared, make releases up to the amount of surplus, under agreements, to:
 - i. the Grand Valley Powerplant up to its need or capacity; then to
 - ii. the Grand Valley under the Municipal Recreation contract in excess of that needed by the powerplant
- j. Maximize power operation consistent with 1.e.
- k. Make releases as outlined in the above referenced documents.

3. Operation After Snowmelt Period (August-October)

- a. Bypass inflow to supply downstream vested senior rights.
- b. Make releases to replace water diverted or stored out of priority by the C-BT collection system, as required.
- c. Make releases for west slope irrigation and domestic uses per Green Mountain Operating Policy and the HUP Operating Criteria.
- d. Make releases for water service contracts pursuant to the Operating Policy.
- e. Confer with Managing Entities on a regular basis through the irrigation season to assess availability of surplus water in the Historic Users Pool (HUP).
- f. If a surplus condition is declared, make releases up to the amount of surplus, under agreements, to:
 - i. the Grand Valley Powerplant up to its need or capacity; then to
 - ii. the Grand Valley under the Municipal Recreation contract in excess of that needed by the powerplant
- g. Maximize power operation consistent with 1.e.
- h. Make releases as outlined in the above referenced documents.

¹ By the use of these criteria for current operating purposes, the United States does not intend to imply any definition of rights and obligations. The order in which these criteria are listed does not reflect any intended priority.

² By the use of these provisions for current operating purposes, the United States does not intend to imply any definition of rights and obligations. The order in which these criteria are listed does not reflect any intended priority.

GREEN MOUNTAIN HISTORIC USERS POOL AND THE ORCHARD MESA CHECK CASE SETTLEMENT

Background and Authority

The Orchard Mesa Check (Check) is a structure below the common afterbay of the Orchard Mesa Irrigation District (OMID) Pumping Plant and the federal Grand Valley Powerplant in the Grand Valley of Colorado. The purpose of the Check is to raise the water level in the common afterbay, allowing water to flow through the bypass channel to support hydropower operations and return to the Colorado River upstream of the Grand Valley Irrigation Company (GVIC) diversion dam

Operation of the Check was determined to constitute an 'exchange' of water whereby water destined for the senior GVIC irrigation water rights is borrowed for pumping and hydroelectric power generation purposes and returned to GVIC for irrigation use. Operation of the Check influences the operation of the following: Grand Valley irrigation systems; Grand Valley Powerplant; Green Mountain Reservoir releases; and the 15-Mile Reach of the Colorado River. The 15-Mile Reach is that section of the Colorado River from the GVIC diversion dam to the confluence of the Gunnison River and has been designated critical habitat by the Upper Colorado River Endangered Fish Recovery Program.

The Check has been operated on an informal basis without a decreed right since approximately 1926 to manage flows in the Colorado River for the benefit of the United States, Grand Valley Water Users Association (GVWUA), and OMID. In the late 1980's, a hydropower development was proposed in a reach of the Colorado River between the Grand Valley Diversion Dam, the point where the exchange water is diverted, and the GVIC diversion dam where the exchange water is returned. The OMID was concerned that a water right awarded for this development could interfere with the exchange of water. In response the OMID filed an application in State Water Court on December 30, 1991, for approval of an exchange of water. This case (Water Division 5, Case No. 91CW247) was informally known as the Orchard Mesa Check Case. Resolution of the case resulted in a negotiated Stipulation and Agreement entered into the District Court, Water Division No. 5, State of Colorado, on September 4, 1996.

Overview of the Stipulated Settlement

The settlement contains two major components: the Stipulation and Agreement and the Green Mountain Reservoir Historic Users Pool Operating Criteria (Operating Criteria). The Operating Criteria further defines operation of the Green Mountain Reservoir Historic Users Pool (HUP) consistent with Senate Document 80 and the 1984 Operating Policy. The parts of the Stipulation and Agreement pertinent to the operation of the HUP are summarized below.

As part of the Stipulation and Agreement the OMID and GVIC agree not to exercise their irrigation rights against any upstream HUP beneficiary provided that the Check is physically operable; there is at least 66,000 AF of water in storage in the Green Mountain Reservoir HUP, or approved substitute storage reservoir, when Green Mountain Reservoir storage rights cease to be in priority; and the water rights for the Shoshone Powerplant continue to be exercised in a manner consistent with their historical operation. (Section 3.b. of the Stipulation and Agreement).

The Stipulation and Agreement also provides that Reclamation will declare surplus water which is in excess of the needs of HUP beneficiaries for a given WY. Water declared surplus might be delivered through agreements for beneficial uses in western Colorado. This is to be done in accordance with the provisions of the HUP Operating Criteria, which are summarized below.

Management of the Historic User's Pool (HUP) Under the Operating Criteria

The management of the HUP is accomplished through the process defined in Sections 3.d and 3.e of the Operating Criteria. This process requires the development of this Annual HUP Operating Plan on or before June 30 of each year.

The Annual HUP Operating Plan is developed by the Bureau of Reclamation in consultation with the Grand Valley Water Users Association, the Orchard Mesa Irrigation District, the Grand Valley Irrigation Company, the Division 5 Engineer, the Colorado Water Conservation Board, and Fish and Wildlife Service (Managing Entities). The Managing Entities agree to make a good faith effort to develop an Annual HUP Operating Plan that is unanimously supported. However, the Bureau of Reclamation reserves the right to establish a release schedule should unanimous consent prove unattainable.

The Annual HUP Operating Plan is based upon actual HUP storage conditions, projected runoff forecasts, operational and climatological conditions, projected irrigation demands, and 15-Mile Reach flow needs. It is expressly recognized that, in some years, release of the entire HUP by the end of the irrigation season will not be necessary or possible.

On or before June 30 of each year the Bureau of Reclamation assembles initial information on storage in the HUP and comparative runoff years. Based upon the information assembled a meeting is held with the other Managing Entities. During this meeting a review of the forecasts is analyzed and initial determinations are made of the level of "checking" required to preserve water in the HUP, and of water surplus available for HUP beneficiaries.

The HUP operations are reviewed and modified by the Managing Entities as necessary to respond to changing conditions. Subsequent meetings or conference calls are held as needed to reconsider prevailing conditions including HUP storage conditions, runoff forecasts, climatological conditions, irrigation demands, 15-Mile Reach flow needs, and other operational conditions. The Managing Entities adjust the checking as warranted by the examination of prevailing conditions, and determine the water surplus and release schedule for HUP beneficiaries. During periods of below average river flows the Managing Entities may meet as frequently as every week.

This mechanism provides a way to integrate management of releases from the HUP with operation of the Check to accomplish the purposes of the Operating Criteria. The mechanism is also used to integrate releases from the HUP with releases for the endangered fish from other reservoirs including Ruedi and Wolford Mountain.

OPERATION SKIM

Big Thompson River water in excess of the minimum instream flow requirements is diverted at Olympus Dam into the Foothills System to be used for power generation. This operation is known as "Operation Skim". The amount diverted depends on the flow at the Big Thompson River and the tributaries above Lake Estes, C-BT water imported through the Adams Tunnel, and the capacity of the Foothills System.

The water taken from the Big Thompson River can be used for power generation immediately. It can also be held in storage and replaced to the river with water from other facilities, depending on the power requirements. In general, water taken from the Big Thompson River at a variable rate, on a given date, is returned to the river at a flat rate, on the following day. This operation provides incidental benefits to the tourist and fishing industries along the Big Thompson Canyon by attenuating high flows, and by maintaining a steady stream during the runoff season.

Operation Skim and storage of surplus water from the Big Thompson River in C-BT reservoirs are managed according to the AOP and as prescribed by the ECAO Water Resources staff.

A total of 37,493 AF of Big Thompson River water was skimmed through the Olympus Tunnel, producing an estimated 64,000 megawatts of power at Pole Hill, Flatiron and the Big Thompson powerplants. The Dille Tunnel was able to skim 5,415 AF of water, producing an estimated 860 megawatts of power at the Big Thompson Powerplant.

FLOOD BENEFITS

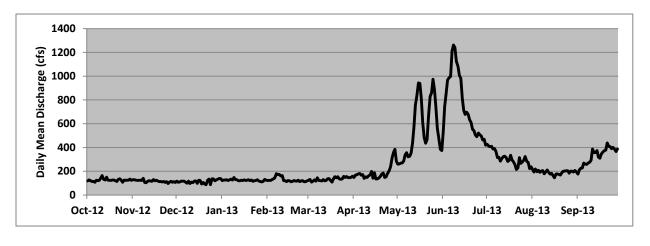
Precipitation in Colorado was below average during the fall and winter of WY 2013, while the early spring was wet and cool. After the snowy months of April - May, the weather turned hot and dry. The runoff season lasted from May - July. It was a normal runoff season with no significant peak flows or large volumes. Just after the runoff season ended in July, the monsoon season began. The monsoon season during WY 2013 was longer than normal, lasting until September.

On September 11, 2013 heavy precipitation began to fall over Northern Colorado. The storm lasted several days and produced a flood of historical proportions for the Front Range. Most of the precipitation occurred over the east slope, producing widespread flooding and damages. Other parts of the system such as Green Mountain and Granby reservoirs did not experience flooding to the magnitude of the east slope. The flood affected many of the C-BT facilities on the east slope and caused widespread damage.

Based on the data collected from the Colorado River Basin, and according to figures provided by the U.S. Army Corps of Engineers, the C-BT reservoirs over the west slope did not prevent any potential flood damages during WY 2013. While no C-BT reservoirs are authorized for flood control, prevented potential flood damages are calculated for Granby and Green Mountain reservoirs because their operations contribute ancillary benefits to conditions at Dotsero, a location where economic studies have enabled calculation of such benefits. Since construction, the C-BT (Green Mountain and Granby reservoirs) has prevented potential flood damages totaling \$510,300.

APPENDIX A – DAILY RECORDS

Appendix A (Table 1 of 38) Green Mountain Reservoir, CO


Location. --Lat 39°52'42", long 106°19'42", Summit County, Hydrologic Unit 14010002, on Green Mountain Dam, 13 miles southeast of Kremmling, Colorado, on the Blue River.

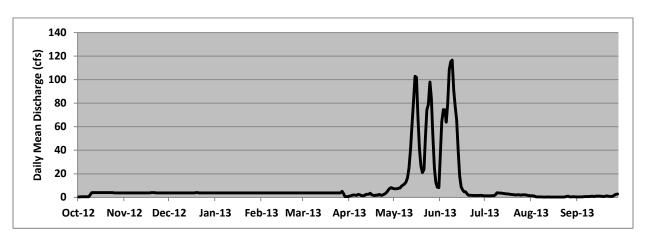
Gage. -Water level recorder with satellite telemetry. Elevation of gage is 7960 from topographic map.

Remarks.-- Inflow computed daily based on change in content from midnight to midnight, and on the 24-hour average releases from Green Mountain Reservoir. Recorders were operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and fair, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Inflow, Cubic Feet per Second, Daily Mean Values

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
2 120 123 106 139 125 120 158 285 374 420 238 193 3 118 129 117 120 122 123 147 260 531 426 216 176 4 127 129 107 127 123 131 168 262 746 411 193 213 5 121 125 110 126 122 108 171 268 853 406 218 225 6 114 124 116 129 131 117 178 270 967 410 196 227 7 116 123 117 122 135 128 182 287 988 388 208 268 8 107 125 117 127 147 116 166 339 997 391 190 261
3 118 129 117 120 122 123 147 260 531 426 216 176 4 127 129 107 127 123 131 168 262 746 411 193 213 5 121 125 110 126 122 108 171 268 853 406 218 225 6 114 124 116 129 131 117 178 270 967 410 196 227 7 116 123 117 122 135 128 182 287 988 388 208 268 8 107 125 117 127 147 116 166 339 997 391 190 261 9 124 122 107 134 180 145 172 356 1211 369 201 258
4 127 129 107 127 123 131 168 262 746 411 193 213 5 121 125 110 126 122 108 171 268 853 406 218 225 6 114 124 116 129 131 117 178 270 967 410 196 227 7 116 123 117 122 135 128 182 287 988 388 208 268 8 107 125 117 127 147 116 166 339 997 391 190 261 9 124 122 107 134 180 145 172 356 1211 369 201 258 10 121 141 99 126 171 122 139 321 1263 314 206 270
5 121 125 110 126 122 108 171 268 853 406 218 225 6 114 124 116 129 131 117 178 270 967 410 196 227 7 116 123 117 122 135 128 182 287 988 388 208 268 8 107 125 117 127 147 116 166 339 997 391 190 261 9 124 122 107 134 180 145 172 356 1211 369 201 258 10 121 141 99 126 171 122 139 321 1263 314 206 270 11 124 105 117 148 173 120 154 326 1241 317 178 276
6 114 124 116 129 131 117 178 270 967 410 196 227 7 116 123 117 122 135 128 182 287 988 388 208 268 8 107 125 117 127 147 116 166 339 997 391 190 261 9 124 122 107 134 180 145 172 356 1211 369 201 258 10 121 141 99 126 171 122 139 321 1263 314 206 270 11 124 105 117 148 173 120 154 326 1241 317 178 276 12 141 104 97 130 160 118 148 353 1125 285 194 293
7 116 123 117 122 135 128 182 287 988 388 208 268 8 107 125 117 127 147 116 166 339 997 391 190 261 9 124 122 107 134 180 145 172 356 1211 369 201 258 10 121 141 99 126 171 122 139 321 1263 314 206 270 11 124 105 117 148 173 120 154 326 1241 317 178 276 12 141 104 97 130 160 118 148 353 1125 285 194 293 13 163 115 108 129 163 130 161 436 1083 307 211 387 <tr< td=""></tr<>
8 107 125 117 127 147 116 166 339 997 391 190 261 9 124 122 107 134 180 145 172 356 1211 369 201 258 10 121 141 99 126 171 122 139 321 1263 314 206 270 11 124 105 117 148 173 120 154 326 1241 317 178 276 12 141 104 97 130 160 118 148 353 1125 285 194 293 13 163 115 108 129 163 130 161 436 1083 307 211 387 14 132 121 105 121 120 120 170 574 1007 323 191 356 <
9 124 122 107 134 180 145 172 356 1211 369 201 258 10 121 141 99 126 171 122 139 321 1263 314 206 270 11 124 105 117 148 173 120 154 326 1241 317 178 276 12 141 104 97 130 160 118 148 353 1125 285 194 293 13 163 115 108 129 163 130 161 436 1083 307 211 387 14 132 121 105 121 120 120 170 574 1007 323 191 356 15 125 119 118 119 121 122 198 758 981 327 175 357
10 121 141 99 126 171 122 139 321 1263 314 206 270 11 124 105 117 148 173 120 154 326 1241 317 178 276 12 141 104 97 130 160 118 148 353 1125 285 194 293 13 163 115 108 129 163 130 161 436 1083 307 211 387 14 132 121 105 121 120 120 170 574 1007 323 191 356 15 125 119 118 119 121 122 198 758 981 327 175 357 16 150 116 118 124 113 137 141 833 816 315 182 373
11 124 105 117 148 173 120 154 326 1241 317 178 276 12 141 104 97 130 160 118 148 353 1125 285 194 293 13 163 115 108 129 163 130 161 436 1083 307 211 387 14 132 121 105 121 120 120 170 574 1007 323 191 356 15 125 119 118 119 121 122 198 758 981 327 175 357 16 150 116 118 124 113 137 141 833 816 315 182 373 17 125 130 98 123 122 138 188 943 713 283 164 319 <
12 141 104 97 130 160 118 148 353 1125 285 194 293 13 163 115 108 129 163 130 161 436 1083 307 211 387 14 132 121 105 121 120 120 170 574 1007 323 191 356 15 125 119 118 119 121 122 198 758 981 327 175 357 16 150 116 118 124 113 137 141 833 816 315 182 373 17 125 130 98 123 122 138 188 943 713 283 164 319 18 123 120 125 127 119 123 135 940 678 291 145 309 <t< td=""></t<>
13 163 115 108 129 163 130 161 436 1083 307 211 387 14 132 121 105 121 120 120 170 574 1007 323 191 356 15 125 119 118 119 121 122 198 758 981 327 175 357 16 150 116 118 124 113 137 141 833 816 315 182 373 17 125 130 98 123 122 138 188 943 713 283 164 319 18 123 120 125 127 119 123 135 940 678 291 145 309 19 123 124 122 122 111 109 136 812 697 335 177 346 <t< td=""></t<>
14 132 121 105 121 120 120 170 574 1007 323 191 356 15 125 119 118 119 121 122 198 758 981 327 175 357 16 150 116 118 124 113 137 141 833 816 315 182 373 17 125 130 98 123 122 138 188 943 713 283 164 319 18 123 120 125 127 119 123 135 940 678 291 145 309 19 123 124 122 122 111 109 136 812 697 335 177 346 20 126 119 93 125 116 137 142 604 679 294 177 360
15 125 119 118 119 121 122 198 758 981 327 175 357 16 150 116 118 124 113 137 141 833 816 315 182 373 17 125 130 98 123 122 138 188 943 713 283 164 319 18 123 120 125 127 119 123 135 940 678 291 145 309 19 123 124 122 122 111 109 136 812 697 335 177 346 20 126 119 93 125 116 137 142 604 679 294 177 360 21 126 112 106 129 122 154 158 483 632 279 173 372
16 150 116 118 124 113 137 141 833 816 315 182 373 17 125 130 98 123 122 138 188 943 713 283 164 319 18 123 120 125 127 119 123 135 940 678 291 145 309 19 123 124 122 122 111 109 136 812 697 335 177 346 20 126 119 93 125 116 137 142 604 679 294 177 360 21 126 112 106 129 122 154 158 483 632 279 173 372 22 120 114 93 121 118 145 177 436 611 256 168 378
17 125 130 98 123 122 138 188 943 713 283 164 319 18 123 120 125 127 119 123 135 940 678 291 145 309 19 123 124 122 122 111 109 136 812 697 335 177 346 20 126 119 93 125 116 137 142 604 679 294 177 360 21 126 112 106 129 122 154 158 483 632 279 173 372 22 120 114 93 121 118 145 177 436 611 256 168 378
18 123 120 125 127 119 123 135 940 678 291 145 309 19 123 124 122 122 111 109 136 812 697 335 177 346 20 126 119 93 125 116 137 142 604 679 294 177 360 21 126 112 106 129 122 154 158 483 632 279 173 372 22 120 114 93 121 118 145 177 436 611 256 168 378
19 123 124 122 122 111 109 136 812 697 335 177 346 20 126 119 93 125 116 137 142 604 679 294 177 360 21 126 112 106 129 122 154 158 483 632 279 173 372 22 120 114 93 121 118 145 177 436 611 256 168 378
20 126 119 93 125 116 137 142 604 679 294 177 360 21 126 112 106 129 122 154 158 483 632 279 173 372 22 120 114 93 121 118 145 177 436 611 256 168 378
21 126 112 106 129 122 154 158 483 632 279 173 372 22 120 114 93 121 118 145 177 436 611 256 168 378
22 120 114 93 121 118 145 177 436 611 256 168 378
23 113 110 87 126 116 154 186 466 552 215 196 429
23 113 110 07 120 110 134 100 400 333 213 100 430
24 132 114 124 115 124 136 147 681 542 228 200 409
25 137 106 134 121 113 132 153 829 505 315 202 407
26 127 112 87 122 120 135 182 860 491 267 205 390
27 108 96 136 129 121 157 205 974 521 278 204 401
28 127 108 135 118 111 148 240 890 507 292 184 388
29 124 116 119 115 156 310 742 496 324 201 366
30 125 108 128 110 147 358 562 462 284 200 387
31 125 133 115 147 470 274 194
Min 107 96 87 110 111 108 135 260 374 215 145 176
Max 163 141 136 148 180 157 358 974 1263 469 238 438
Mean 126 118 113 125 130 132 177 549 755 326 194 320
ac-ft 7704 7018 6913 7675 7227 8093 10530 33669 44854 19982 11883 19029

Appendix A (Table 2 of 38) Elliot Creek Canal near Green Mountain Reservoir, CO


Location. --Lat $39^{\circ}52'25''$, long $106^{\circ}19'49''$, Summit County, Hydrologic Unit 14010002, on left bank at concrete flume structure, and 1.1 mi west of Heeney.

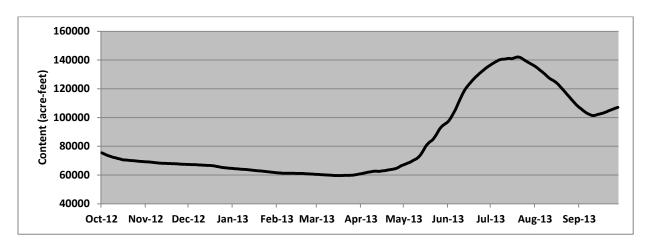
Gage.--Water-stage recorder with satellite telemetry. Elevation of gage is 8050 ft from topographic map.

Remarks.—This is a diversion from Elliot Creek in the Blue River Basin to Green Mountain Reservoir. Recorder was operated in the early fall, and from 29-Mar-2013 through 30-Sep-2013. Records are incomplete and only reliable while recorder was operated. This record contains operational data which could be subject to future revisions and changes. Official data is published by the United States Geological Survey.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	4	4	4	4	4	1	8	9	2	2	0
2	0	4	4	4	4	4	1	8	8	1	1	0
3	0	4	4	4	4	4	1	7	36	1	1	0
4	0	4	4	4	4	4	1	7	64	1	1	0
5	0	4	4	4	4	4	2	7	75	1	1	0
6	0	4	4	4	4	4	2	8	74	1	0	0
7	0	4	4	4	4	4	2	8	64	1	0	1
8	0	4	4	4	4	4	2	10	79	1	0	1
9	0	4	4	4	4	4	3	10	109	1	0	1
10	0	4	4	4	4	4	2	11	115	2	0	1
11	2	4	4	4	4	4	2	13	117	4	0	1
12	4	4	4	4	4	4	1	17	91	4	0	1
13	4	4	4	4	4	4	2	25	77	4	0	1
14	4	4	4	4	4	4	3	41	66	4	0	1
15	4	4	4	4	4	4	2	61	39	3	0	1
16	4	4	4	4	4	4	3	80	18	3	0	1
17	4	4	4	4	4	4	3	103	9	3	0	1
18	4	4	4	4	4	4	2	102	6	3	0	1
19	4	4	4	4	4	4	2	69	5	3	0	1
20	4	4	4	4	4	4	2	40	5	3	0	1
21	4	4	4	4	4	4	2	27	3	2	0	1
22	4	4	4	4	4	4	2	21	2	2	0	1
23	4	4	4	4	4	4	2	24	2	2	0	1
24	4	4	4	4	4	4	2	51	2	2	0	1
25	4	4	4	4	4	4	2	74	2	2	0	1
26	4	4	4	4	4	4	2	79	2	2	1	1
27	4	4	4	4	4	4	3	98	2	2	1	1
28	4	4	4	4	4	4	4	84	2	2	1	2
29	4	4	4	4		5	6	54	2	2	0	2
30	4	4	4	4		3	8	25	2	2	0	3
31	4		4	4		1		13		2	0	
Min	0	4	4	4	4	1	1	7	2	1	0	0
Max	4	4	4	4	4	5	8	103	117	4	2	3
Mean	3	4	4	4	4	4	2	38	36	2	1	1
ac-ft	172	227	234	233	211	228	139	2347	2143	140	31	54

Appendix A (Table 3 of 38) Green Mountain Reservoir, CO


Location. --Lat 39°52'42", long 106°19'42", Summit County, Hydrologic Unit 14010002, on Green Mountain Dam, 13 miles southeast of Kremmling, Colorado, on the Blue River..

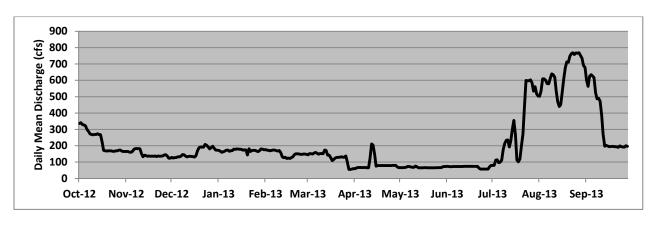
Gage. –Water level recorder with satellite telemetry. Elevation of gage is 7960 from topographic map.

Remarks.--Reservoir is formed by an earth-fill dam. Construction completed in 1943. Impoundment began on 16-Nov-1942. Green Mountain Reservoir provides storage used for replacement water of the Colorado-Big Thompson Project diversions. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Maximum capacity is 153,639 AF at elevation 7950.00 ft, with 146,779 AF of active capacity. Records are complete and fair, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	76357	69378	67417	64712	61812	60552	60541	66413	95694	135522	136760	108813
2	75905	69294	67381	64644	61713	60497	60736	66843	96271	136170	136210	107822
3	75457	69222	67358	64542	61603	60454	60909	67228	97140	136819	135600	106975
4	75011	69150	67322	64463	61505	60412	61115	67617	98447	137449	134897	106262
5	74577	69079	67287	64395	61407	60326	61321	68019	99974	138004	134099	105458
6	74148	69007	67263	64328	61331	60262	61537	68421	101712	138559	133263	104639
7	73733	68923	67228	64237	61256	60209	61757	68851	103506	139094	132472	103895
8	73343	68816	67192	64147	61201	60123	61955	69378	105311	139673	131682	103166
9	73006	68696	67134	64067	61212	60102	62163	69921	107540	140154	130915	102638
10	72694	68612	67041	63988	61212	60048	62306	70418	109858	140394	130093	102207
11	72408	68457	66983	63932	61223	59984	62471	70929	112117	140554	129179	101775
12	72146	68302	66902	63852	61201	59910	62636	71494	114164	140634	128271	101409
13	71887	68231	66855	63751	61212	59867	62714	72209	116133	140734	127383	101393
14	71617	68208	66797	63639	61191	59760	62625	73205	117947	140975	126689	101552
15	71322	68161	66762	63517	61180	59664	62614	74577	119691	141155	126070	101855
16	71089	68113	66727	63405	61147	59653	62603	76099	121125	141135	125529	102191
17	70806	68102	66657	63294	61147	59643	62825	77837	122367	140955	124934	102430
18	70612	68066	66646	63193	61136	59632	62937	79561	123545	140975	124136	102654
19	70515	68043	66611	63093	61115	59632	63048	81030	124730	141397	123250	102941
20	70430	68007	66460	62993	61093	59675	63171	82085	125883	141760	122220	103247
21	70345	67960	66297	62903	61071	59728	63327	82888	126952	142023	121125	103587
22	70248	67913	66099	62859	61017	59760	63517	83599	127968	142104	120016	103943
23	70139	67865	65892	62747	60942	59792	63729	84372	128895	141962	118880	104429
24	70066	67818	65754	62647	60887	59803	63864	85566	129807	141558	117733	104852
25	70006	67759	65593	62548	60812	59803	64011	87054	130648	140955	116592	105245
26	69921	67712	65364	62449	60757	59814	64214	88604	131470	140274	115462	105622
27	69799	67629	65249	62361	60703	59867	64463	90375	132337	139613	114321	106016
28	69714	67558	65157	62262	60627	59888	64780	92010	133186	138995	113152	106394
29	69617	67499	65019	62163		59995	65237	93340	134021	138460	111996	106709
30	69521	67440	64882	62043		60177	65788	94324	134799	137965	110881	107058
31	69437		64780	61911		60358		95089		137370	109790	
Min	69437	67440	64780	61911	60627	59632	60541	66413	95694	135522	109790	101393
Max	76357	69378	67417	64712	61812	60552	65788	95089	134799	142104	136760	108813
EOM	69437	67440	64780	61911	60627	60358	65788	65788	134799	137370	109790	107058

Appendix A (Table 4 of 38) Blue River below Green Mountain Reservoir, CO


Location.--Lat 39°52'49", long 106°20'00", Summit County, Hydrologic Unit 14010002, on left bank 0.3 miles upstream from Elliot Creek, 0.3 miles downstream from Green Mountain Reservoir and 13 miles southeast of Kremmling.

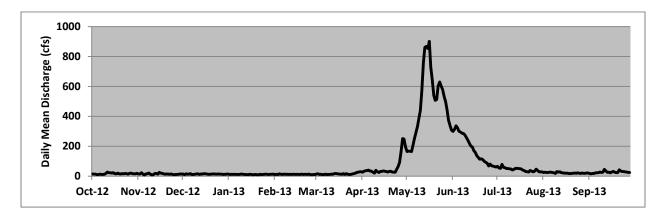
Gage.-- Water-stage recorder with satellite telemetry. Datum of gage is 7682.66 feet (levels by U.S. Bureau of Reclamation).

Remarks.--Drainage area is 599 mi² including 15.3 mi² of Elliot Creek above the diversion for Elliot Creek feeder canal. Flow regulated by Green Mountain Reservoir since 1942. There are transmountain diversions upstream from station. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes. Official record is published by the United States Geological Survey.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	307	165	124	173	179	150	57	70	73	72	518	691
2	340	165	124	173	175	147	60	66	73	80	504	679
3	336	165	129	172	177	145	60	66	74	80	502	603
4	341	165	125	167	173	153	64	66	73	80	535	563
5	330	161	128	161	171	151	67	66	72	112	609	624
6	328	160	128	163	169	149	67	67	72	114	609	635
7	321	165	133	167	172	155	67	69	73	97	600	627
8	300	179	131	173	174	159	67	74	73	99	580	617
9	288	183	135	174	174	154	67	73	73	112	579	524
10	272	182	146	166	170	149	67	70	73	179	610	487
11	268	183	145	169	168	152	65	68	73	214	639	490
12	267	182	138	170	171	153	65	68	73	233	634	473
13	270	151	132	180	158	152	122	76	73	235	618	386
14	269	133	134	177	131	174	211	72	74	192	533	268
15	274	142	136	181	126	171	204	66	74	231	471	197
16	268	140	135	180	130	143	147	66	74	303	439	203
17	268	136	133	179	122	142	75	66	74	355	452	198
18	221	138	131	178	125	128	79	66	74	266	533	194
19	172	136	139	173	122	109	79	66	74	113	610	195
20	169	137	169	175	127	116	79	66	74	102	678	196
21	168	136	188	174	133	125	79	66	74	119	713	195
22	169	138	193	143	145	129	79	65	74	196	711	194
23	168	134	191	182	152	129	79	65	74	272	747	193
24	169	138	191	165	150	129	79	66	63	432	763	190
25	166	136	208	171	151	132	79	66	58	600	769	199
26	166	136	203	172	147	130	79	66	58	598	757	195
27	169	138	193	172	148	129	79	66	57	597	767	192
28	169	144	181	168	150	137	80	66	57	603	766	192
29	173	145	189	164		102	80	66	57	584	769	200
30	173	138	197	170		55	80	66	57	533	753	196
31	167		184	180		55		71		561	735	
Min	166	133	124	143	122	55	57	65	57	72	439	190
Max	341	183	208	182	179	174	211	76	74	603	769	691
Mean	241	152	155	171	153	136	85	68	70	270	629	360
ac-ft	14781	9008	9531	10516	8493	8323	5071	4146	4154	16562	38621	21379

Appendix A (Table 5 of 38) Willow Creek Reservoir, CO


Location. — Lat 40°08'52", long 105°56'28", Grand County, Hydrologic Unit 14010001, at Willow Creek Dam, 4 miles north of Granby, Colorado, on Willow Creek, a tributary of the Colorado River.

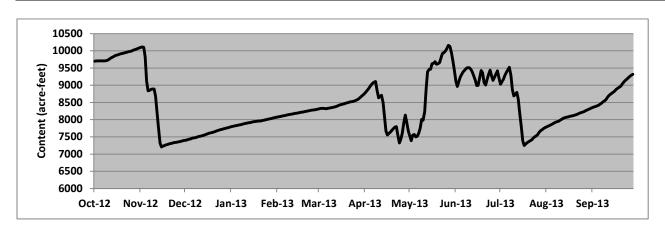
Gage.— Water level recorder with satellite telemetry. Elevation of gage is 8130 from topographic map.

Remarks.—Inflow computed daily using change in content from midnight to midnight, plus the 24-hour average releases through the Willow Creek Pump Canal and the reservoir outlet works. Recorders were operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Inflow, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	13	16	15	13	13	12	28	248	336	63	29	21
2	13	18	13	15	13	11	29	195	306	61	29	21
3	15	14	15	13	11	14	27	164	299	66	24	18
4	14	14	9	11	12	15	33	168	312	54	26	15
5	14	23	16	13	10	11	36	167	337	52	24	18
6	10	14	13	11	16	13	37	164	323	79	24	18
7	11	8	13	12	12	10	40	206	300	58	27	22
8	13	15	17	11	11	10	34	251	295	57	26	22
9	11	15	10	11	13	13	34	290	287	51	24	23
10	11	21	11	12	12	11	27	332	286	51	22	28
11	13	13	12	14	12	12	20	386	276	49	18	25
12	18	8	14	14	11	11	39	439	258	48	31	27
13	28	9	16	12	12	13	29	568	241	42	27	45
14	23	18	11	12	11	12	25	759	220	45	30	35
15	23	18	15	11	12	16	32	861	201	52	23	25
16	21	14	14	11	12	18	32	867	195	52	22	27
17	23	26	17	13	11	16	35	853	171	51	20	22
18	17	20	16	12	12	15	33	901	159	50	20	27
19	16	18	15	9	11	14	31	730	136	48	20	32
20	20	14	12	11	11	12	27	647	124	40	18	27
21	16	13	13	12	13	16	32	540	113	38	17	23
22	14	14	14	9	11	11	33	506	116	31	19	25
23	17	13	14	9	12	17	28	512	111	30	19	42
24	16	12	15	13	12	12	26	603	99	28	21	35
25	18	14	14	11	11	11	27	629	93	38	19	31
26	17	11	14	12	13	11	45	602	87	33	22	31
27	14	9	15	13	11	15	64	579	68	29	20	29
28	19	11	13	13	10	17	92	531	80	33	18	28
29	20	12	14	12		19	169	497	69	46	21	25
30	17	13	11	12		24	251	442	67	39	19	24
31	16		13	13		27		374		29	19	
Min	10	8	9	9	10	10	20	164	67	28	17	15
Max	28	26	17	15	16	27	251	901	337	79	31	45
Mean	16	15	14	12	12	14	47	484	199	46	22	26
ac-ft	1008	874	836	728	659	873	2763	29723	11813	2852	1378	1567

Appendix A (Table 6 of 38) Willow Creek Reservoir, CO


Location. —Lat 40° 08'52", long 105° 56'28", Grand County, Hydrologic Unit 14010001, at Willow Creek Dam, 4 miles north of Granby, Colorado, on Willow Creek, a tributary of the Colorado River.

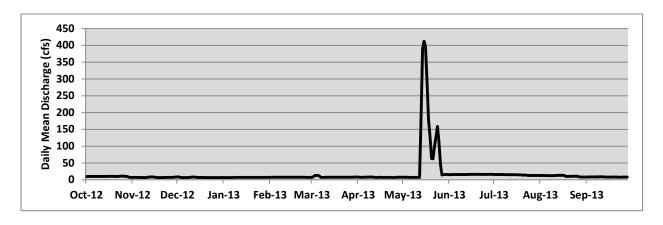
Gage.— Water level recorder with satellite telemetry. Elevation of gage is 8130 from topographic map.

Remarks.—Reservoir is formed by an earth-fill dam. Construction completed in 1953. Impoundment began on April 2, 1953. Willow Creek Reservoir stores water from Willow Creek for diversion to Granby Reservoir via the Willow Creek Canal. Maximum capacity is 10,600 AF at elevation 8,130.00 ft, with 9,100 AF of active capacity between elevations 8077.00 and 8130.00 feet. Recorder was operated from 01-Oct 2012 to 30-Sep-2013. Record is complete and fair, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	1	1		1		1					1	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	9693	10064	7383	7771	8057	8297	8698	7921	9715	9421	7741	8316
2	9696	10085	7393	7785	8069	8304	8738	7664	9421	9215	7768	8338
3	9701	10099	7404	7796	8076	8316	8776	7523	9118	9030	7787	8355
4	9704	10114	7406	7805	8086	8328	8827	7389	8965	9104	7810	8368
5	9707	10105	7424	7817	8090	8326	8885	7547	9112	9173	7830	8385
6	9707	9828	7437	7826	8105	8326	8944	7572	9242	9296	7851	8400
7	9707	9123	7450	7835	8114	8321	9007	7499	9323	9377	7877	8422
8	9710	8840	7468	7844	8121	8319	9056	7514	9391	9454	7902	8449
9	9710	8853	7474	7854	8133	8331	9088	7605	9443	9520	7923	8479
10	9710	8879	7483	7863	8142	8338	9109	7757	9490	9283	7940	8517
11	9715	8890	7494	7877	8149	8348	8861	8007	9515	8874	7949	8547
12	9732	8892	7507	7888	8157	8355	8634	7986	9506	8690	7979	8581
13	9766	8680	7521	7897	8166	8365	8674	8232	9465	8736	8005	8654
14	9792	8227	7527	7906	8173	8375	8710	8887	9391	8792	8036	8705
15	9817	7778	7540	7913	8183	8393	8502	9391	9280	8594	8052	8738
16	9839	7324	7554	7921	8190	8413	8081	9460	9152	8190	8066	8774
17	9865	7207	7574	7930	8197	8429	7666	9465	8994	7787	8076	8800
18	9877	7228	7590	7940	8207	8442	7556	9623	8996	7383	8086	8838
19	9888	7251	7605	7944	8214	8454	7601	9640	9224	7249	8098	8885
20	9908	7266	7616	7951	8222	8464	7639	9684	9430	7294	8109	8918
21	9919	7279	7628	7960	8232	8482	7689	9609	9361	7332	8121	8944
22	9928	7294	7641	7963	8239	8489	7741	9623	9081	7361	8133	8976
23	9940	7305	7655	7967	8249	8507	7782	9656	9004	7389	8147	9043
24	9951	7315	7671	7979	8258	8517	7796	9792	9162	7413	8166	9096
25	9966	7330	7684	7986	8266	8524	7534	9925	9307	7461	8183	9139
26	9977	7339	7698	7995	8275	8532	7324	9951	9441	7499	8202	9179
27	9983	7343	7714	8005	8282	8547	7437	9998	9272	7527	8217	9221
28	9998	7350	7725	8017	8287	8564	7605	10073	9139	7565	8232	9259
29	10018	7359	7739	8027		8586	7925	10160	9237	7632	8254	9291
30	10032	7370	7748	8036		8619	8130	10125	9332	7682	8275	9318
31	10046		7759	8047		8656		9954		7712	8294	
Min	9693	7207	7383	7771	8057	8297	7324	7389	8965	7249	7741	8316
Max	10046	10114	7759	8047	8287	8656	9109	10160	9715	9520	8294	9318
EOM	10046	7370	7759	8047	8287	8656	8130	8130	9332	7712	8294	9318

Appendix A (Table 7 of 38) Willow Creek below Willow Creek Reservoir, CO


Location.--Lat 40°08'50", long 105°56'16", Grand County, Hydrologic Unit 14010001, at Willow Creek Dam, 4 miles north of Granby, Colorado, on Willow Creek, a tributary of the Colorado River.

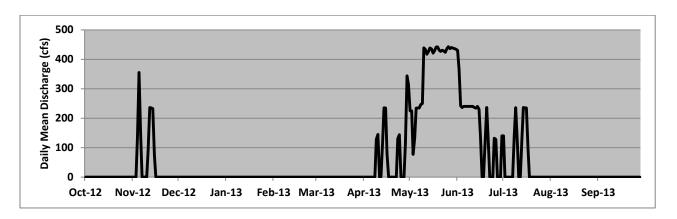
Gage.--Water-stage recorder with satellite telemetry. Elevation of gage is 8040 feet from topographic map.

Remarks.-- Drainage area is 127 square miles. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable. The official record is published by the Division of Water Resources, State of Colorado. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	10	7	8	7	7	7	8	8	16	16	13	8
2	10	7	8	7	7	7	8	7	16	16	13	8
3	9	7	8	7	7	7	8	7	15	16	13	8
4	10	7	8	7	7	9	7	7	15	16	13	8
5	10	7	7	7	7	13	7	7	15	16	13	8
6	10	7	7	7	7	13	7	7	15	16	13	8
7	10	7	7	7	7	13	7	7	16	16	12	8
8	10	7	7	7	7	11	7	7	16	16	12	8
9	10	7	7	7	7	7	8	7	16	16	12	8
10	10	7	7	7	7	7	8	7	16	16	12	9
11	10	7	7	7	7	7	8	7	16	15	12	8
12	10	7	8	7	7	7	8	7	16	15	12	9
13	10	7	8	7	7	7	8	7	16	15	13	9
14	10	8	8	7	7	7	7	7	16	15	13	8
15	10	8	8	7	7	7	7	178	16	15	13	8
16	10	8	7	7	7	7	7	391	16	15	13	8
17	10	8	7	7	7	7	7	412	16	15	13	8
18	10	7	7	7	7	7	7	397	16	15	13	8
19	10	7	7	7	7	7	7	290	16	15	12	8
20	10	7	7	7	7	7	7	179	16	15	10	8
21	10	7	7	7	7	7	7	132	16	14	10	8
22	10	7	7	7	7	7	7	63	16	14	10	8
23	10	7	7	7	7	7	7	62	16	14	10	8
24	10	7	7	7	7	7	7	98	16	14	10	8
25	10	7	7	7	7	7	7	129	16	13	10	8
26	11	7	7	7	7	7	7	159	16	13	10	8
27	11	7	7	7	7	7	7	113	16	13	10	8
28	10	7	7	7	7	7	7	44	16	13	10	8
29	10	7	7	7		7	7	14	16	13	8	8
30	10	7	7	7		8	8	16	16	13	8	8
31	8		7	7		8		16		13	8	
Min	8	7	7	7	7	7	7	7	15	13	8	8
Max	11	8	8	7	7	13	8	412	16	16	13	9
Mean	10	7	7	7	7	8	7	90	16	15	11	8
ac-ft	610	422	435	428	408	492	436	5531	935	895	702	484

Appendix A (Table 8 of 38) Willow Creek Pump Canal, CO


Location. —Lat 40°08'39", long 105°54'10", Grand County, Hydrologic Unit 14010001, at Willow Creek Pump Canal, 4 miles north of Granby, Colorado, on Willow Creek, a tributary of the Colorado River.

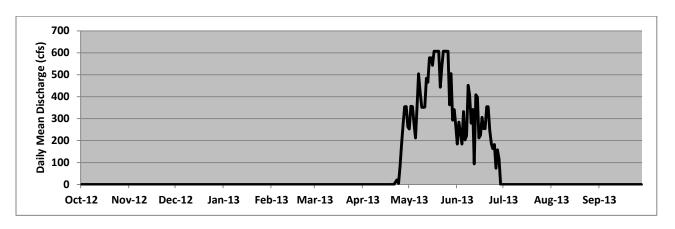
Gage.— Water-stage recorder with satellite telemetry at 15 foot Parshall Flume. Elevation of gage is 8300 feet from topographic map.

Remarks.—Canal is used to divert water from Willow Creek Reservoir to Granby Reservoir. Diversions are seasonal, mainly during late spring and early summer. Construction completed in 1953. Length of the canal is 3.4 miles. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	0	344	436	0	0	0
2	0	0	0	0	0	0	0	314	434	140	0	0
3	0	0	0	0	0	0	0	225	430	140	0	0
4	0	0	0	0	0	0	0	225	367	0	0	0
5	0	0	0	0	0	0	0	77	242	0	0	0
6	0	134	0	0	0	0	0	134	236	0	0	0
7	0	355	0	0	0	0	0	234	240	0	0	0
8	0	144	0	0	0	0	0	234	240	0	0	0
9	0	0	0	0	0	0	0	235	240	0	0	0
10	0	0	0	0	0	0	0	246	240	140	0	0
11	0	0	0	0	0	0	128	250	240	236	0	0
12	0	0	0	0	0	0	145	439	240	123	0	0
13	0	93	0	0	0	0	0	433	240	0	0	0
14	0	236	0	0	0	0	0	417	236	0	0	0
15	0	234	0	0	0	0	116	426	234	130	0	0
16	0	232	0	0	0	0	235	439	240	236	0	0
17	0	75	0	0	0	0	235	435	230	235	0	0
18	0	0	0	0	0	0	78	421	137	235	0	0
19	0	0	0	0	0	0	0	429	0	98	0	0
20	0	0	0	0	0	0	0	441	0	0	0	0
21	0	0	0	0	0	0	0	442	120	0	0	0
22	0	0	0	0	0	0	0	431	236	0	0	0
23	0	0	0	0	0	0	0	427	130	0	0	0
24	0	0	0	0	0	0	0	431	0	0	0	0
25	0	0	0	0	0	0	130	428	0	0	0	0
26	0	0	0	0	0	0	144	424	0	0	0	0
27	0	0	0	0	0	0	0	436	132	0	0	0
28	0	0	0	0	0	0	0	443	128	0	0	0
29	0	0	0	0		0	0	436	0	0	0	0
30	0	0	0	0		0	116	440	0	0	0	0
31	0		0	0		0		438		0	0	
Min	0	0	0	0	0	0	0	77	0	0	0	0
Max	0	355	0	0	0	0	235	443	436	236	0	0
Mean	0	50	0	0	0	0	44	360	188	55	0	0
ac-ft	0	2979	0	0	0	0	2627	22125	11183	3391	0	0

Appendix A (Table 9 of 38) Windy Gap Pumping Plant, CO


 $\textbf{Location.} \ \ \text{--Lat } \ 40^{\circ}06^{\circ}24^{\circ\prime\prime}, \ long \ 105^{\circ}58^{\circ}48^{\circ\prime\prime}, \ Grand \ County, \ Hydrologic \ Unit \ 14010001, \ 5.5 \ miles \ northeast \ of \ Granby, \ Colorado, \ on \ the \ Colorado \ River.$

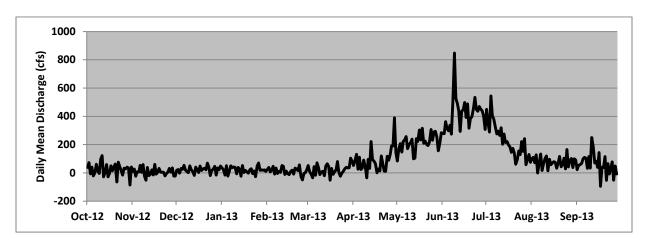
Gage.-- Reading taken directly from the pumps. Elevation of the pumping plant is 7823 from topographic map.

Remarks.— Water is pumped from Windy Gap Reservoir to Granby Reservoir. Water is stored at Granby Reservoir before delivery through Adams Tunnel. Data was provided by Farr Pumping Plant operators each morning. Data was collected from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Windy Gap Pump Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	0	355	341	0	0	0
2	0	0	0	0	0	0	0	263	273	0	0	0
3	0	0	0	0	0	0	0	253	184	0	0	0
4	0	0	0	0	0	0	0	356	284	0	0	0
5	0	0	0	0	0	0	0	355	239	0	0	0
6	0	0	0	0	0	0	0	281	184	0	0	0
7	0	0	0	0	0	0	0	212	332	0	0	0
8	0	0	0	0	0	0	0	361	203	0	0	0
9	0	0	0	0	0	0	0	504	222	0	0	0
10	0	0	0	0	0	0	0	420	452	0	0	0
11	0	0	0	0	0	0	0	352	408	0	0	0
12	0	0	0	0	0	0	0	351	279	0	0	0
13	0	0	0	0	0	0	0	353	342	0	0	0
14	0	0	0	0	0	0	0	484	94	0	0	0
15	0	0	0	0	0	0	0	466	409	0	0	0
16	0	0	0	0	0	0	0	577	398	0	0	0
17	0	0	0	0	0	0	0	577	212	0	0	0
18	0	0	0	0	0	0	0	543	224	0	0	0
19	0	0	0	0	0	0	0	607	306	0	0	0
20	0	0	0	0	0	0	0	607	255	0	0	0
21	0	0	0	0	0	0	0	607	254	0	0	0
22	0	0	0	0	0	0	0	607	354	0	0	0
23	0	0	0	0	0	0	0	443	354	0	0	0
24	0	0	0	0	0	0	10	533	246	0	0	0
25	0	0	0	0	0	0	21	607	186	0	0	0
26	0	0	0	0	0	0	5	607	163	0	0	0
27	0	0	0	0	0	0	79	607	182	0	0	0
28	0	0	0	0	0	0	185	607	74	0	0	0
29	0	0	0	0		0	280	363	158	0	0	0
30	0	0	0	0		0	354	505	116	0	0	0
31	0		0	0		0		293		0	0	
Min	0	0	0	0	0	0	0	212	74	0	0	0
Max	0	0	0	0	0	0	354	607	452	0	0	0
Mean	0	0	0	0	0	0	31	453	258	0	0	0
ac-ft	0	0	0	0	0	0	1849	27831	15301	0	0	0

Appendix A (Table 10 of 38) Granby Reservoir, CO


Location. --Lat 40°08'54", long 105°51'48", Grand County, Hydrologic Unit 14010001, on Granby Dam, 5.5 miles northeast of Granby, Colorado, on the Colorado River.

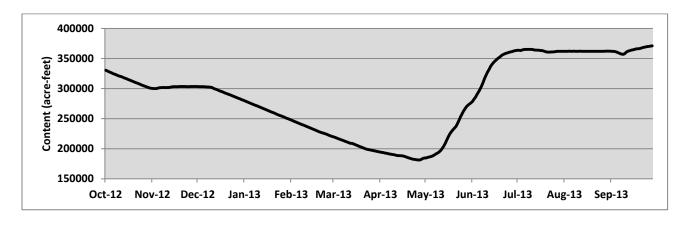
Gage.-- Water level recorder with satellite telemetry. Elevation of gage is 8300 from topographic map.

Remarks.-- Inflow computed daily based on change in content from midnight to midnight, and on the average daily releases through the reservoir outlet works. Recorders were operated from 01-Oct-2012 to 30-Sep-2013. Records are complete, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Inflow, Cubic Feet per Second, Daily Mean Values

			1	1				1		1	1	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	76	-86	-23	22	22	1	104	389	205	404	130	100
2	25	42	-23	49	10	22	83	144	284	307	75	91
3	38	10	19	36	23	52	52	84	278	449	101	23
4	72	27	23	22	38	9	89	174	277	353	110	55
5	-7	-24	-2	-16	6	-10	131	207	362	289	71	58
6	41	8	32	51	20	-35	26	147	313	544	128	67
7	-21	6	25	-22	47	44	111	223	298	405	-1	100
8	1	53	53	12	-9	-17	24	233	338	380	71	110
9	61	4	20	50	34	71	34	257	273	323	133	103
10	14	59	9	36	-5	38	90	171	526	276	17	31
11	-5	-24	1	42	12	-13	41	200	848	295	66	115
12	96	-52	49	39	4	5	-35	213	526	265	101	34
13	123	39	23	-7	52	11	97	239	492	319	120	250
14	-29	-19	8	39	47	-20	32	100	438	203	15	183
15	0	-10	-18	28	-11	48	222	104	293	275	96	70
16	59	22	41	-24	12	65	92	242	436	215	58	82
17	-29	-15	24	52	-6	46	84	223	448	222	70	38
18	-4	60	2	2	-13	-52	65	303	498	197	79	144
19	49	-9	49	18	11	31	0	233	391	184	75	-95
20	15	5	17	7	19	-11	28	316	487	144	33	41
21	42	32	28	-2	-9	8	14	209	316	173	68	37
22	63	5	32	21	35	21	120	226	386	141	116	115
23	-65	5	22	30	28	81	66	201	396	61	43	-53
24	75	5	69	-5	16	2	13	194	457	94	57	66
25	46	-21	41	13	56	-24	11	218	534	155	104	-8
26	16	-4	-19	-27	-27	-2	118	307	448	129	28	32
27	-15	5	17	48	-50	10	89	231	436	222	166	78
28	33	32	26	70	-5	30	127	290	469	152	42	-53
29	28	5	47	18		40	191	294	450	243	88	49
30	41	35	-16	21		36	191	253	440	58	102	-8
31	34		35	18		36		157		97	37	
Min	-65	-86	-23	-27	-50	-52	-35	84	205	58	-1	-95
Max	123	60	69	70	56	81	222	389	848	544	166	250
Mean	28	6	20	21	13	17	77	219	412	244	77	62
ac-ft	1725	379	1210	1269	708	1035	4574	13425	24445	14998	4753	3675

Appendix A (Table 11 of 38) Granby Reservoir, CO


Location. --Lat 40°08'54", long 105°51'48", Grand County, Hydrologic Unit 14010001, on Granby Dam, 5.5 miles northeast of Granby, Colorado, on the Colorado River.

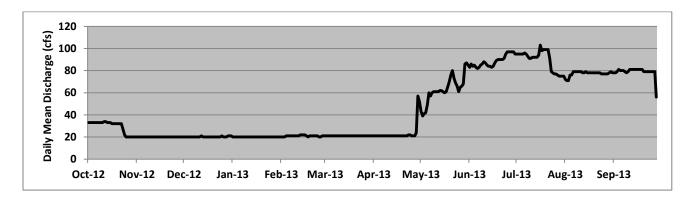
Gage.-- Water level recorder with satellite telemetry. Elevation of gage is 8300 from topographic map.

Remarks.--Reservoir is formed by an earth-fill dam and four earth-fill dikes. Construction completed in 1950. Impoundment began on 14-Sep-1949. Granby Reservoir provides west-slope storage for the Colorado-Big Thompson Project. Maximum capacity is 539,800 AF at elevation 8,280.00, with 463,300 AF of active capacity between elevations 8186.90 and 8280.00 feet. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete, but the data has not been revised. This record consists of operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	332718	300965	303323	281659	249539	221306	195405	183703	274362	362833	361938	362117
2	331626	300420	303323	280760	248455	220469	194970	184382	276193	363254	361938	362117
3	330537	300092	303378	279705	247420	219683	194314	184593	278762	363612	361938	361878
4	329449	299928	303214	278603	246437	218756	193879	185316	282291	363493	361998	361818
5	328195	299928	303049	277500	245358	217832	193485	185955	285849	363254	361998	361577
6	327166	300257	303159	276506	244331	216725	192836	186637	290393	364149	362117	361041
7	325969	301019	302995	275355	243359	215851	192533	187534	294492	364809	361998	359910
8	324775	301457	302830	274362	242237	214844	191882	188606	299054	365169	361998	358957
9	323752	301512	302665	273376	241265	213974	191188	190197	304035	364990	362117	358005
10	322679	301678	302499	272335	240198	213014	190758	191752	310227	365110	361998	357117
11	321602	301678	302334	271351	239182	212010	190370	193095	316703	365110	361998	356758
12	320752	301623	301952	270366	238121	211009	190029	194840	322396	364990	361998	358360
13	320021	301678	300911	269280	237108	209920	189320	197159	327564	364689	362117	360684
14	318949	301788	299763	268253	236102	208879	188613	200645	331969	364029	361998	362117
15	317935	302280	298725	267275	235045	208969	188520	204787	336751	363970	361998	362894
16	317040	302830	297748	266147	233992	208159	188477	209287	340454	363851	361938	363672
17	316028	302995	296768	265172	232846	207167	188306	214522	343535	363612	361938	364327
18	314907	303159	295681	264099	231797	206043	187918	220052	345872	363254	361938	364930
19	313960	303159	294818	263031	230752	205056	187148	224528	348273	363254	361938	365528
20	312843	303214	293789	262013	229707	203982	186339	228243	350444	362474	361818	366070
21	311894	303323	292762	260949	228669	202956	185316	231372	352209	361577	361818	366251
22	310949	303378	291739	259936	227628	201932	184508	234135	354511	360922	361878	366790
23	309725	303432	290771	258874	226783	200999	183661	236819	356167	360447	361818	367571
24	308840	303487	289859	257716	226028	200023	182772	241507	357354	360447	361818	368294
25	307897	303378	288893	256659	225277	199097	182394	247026	358419	360684	361938	368715
26	306846	303159	287768	255559	224388	198479	182142	252612	359136	360803	361818	369200
27	305746	303214	286757	254608	223265	197993	181551	257615	360089	361100	361998	369861
28	304808	303323	285743	253658	222238	197597	181300	262521	360922	361338	361998	370222
29	303816	303378	284731	252711		197028	181341	266504	361397	361758	361998	370585
30	302830	303323	283777	251617		196325	182142	269954	362176	361758	362117	371010
31	301952		282769	250578		195798		272283		361818	362058	
Min	301952	299928	282769	250578	222238	195798	181300	183703	274362	360447	361818	356758
Max	332718	303487	303378	281659	249539	221306	195405	272283	362176	365169	362117	371010
EOM	301952	303323	282769	250578	222238	195798	182142	182142	362176	361818	362058	371010

Appendix A (Table 12 of 38) Granby Reservoir, CO


Location. --Lat 40°08'54", long 105°51'48", Grand County, Hydrologic Unit 14010001, on Granby Dam, 5.5 miles northeast of Granby, Colorado, on the Colorado River.

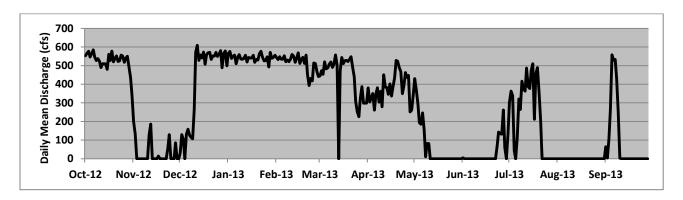
Gage.-- Water level recorder with satellite telemetry. Elevation of gage is 8300 feet, from topographic map.

Remarks.--Reservoir is formed by an earth-fill dam and four earth-fill dikes. Construction completed in 1950. Impoundment began on 14-Sep-1949. Granby Reservoir provides west-slope storage for the Colorado-Big Thompson Project. Data was provided by personnel from the Northern Colorado Water Conservancy District. Releases were made through the outlet works valve. The stream gage directly below the dam is used to measure flows during winter. A USGS station further downstream is used to measure flows between spring and fall. Data was recorded from 01-Oct-2012 to 30-Sep-2013. Records are complete and fair. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	33	20	20	21	20	21	21	57	87	97	75	79
2	32	20	20	21	20	21	21	52	85	95	75	78
3	33	20	20	20	20	21	21	43	83	95	72	78
4	33	20	20	20	20	21	21	39	86	95	71	78
5	33	20	20	20	20	21	21	41	84	95	71	79
6	33	20	20	20	21	21	21	42	85	95	76	81
7	33	20	20	20	21	21	21	49	83	95	76	80
8	33	20	20	20	21	21	21	60	82	96	79	80
9	33	20	20	20	21	21	21	57	83	95	79	80
10	33	20	20	20	21	21	21	60	85	93	79	79
11	33	20	20	20	21	21	21	61	86	91	79	78
12	33	20	20	20	21	21	21	61	88	91	79	79
13	34	20	20	20	21	21	21	61	87	92	79	81
14	34	20	21	20	21	21	21	61	85	92	78	81
15	33	20	20	20	22	21	21	62	84	92	78	81
16	33	20	20	20	22	21	21	62	84	92	79	81
17	33	20	20	20	22	21	21	61	83	94	78	81
18	32	20	20	20	22	21	21	60	84	103	78	81
19	32	20	20	20	21	21	21	61	87	98	78	81
20	32	20	20	20	20	21	21	65	89	99	78	81
21	32	20	20	20	21	21	21	70	90	99	78	81
22	32	20	20	20	21	21	21	76	90	99	78	79
23	32	20	20	20	21	21	21	80	90	99	78	79
24	32	20	20	20	21	21	21	73	90	91	78	79
25	27	20	20	20	21	21	22	69	91	79	78	79
26	22	20	20	20	21	21	22	66	95	78	77	79
27	20	20	21	20	20	21	21	61	97	77	77	79
28	20	20	20	20	20	21	21	65	97	77	77	79
29	20	20	20	20		21	21	66	97	76	77	79
30	20	20	20	20		21	24	68	97	75	77	56
31	20		21	20		21		86		75	78	
Min	20	20	20	20	20	21	21	39	82	75	71	56
Max	34	20	21	21	22	21	24	86	97	103	79	81
Mean	30	20	20	20	21	21	21	61	88	91	77	79
ac-ft	1851	1188	1234	1232	1156	1289	1257	3752	5215	5584	4732	4685

Appendix A (Table 13 of 38) Farr Pumping Plant, Granby Reservoir, CO


Location. --Lat 40°11'30", long 105°52'52", Grand County, Hydrologic Unit 14010001, at Farr Pumping Plant on the north end of Granby Reservoir, 8 miles northeast of Granby, Colorado, on the Colorado River.

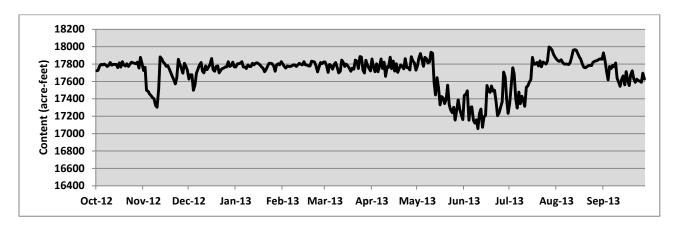
Gage.— Reading taken directly from the pumps, based on conduit pressure and Granby Reservoir's elevation. Elevation of the pumping plant is 8320 from topographic map.

Remarks.—Water is pumped from Granby to the Granby Pump Canal which discharges into Shadow Mountain Reservoir. The operation keeps Shadow Mountain Reservoir/Grand Lake at a steady water surface level when transmountain diversions via Adams Tunnel are taking place. Data was provided by Farr Pumping Plant operators, Northern Colorado Water Conservancy District, each morning. Data was collected from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

												_
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	498	436	0	579	544	468	299	262	0	0	0	0
2	542	341	0	499	555	441	299	345	0	134	0	0
3	553	199	29	566	543	445	380	430	5	302	0	64
4	567	134	129	576	532	473	305	369	0	363	0	4
5	577	0	104	538	548	453	327	294	0	338	0	108
6	546	0	0	550	535	520	350	194	0	43	0	266
7	564	0	131	556	534	482	261	185	0	0	0	558
8	585	0	159	510	553	488	349	246	0	117	0	530
9	546	0	126	545	521	507	381	155	0	321	0	533
10	527	0	115	559	530	519	304	11	0	264	0	430
11	537	0	107	536	521	490	362	82	0	416	0	248
12	523	0	265	534	536	507	279	81	0	373	0	3
13	489	128	571	538	560	557	451	0	0	363	0	0
14	510	186	609	555	551	502	385	0	0	487	0	0
15	510	0	528	519	518	0	382	0	0	387	0	0
16	509	0	557	543	539	470	346	0	0	377	0	0
17	480	0	541	541	568	543	402	0	0	473	0	0
18	561	0	573	541	512	511	336	0	0	510	0	0
19	527	14	507	555	535	526	385	0	0	212	0	0
20	578	0	559	518	544	528	433	0	0	456	0	0
21	520	0	569	533	512	522	527	0	0	489	0	0
22	539	0	571	530	556	534	524	0	0	359	0	0
23	552	0	533	563	451	548	490	0	0	205	0	0
24	522	0	552	577	393	491	468	0	0	0	0	0
25	526	57	551	544	432	440	349	0	68	0	0	0
26	556	129	571	525	418	307	390	0	143	0	0	0
27	551	0	549	526	514	252	463	0	135	0	0	0
28	518	0	560	547	511	226	436	0	132	0	0	0
29	540	0	580	493		324	447	0	262	0	0	0
30	550	86	488	571		387	251	0	60	0	0	0
31	494		565	539		299		0		0	0	
Min	480	0	0	493	393	0	251	0	0	0	0	0
Max	585	436	609	579	568	557	527	430	262	510	0	558
Mean	535	57	377	542	520	444	379	86	27	225	0	91
ac-ft	32862	3386	23164	33276	28841	27245	22495	5255	1594	13838	0	5433

Appendix A (Table 14 of 38) Shadow Mountain/Grand Lake, CO


Location. --Lat 40°12'26", long 105°50'28", Grand County, Hydrologic Unit 14010001, on the Colorado River at the Shadow Mountain outlet works structure, 10 miles northeast of Granby, Colorado.

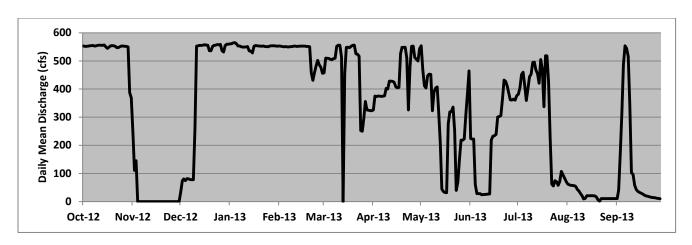
Gage.--Water-stage recorder with satellite telemetry. Elevation of gage is 8375 feet from topographic map.

Remarks.—Shadow Mountain/Grand Lake was constructed between 1944 and 1946. Impoundment began in 1946. Active capacity between elevations 8,366 and 8,367 is 1,800 AF. Grand Lake is used as forebay storage for Adams Tunnel. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Some data were provided by Farr Pumping Plant personnel during down time. Records are complete and fair. This record contains operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	17680	17877	17773	17822	17791	17806	17753	17814	17220	17390	17910	17860
2	17685	17808	17731	17767	17827	17824	17721	17731	17161	17233	17879	17855
3	17722	17726	17626	17767	17804	17824	17858	17778	17439	17353	17855	17929
4	17727	17763	17676	17804	17772	17777	17766	17866	17453	17546	17837	17837
5	17777	17498	17676	17804	17754	17704	17711	17921	17493	17758	17832	17721
6	17796	17487	17498	17809	17777	17796	17803	17853	17154	17684	17850	17617
7	17791	17456	17561	17827	17772	17777	17711	17774	17300	17395	17818	17772
8	17801	17437	17695	17767	17772	17741	17779	17877	17310	17293	17800	17749
9	17791	17414	17745	17767	17777	17796	17858	17861	17153	17477	17800	17786
10	17772	17400	17787	17749	17791	17819	17748	17813	17122	17343	17800	17769
11	17786	17324	17818	17791	17791	17759	17821	17826	17160	17430	17795	17813
12	17819	17303	17717	17772	17772	17699	17659	17937	17057	17380	17818	17639
13	17788	17511	17699	17772	17791	17717	17771	17924	17231	17315	17887	17592
14	17796	17884	17777	17809	17809	17847	17761	17598	17282	17535	17960	17545
15	17796	17860	17736	17791	17796	17818	17880	17444	17073	17549	17965	17626
16	17796	17823	17767	17809	17791	17772	17746	17644	17192	17594	17960	17663
17	17759	17805	17796	17814	17827	17801	17835	17527	17208	17622	17924	17561
18	17814	17773	17864	17804	17791	17777	17719	17331	17553	17877	17884	17713
19	17764	17782	17736	17791	17791	17754	17803	17426	17494	17798	17855	17608
20	17827	17745	17717	17767	17777	17717	17704	17411	17474	17801	17800	17553
21	17791	17705	17772	17754	17777	17754	17754	17345	17548	17819	17763	17676
22	17777	17658	17777	17712	17833	17741	17791	17395	17487	17777	17758	17723
23	17804	17621	17699	17736	17830	17846	17772	17558	17501	17837	17768	17631
24	17772	17571	17730	17777	17824	17833	17746	17330	17362	17768	17782	17589
25	17796	17640	17749	17809	17783	17748	17863	17272	17206	17823	17787	17626
26	17822	17855	17754	17809	17709	17887	17759	17241	17243	17813	17782	17608
27	17814	17800	17767	17804	17764	17882	17759	17302	17303	17800	17818	17605
28	17809	17750	17767	17777	17819	17729	17732	17155	17367	17837	17832	17589
29	17804	17695	17827	17717		17698	17885	17274	17708	17997	17837	17695
30	17822	17810	17772	17791		17845	17835	17387	17648	17984	17842	17626
31	17754		17786	17804		17790		17277		17960	17855	
Min	17680	17303	17498	17712	17709	17698	17659	17155	17057	17233	17758	17545
Max	17827	17884	17864	17827	17833	17887	17885	17937	17708	17997	17965	17929
EOM	17754	17810	17786	17804	17819	17790	17835	17835	17648	17960	17855	17626

Appendix A (Table 15 of 38) Alva B. Adams Tunnel at East Portal, near Estes Park, CO

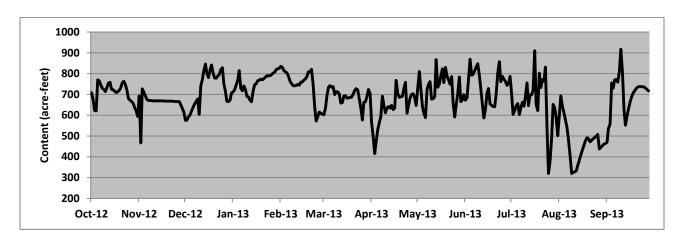

Location. --Lat 40°19'40", long 105°34'39", Larimer County, Hydrologic Unit 10190006, 4.5 miles southwest of Estes Park, Colorado.

Gage.-- Water-stage recorder with satellite telemetry at 15 foot Parshall flume. Elevation of gage is 8250 from topographic map.

Remarks.-- Constructed between 1940 and 1947. Tunnel is 13.1 miles long, and extends between Grand Lake and Estes Park. Its maximum capacity is 550 cubic feet per second. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable. This record contains operational data which could be subject to future revisions and changes. Official record published by the Colorado Division of Water Resources.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	554	387	0	560	552	477	323	500	384	360	84	11
2	553	369	0	560	553	456	323	543	464	376	71	11
3	553	248	34	561	553	457	326	554	224	381	63	11
4	552	111	74	561	552	510	375	468	222	404	60	41
5	552	145	81	564	551	509	373	411	222	452	58	168
6	553	0	74	565	550	509	375	404	61	460	57	312
7	554	0	82	561	551	506	374	447	28	413	57	488
8	554	0	80	553	550	504	374	453	28	359	54	554
9	555	0	78	553	550	508	375	452	28	400	43	544
10	553	0	78	551	551	509	376	323	24	444	37	516
11	554	0	78	549	551	552	402	389	25	452	29	341
12	556	0	259	549	552	556	400	404	26	494	20	102
13	556	0	552	550	552	555	428	407	26	496	10	97
14	555	0	554	551	551	514	428	321	26	468	11	58
15	556	0	555	536	552	0	428	213	27	454	21	43
16	557	0	555	535	553	455	424	44	219	420	21	36
17	550	0	556	528	553	548	408	35	233	505	21	33
18	545	0	557	552	553	548	404	32	234	471	21	30
19	549	0	556	555	553	547	406	32	239	337	21	27
20	554	0	556	554	551	552	526	276	301	518	20	23
21	555	0	536	553	551	556	548	319	302	518	16	20
22	554	0	536	553	550	556	548	320	306	426	6	19
23	552	0	551	552	457	525	549	336	365	227	2	18
24	547	0	555	553	431	524	510	253	432	62	10	16
25	548	0	556	551	458	517	326	40	427	55	11	14
26	551	0	558	551	482	252	479	69	410	75	11	14
27	553	0	557	550	502	250	552	149	383	70	11	13
28	553	0	559	553	486	300	553	218	362	58	10	12
29	552	0	536	554		356	512	218	361	72	11	11
30	551	0	532	554		326	506	223	364	107	11	10
31	550		555	554		325		308		95	11	
Min	545	0	0	528	431	0	323	32	24	55	2	10
Max	557	387	559	565	553	556	553	554	464	518	84	554
Mean	553	42	367	552	534	460	431	296	225	336	29	120
ac-ft	33914	2495	22552	33903	29605	28232	25604	18142	13371	20652	1751	7113


Appendix A (Table16 of 38) Marys Lake, CO

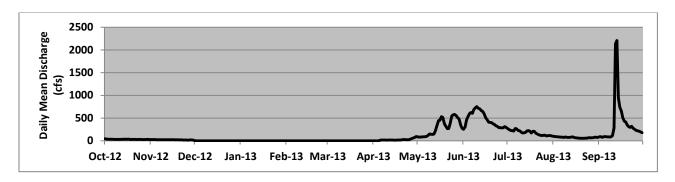
Location. --Lat 40°22'40", long 105°31'50", Larimer County, Hydrologic Unit 10190006, 2 miles southwest of Estes Park, Colorado. **Gage.**-- Water-level recorder with satellite telemetry. Elevation of gage is 8060 feet from topographic map.

Remarks.-- Constructed between 1947 and 1949. Impoundment began in August, 1950. Active capacity between elevations 8,025 and 8,040 is 500 AF. Used as a forebay storage for Estes Powerplant. The only measurable inflow into the reservoir comes from Adams Tunnel. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete and reliable. The gage does not record water surface levels below elevation 8,022.62 feet, content of 322 AF. These are operational data which could be subject to further revisions and changes.

Storage, AF, 2400-hour Values

	0-4	NI	D	1	F-1-		۸	NA	Luce	11	A	0
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	772	621	632	673	824	609	723	684	673	753	589	462
2	731	593	615	707	825	605	705	647	699	787	501	464
3	708	693	575	712	835	602	568	732	672	697	601	469
4	676	467	576	721	830	632	499	810	684	603	693	537
5	623	727	593	745	815	696	415	728	771	623	643	558
6	620	710	600	768	808	734	475	643	869	645	611	755
7	770	693	620	814	804	742	531	610	792	656	578	730
8	766	676	638	729	786	734	565	588	796	603	540	770
9	745	671	654	717	763	737	592	723	814	635	481	772
10	730	671	666	740	752	699	691	748	831	662	405	759
11	724	670	678	724	742	714	649	761	847	644	320	810
12	714	669	604	691	742	712	611	677	792	690	325	917
13	732	669	740	687	743	703	634	679	726	755	327	812
14	754	669	772	671	748	658	641	689	653	646	332	627
15	758	669	814	665	744	660	634	868	586	699	359	552
16	725	669	846	716	759	692	647	734	628	698	385	597
17	722	669	801	747	760	693	626	750	706	720	409	633
18	716	668	780	751	768	682	634	787	728	910	433	663
19	709	669	816	766	774	683	767	823	653	652	456	689
20	713	668	841	768	787	686	704	757	648	622	478	706
21	719	668	802	774	809	686	686	830	641	802	491	718
22	732	668	779	770	807	701	688	788	640	733	488	729
23	756	667	778	776	820	719	690	772	701	771	472	735
24	763	667	788	783	749	727	728	749	802	763	480	738
25	746	667	794	790	636	721	758	786	858	831	487	738
26	721	666	819	789	572	681	610	659	762	535	492	737
27	680	666	828	790	592	635	646	591	786	320	500	736
28	672	665	751	794	615	577	682	648	773	380	507	731
29	666	666	715	803		662	700	704	762	494	437	724
30	658	649	667	806		665	703	784	743	652	445	717
31	638		665	819		692		665		634	453	
Min	620	467	575	665	572	577	415	588	586	320	320	462
Max	772	727	846	819	835	742	767	868	869	910	693	917
EOM	638	649	665	819	615	692	703	703	743	634	453	717

Appendix A (Table 17 of 38) Big Thompson River above Lake Estes, CO


Location. --Lat 40°22'42", long 105°30'48", Larimer County, Hydrologic Unit 10190006, 600 feet downstream from bridge on state highways 7 and 36 in Estes Park, Colorado, downstream from Black Canyon Creek, and 0.3 miles northwest of Estes Powerplant.

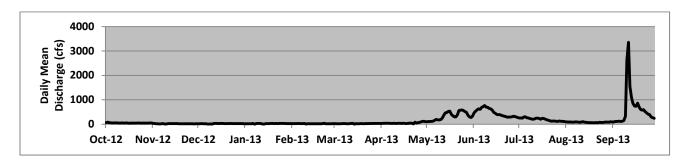
Gage.-- Water-stage recorder with satellite telemetry. 15 foot Parshall flume with overflow weirs and supplemental outside gage. Datum of gage at 7492.5 feet.

Remarks.— Drainage area is 137 mi². Station consists of data collection platform as primary record with graphic chart recorder as backup. Recorder was operated from 01-Oct-2012 until 13-Nov-12, before it was winterized. The station was put back into service from 5-Apr-2012 to 30-Sep-2012. Values for the off-season are marked as zero, but winter month flows normally fluctuate between 10 and 30 cfs. Peak flows during the September flood have not been revised but are suspect because of irregularities in the sub-daily stage record. This record contains operational data which could be subject to future revisions and changes. The official record for this station is published by the Colorado Division of Water Resources.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	43	29	0	0	0	0	Ö	85	251	268	99	88
2	39	27	0	0	0	0	0	84	301	244	93	90
3	36	26	0	0	0	0	0	80	458	228	90	76
4	35	25	0	0	0	0	0	86	531	224	87	87
5	36	25	0	0	0	0	6	86	593	213	83	93
6	34	24	0	0	0	0	18	90	622	270	80	86
7	31	24	0	0	0	0	17	97	606	263	79	86
8	31	24	0	0	0	0	17	118	688	227	73	83
9	30	23	0	0	0	0	17	150	725	221	84	87
10	29	24	0	0	0	0	14	143	753	192	77	111
11	29	23	0	0	0	0	15	139	714	172	71	281
12	29	23	0	0	0	0	15	152	704	176	76	2132
13	33	23	0	0	0	0	16	224	665	185	80	2208
14	34	25	0	0	0	0	17	333	646	216	89	949
15	33	22	0	0	0	0	13	441	594	225	73	743
16	33	22	0	0	0	0	14	454	506	210	67	650
17	37	22	0	0	0	0	17	532	463	170	62	503
18	28	20	0	0	0	0	16	513	411	209	58	432
19	32	22	0	0	0	0	16	371	403	207	57	414
20	30	20	0	0	0	0	22	319	400	169	56	344
21	29	20	0	0	0	0	26	268	374	151	54	308
22	29	20	0	0	0	0	27	269	359	134	56	294
23	28	18	0	0	0	0	23	384	331	121	59	321
24	29	18	0	0	0	0	22	547	318	116	59	277
25	30	17	0	0	0	0	25	574	289	120	68	252
26	27	14	0	0	0	0	37	581	288	124	65	228
27	27	16	0	0	0	0	51	556	284	109	65	220
28	29	20	0	0	0	0	62	512	287	111	69	209
29	30	18	0	0		0	77	475	313	115	80	195
30	29	14	0	0		0	93	352	290	115	78	180
31	28		0	0		0		276		106	75	
Min	27	14	0	0	0	0	0	80	251	106	54	76
Max	43	29	0	0	0	0	93	581	753	270	99	2208
Mean	32	22	0	0	0	0	23	300	472	181	73	401
ac-ft	1942	1285	0	0	0	0	1372	18397	28052	11110	4477	23811

Appendix A (Table 18 of 38) Olympus Dam, CO


Location. --Lat 40°22'31", long 105°29'15", Larimer County, Hydrologic Unit 10190006, 1.5 miles east of Estes Park, Colorado, on the Big Thompson River.

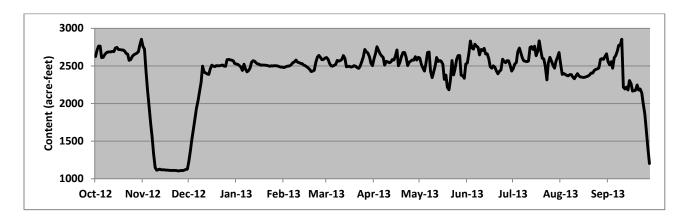
Gage.—Water-stage recorders with satellite telemetry. Inflow computed daily based on the change in content from midnight to midnight at Marys Lake and Lake Estes, daily average releases from Olympus Dam, and daily average discharge at Olympus Tunnel and Adams Tunnel.

Remarks.— Olympus dam was constructed between 1947 and 1949. Impoundment began on November 1948. Total capacity at maximum water surface elevation of 7475.0 feet is 3,070 AF. Inflow is computed based on change-in-storage, flow through the Adams Tunnel and outflow. This year Olympus Dam experienced its worst flood since impoundment, with an estimated hourly inflow 5,280 cfs the night of 12-Sep-2013. Records are complete and reliable, but have not been revised. This record contains operational data which could be subject to future revisions and changes.

Inflow, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep
1	88	52	18	22	25	19	29	118	273	294	113	97
2	66	49	16	19	27	24	33	104	325	268	102	97
3	62	33	15	20	27	23	31	101	462	257	95	81
4	81	32	18	20	27	16	36	110	532	255	91	109
5	61	17	21	20	26	18	35	111	591	244	91	108
6	58	16	20	18	26	17	36	113	626	300	87	114
7	54	9	20	18	28	20	35	125	605	297	86	119
8	53	14	16	29	27	21	37	160	686	257	82	112
9	56	23	2	0	26	21	34	194	720	253	95	121
10	53	15	7	26	25	22	29	178	765	227	87	150
11	50	7	13	30	30	18	35	173	699	212	86	325
12	45	10	0	29	6	21	32	191	694	204	74	2634
13	48	23	32	29	18	21	33	249	648	217	90	3355
14	51	25	29	10	19	28	34	356	630	248	100	1543
15	46	21	28	0	18	37	39	460	580	250	81	1085
16	49	22	27	19	18	0	33	473	485	237	75	850
17	53	22	32	23	18	26	38	523	450	204	69	745
18	40	21	31	26	19	20	35	536	400	239	65	731
19	44	21	29	25	17	20	26	403	390	235	64	866
20	44	20	22	29	19	23	28	347	389	208	62	710
21	44	20	25	28	19	21	38	297	365	183	59	608
22	43	19	24	26	21	19	46	297	348	162	64	577
23	41	18	26	28	23	23	37	388	324	141	65	592
24	47	19	27	27	34	22	13	553	310	125	65	516
25	45	17	27	29	18	23	84	573	289	127	74	464
26	42	15	25	31	20	28	46	584	291	132	70	414
27	41	15	26	29	16	26	64	560	293	124	71	389
28	44	20	27	29	17	28	78	519	300	109	75	291
29	45	17	27	28		31	94	489	326	127	90	266
30	43	14	22	26		29	117	362	315	125	85	239
31	43		22	26		30		298		119	81	
Min	40	7	0	0	6	0	13	101	273	109	59	81
Max	88	52	32	31	34	37	117	584	765	300	113	3355
Mean	51	21	22	23	22	22	43	321	470	206	80	610
ac-ft	3131	1244	1332	1425	1217	1373	2553	19700	27940	12629	4938	36253

Appendix A (Table 19 of 38) Olympus Dam, CO


Location. --Lat 40°22'31", long 105°29'19", Larimer County, Hydrologic Unit 10190006, 1.5 miles east of Estes Park, Colorado, on the Big Thompson River.

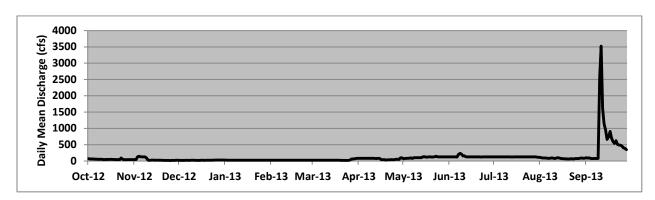
Gage.-- Water-level recorder with satellite telemetry. Elevation of gage is 7490 feet from topographic map.

Remarks.-- Constructed between 1947 and 1949. Impoundment began in November, 1948. Active capacity between elevations 7,450.25 and 7,474.00 is 2,476 AF. Used as afterbay storage for Estes Powerplant and forebay for Olympus Tunnel. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	_		_									
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	2513	2778	1123	2567	2484	2587	2537	2577	2335	2511	2618	2625
2	2585	2855	1127	2530	2484	2604	2504	2614	2524	2431	2677	2660
3	2625	2762	1226	2525	2478	2613	2589	2603	2539	2465	2522	2558
4	2711	2723	1371	2521	2484	2585	2665	2516	2659	2525	2387	2514
5	2762	2419	1521	2503	2494	2532	2756	2475	2831	2544	2400	2556
6	2764	2180	1660	2486	2497	2499	2706	2432	2742	2686	2387	2470
7	2609	1957	1805	2440	2501	2497	2659	2530	2723	2739	2375	2609
8	2614	1747	1937	2522	2517	2508	2633	2679	2789	2676	2367	2637
9	2648	1551	2040	2459	2544	2519	2611	2684	2762	2603	2384	2696
10	2674	1328	2157	2421	2553	2574	2509	2427	2745	2567	2384	2773
11	2684	1147	2282	2437	2579	2563	2561	2344	2647	2561	2352	2777
12	2688	1111	2497	2472	2551	2572	2554	2416	2718	2558	2330	2855
13	2688	1120	2416	2547	2544	2587	2542	2501	2705	2566	2368	2217
14	2693	1127	2407	2569	2534	2638	2553	2613	2733	2747	2397	2192
15	2691	1118	2394	2561	2532	2599	2584	2559	2659	2757	2365	2219
16	2737	1118	2387	2539	2511	2489	2577	2572	2662	2718	2352	2180
17	2747	1119	2459	2525	2503	2492	2630	2561	2594	2762	2351	2306
18	2718	1115	2509	2522	2488	2496	2713	2517	2489	2637	2346	2265
19	2716	1113	2497	2508	2475	2484	2501	2320	2470	2699	2351	2165
20	2711	1112	2491	2513	2453	2491	2551	2378	2501	2834	2359	2170
21	2711	1111	2503	2509	2426	2503	2625	2214	2483	2705	2365	2176
22	2698	1110	2501	2511	2431	2496	2679	2182	2435	2603	2383	2247
23	2667	1111	2501	2506	2442	2478	2679	2309	2395	2591	2407	2179
24	2657	1110	2506	2501	2549	2468	2616	2571	2427	2494	2407	2194
25	2574	1109	2513	2496	2620	2497	2504	2381	2447	2314	2440	2141
26	2584	1104	2497	2501	2640	2558	2547	2462	2589	2539	2455	1999
27	2626	1105	2496	2499	2611	2614	2563	2585	2563	2614	2459	1863
28	2647	1110	2582	2503	2582	2718	2580	2638	2542	2563	2473	1654
29	2659	1107	2585	2501		2688	2575	2638	2569	2511	2587	1413
30	2670	1113	2580	2499		2672	2623	2376	2567	2470	2597	1202
31	2689		2575	2491		2623		2370		2563	2587	
Min	2513	1104	1123	2421	2426	2468	2501	2182	2335	2314	2330	1202
Max	2764	2855	2585	2569	2640	2718	2756	2684	2831	2834	2677	2855
EOM	2689	1113	2575	2491	2582	2623	2623	2623	2567	2563	2587	1202

Appendix A (Table 20 of 38) Big Thompson River below Olympus Dam, CO


Location. --Lat 40°22'35", long 105°29'06", Larimer County, Hydrologic Unit 10190006, 620 feet downstream from Olympus Dam and 100 feet upstream of Dry Gulch, 2.0 miles east in Estes Park.

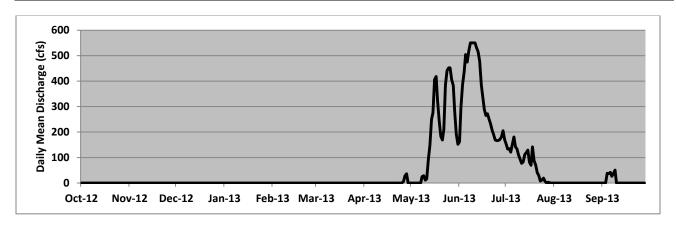
Gage.-- Water-stage recorder with satellite telemetry. 15 foot Parshall flume with overflow weirs in a concrete shelter with a supplemental outside gage. Datum of gage at 7422.50 feet.

Remarks.— Drainage area is 155 mi². Area at site used between 29-Jan-1934 and 21-Mar-1951 was 162 mi². Station consists of data collection platform and digital recorder as primary record. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete. Flow calculations during peak runoff could lose accuracy as the water begins to flow over the outside boards. Flows between 12-Sep-2013 and 25-Sep-2013 were estimated based on radial gate openings at the dam. This record contains operational data which could be subject to future revisions and changes. The official record for this station is published by the Colorado Division of Water Resources.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	66	42	21	26	22	23	79	97	126	125	117	83
2	51	43	23	26	22	23	80	96	126	128	112	86
3	70	42	19	26	22	22	81	66	125	127	110	101
4	63	45	18	25	22	22	81	79	126	125	96	87
5	63	127	18	25	22	22	80	84	126	126	91	95
6	61	146	20	25	22	22	82	81	126	126	90	75
7	59	130	18	25	22	22	80	85	125	125	90	73
8	58	128	21	25	22	22	81	97	123	124	83	75
9	51	125	20	25	22	22	82	77	198	124	82	75
10	50	128	20	25	22	22	81	102	233	125	86	76
11	50	99	21	22	22	22	80	100	211	126	97	78
12	52	28	21	22	22	22	80	99	157	125	81	2595
13	43	19	21	22	22	22	80	102	161	126	77	3520
14	44	22	20	22	22	21	78	100	125	128	91	1614
15	50	26	18	22	22	22	79	102	125	122	102	1149
16	48	22	18	22	22	21	80	124	127	127	86	943
17	48	21	20	22	22	21	78	129	124	126	76	663
18	51	23	21	22	22	21	41	119	124	127	74	736
19	45	22	22	23	22	21	40	119	125	124	68	904
20	46	21	19	22	22	21	41	124	127	124	65	699
21	44	21	25	22	22	21	27	125	125	124	63	599
22	45	20	24	22	22	20	34	123	124	124	61	536
23	43	18	24	22	22	19	39	123	125	126	60	623
24	44	19	24	22	22	19	40	132	123	126	70	507
25	91	18	24	22	23	19	42	143	125	124	62	491
26	49	17	24	22	23	19	39	127	125	126	69	486
27	43	15	25	22	23	19	41	127	125	126	75	458
28	39	18	26	22	23	27	53	127	126	124	73	399
29	42	18	26	22		61	50	126	126	126	77	391
30	41	20	26	22		61	46	125	127	126	85	349
31	42		26	22		66		126		125	91	
Min	39	15	18	22	22	19	27	66	123	122	60	73
Max	91	146	26	26	23	66	82	143	233	128	117	3520
Mean	51	48	22	23	22	25	63	109	136	125	83	619
ac-ft	3155	2855	1330	1418	1220	1552	3749	6701	8101	7699	5067	36764

Appendix A (Table 21 of 38) Olympus Tunnel near Estes Park, CO


 $\textbf{Location.} \text{ --Lat } 40^{\circ}22'24'', long 105^{\circ}29'00'', Larimer County, Hydrologic Unit 10190006, southeast of Estes Park, Colorado.$

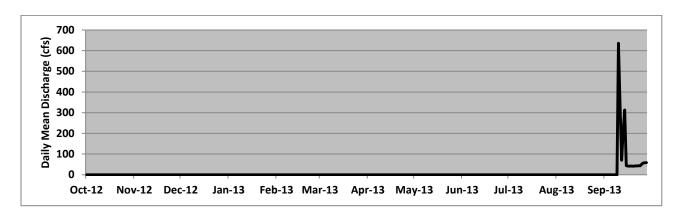
Gage.-- Water-stage recorder and satellite telemetry. Elevation of gage is 7460 from topographic map.

Remarks.— Constructed between 1949 and 1952. The tunnel is 7.2 miles long, between Estes Park and the Pole Hill Canal. Its diameter is 9.75 feet and maximum capacity is 550 cubic feet per second. The hydropower diversion operation, also known as the skim operation, diverts water from the Big Thompson River through Olympus Tunnel for power generation at three power plants down the foothills, before returning it to the Big Thompson River near the canyon mouth. The skim daily value is determined based on the data from the stream gages in the system. Period of record includes from 01-Oct-2012 through 30-Sep-2013. Records are complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Hydropower Diversion (Skim), Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	27	0	0	0	0	0	0	0	191	205	0	0
2	27	0	0	0	0	0	0	0	152	170	0	0
3	0	0	0	0	0	0	0	0	162	154	0	0
4	0	0	0	0	0	0	0	0	298	133	0	0
5	0	0	0	0	0	0	0	0	386	135	0	0
6	0	0	0	0	0	0	0	0	436	121	0	38
7	0	0	0	0	0	0	0	0	504	151	0	37
8	0	0	0	0	0	0	0	0	475	181	0	42
9	0	0	0	0	0	0	0	0	518	141	0	26
10	0	0	0	0	0	0	0	25	550	134	0	37
11	0	0	0	0	0	0	0	29	550	110	0	51
12	0	0	0	0	0	0	0	11	550	93	0	0
13	0	0	0	0	0	0	0	16	550	77	0	0
14	0	0	0	0	0	0	0	91	530	83	0	0
15	0	0	0	0	0	0	0	149	516	112	0	0
16	0	0	0	0	0	0	0	249	478	120	0	0
17	0	0	0	0	0	0	0	276	387	130	0	0
18	0	0	0	0	0	0	0	406	340	82	0	0
19	0	0	0	0	0	0	0	418	289	70	0	0
20	0	0	0	0	0	0	0	321	265	142	0	0
21	0	0	0	0	0	0	0	244	272	88	0	0
22	0	0	0	0	0	0	0	183	252	71	0	0
23	0	0	0	0	0	0	0	169	232	40	0	0
24	0	0	0	0	0	0	0	210	207	30	0	0
25	0	0	0	0	0	0	0	385	190	8	0	0
26	0	0	0	0	0	0	0	441	169	12	0	0
27	0	0	0	0	0	0	0	452	166	19	0	0
28	0	0	0	0	0	0	6	452	167	7	0	0
29	0	0	0	0		0	28	405	171	0	0	0
30	0	0	0	0		0	36	383	181	3	0	0
31	0		0	0		0		279		1	0	
Min	0	0	0	0	0	0	0	0	152	0	0	0
Max	27	0	0	0	0	0	36	452	550	205	0	51
Mean	2	0	0	0	0	0	2	180	338	91	0	8
ac-ft	107	0	0	0	0	0	139	11076	20065	5583	0	457

Appendix A (Table 22 of 38) Olympus Tunnel, CO


Location. --Lat 40°22'24", long 105°29'00", Larimer County, Hydrologic Unit 10190006, southeast of Estes Park, Colorado.

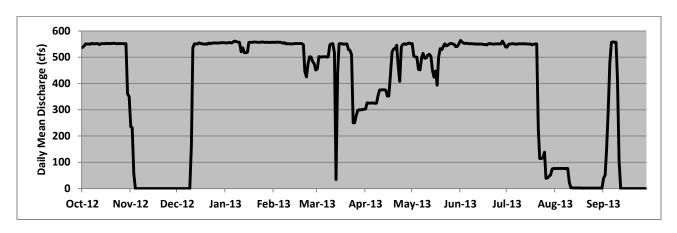
Gage.-- Water-stage recorder and satellite telemetry. Elevation of gage is 7460 from topographic map.

Remarks.— Constructed between 1949 and 1952. The tunnel is 7.2 miles long, between Estes Park and the Pole Hill Canal. Its diameter is 9.75 feet and maximum capacity is 550 cubic feet per second. The right to divert native run-off is determined by the Colorado Division of Water Resources. Record between 12- Sep-2013 and 30-Sep-2013 was accounted as Olympus Tunnel diversions, but in reality most of the water came from other sources along the Southern Power Arm of the C-BT. The Olympus Tunnel flow was interrupted on 13-Sep-2013. Period of record from 01-Oct-2012 through 30-Sep-2013. Record is complete and reliable.

Priority Diversion Flow, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	636
13	0	0	0	0	0	0	0	0	0	0	0	337
14	0	0	0	0	0	0	0	0	0	0	0	70
15	0	0	0	0	0	0	0	0	0	0	0	203
16	0	0	0	0	0	0	0	0	0	0	0	313
17	0	0	0	0	0	0	0	0	0	0	0	44
18	0	0	0	0	0	0	0	0	0	0	0	42
19	0	0	0	0	0	0	0	0	0	0	0	41
20	0	0	0	0	0	0	0	0	0	0	0	43
21	0	0	0	0	0	0	0	0	0	0	0	42
22	0	0	0	0	0	0	0	0	0	0	0	42
23	0	0	0	0	0	0	0	0	0	0	0	43
24	0	0	0	0	0	0	0	0	0	0	0	43
25	0	0	0	0	0	0	0	0	0	0	0	43
26	0	0	0	0	0	0	0	0	0	0	0	43
27	0	0	0	0	0	0	0	0	0	0	0	51
28	0	0	0	0	0	0	0	0	0	0	0	57
29	0	0	0	0		0	0	0	0	0	0	58
30	0	0	0	0		0	0	0	0	0	0	58
31	0		0	0		0		0		0	0	
Min	0	0	0	0	0	0	0	0	0	0	0	0
Max	0	0	0	0	0	0	0	0	0	0	0	636
Mean	0	0	0	0	0	0	0	0	0	0	0	74
ac-ft	0	0	0	0	0	0	0	0	0	0	0	4371

Appendix A (Table 23 of 38) Olympus Tunnel, CO


Location. --Lat 40°22'24", long 105°29'00", Larimer County, Hydrologic Unit 10190006, southeast of Estes Park, Colorado, on the Big Thompson River.

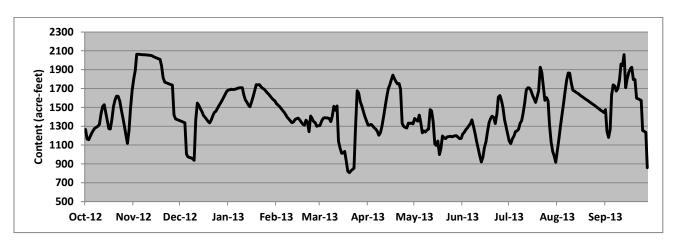
Gage.-- Water-stage recorder with satellite telemetry. Elevation of gage is 7460 from topographic map.

Remarks.— Constructed between 1949 and 1952. The tunnel is 7.2 miles long, between Estes Park and the Pole Hill Canal. Its diameter is 9.75 feet and maximum capacity is 550 cubic feet per second. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Records are complete and reliable. This record contains operational data which could be subject to future revisions and changes. Official record is published by the Colorado Division of Water Resources.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	550	360	0	556	557	474	301	554	541	551	75	2
2	551	350	0	555	557	451	302	551	551	539	76	2
3	537	235	0	554	557	456	303	552	564	538	76	39
4	543	232	0	554	556	502	326	504	559	549	76	52
5	551	57	0	556	558	500	325	501	553	551	77	150
6	550	0	0	555	557	502	325	500	552	551	77	295
7	550	0	0	554	557	501	325	454	553	551	77	477
8	549	0	0	559	555	502	326	452	552	550	76	556
9	553	0	0	561	553	501	324	499	551	550	76	559
10	551	0	0	559	555	501	325	514	552	550	76	557
11	551	0	0	558	551	547	353	496	551	551	76	557
12	551	0	165	556	551	551	375	498	550	551	23	415
13	551	0	536	521	551	552	376	508	550	550	3	106
14	548	0	551	536	551	517	376	512	551	552	3	0
15	551	0	551	517	551	34	376	503	550	550	3	0
16	552	0	551	517	551	439	375	449	551	550	2	0
17	552	0	555	519	552	551	352	424	549	550	2	0
18	551	0	552	556	552	552	352	448	549	551	2	0
19	553	0	551	557	552	551	432	393	548	547	2	0
20	552	0	550	556	552	550	520	500	547	549	2	0
21	552	0	550	558	551	551	531	533	552	551	2	0
22	553	0	549	558	547	551	532	528	551	551	2	0
23	553	0	554	557	446	528	546	541	551	228	2	0
24	552	0	551	557	425	527	463	551	550	114	2	0
25	552	0	553	557	475	509	408	543	550	114	2	0
26	552	0	554	558	502	250	539	546	551	117	2	0
27	552	0	554	558	500	250	549	551	551	138	2	0
28	552	0	554	556	483	278	551	553	550	39	1	0
29	552	0	553	557		298	548	551	551	41	2	0
30	551	0	555	557		300	552	548	561	47	2	0
31	552		555	556		300		540		51	2	
Min	537	0	0	517	425	34	301	393	541	39	1	0
Max	553	360	555	561	558	552	552	554	564	552	77	559
Mean	551	41	343	551	536	454	410	510	551	418	29	126
ac-ft	33796	2445	21075	33826	29714	27868	24331	31277	32752	25686	1780	7455

Appendix A (Table 24 of 38) Pinewood Reservoir near Loveland, Colorado, CO


 $\textbf{Location.} \ --\text{Lat } 40^{\circ}22', long \ 105^{\circ}17.9', Larimer \ County, Hydrologic \ Unit \ 10190006, 10 \ miles \ southwest \ of \ Loveland, Colorado.$

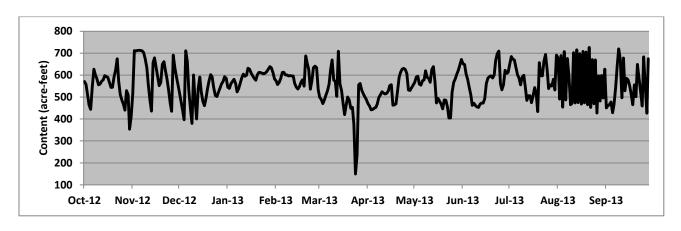
Gage.-- Water-level recorder with satellite telemetry. Elevation of gage is 6,600 feet from topographic map.

Remarks.-- Constructed between 1951 and 1952. Impoundment began in January 4, 1954. Active capacity between elevations 6,550.00 and 6.580.00 is 1,570 AF. Used as the forebay storage for Flatiron Powerplant. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete and reliable. The gage is capable of measuring the water surface elevation down to 6555.70 feet, a content of 604 AF. This record contains operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	1249	1484	1371	1640	1582	1300	1404	1333	1168	1291	985	1458
2	1236	1675	1364	1671	1568	1306	1357	1325	1170	1219	917	1446
3	1265	1799	1357	1685	1540	1307	1312	1383	1216	1143	1043	1476
4	1164	1893	1350	1686	1525	1352	1310	1366	1235	1117	1168	1247
5	1156	2063	1344	1693	1508	1381	1320	1353	1263	1166	1296	1180
6	1191	2063	1337	1688	1489	1390	1302	1418	1280	1192	1421	1265
7	1228	2061	1003	1691	1468	1388	1283	1342	1306	1242	1543	1630
8	1256	2060	975	1695	1447	1388	1269	1230	1328	1250	1665	1740
9	1278	2059	969	1703	1424	1383	1244	1251	1367	1265	1788	1726
10	1289	2058	963	1707	1394	1348	1204	1238	1298	1330	1864	1672
11	1301	2057	956	1708	1375	1405	1229	1259	1220	1358	1863	1698
12	1319	2054	938	1708	1355	1512	1303	1269	1142	1438	1759	1788
13	1432	2053	1371	1629	1337	1469	1401	1476	1064	1548	1681	1959
14	1509	2052	1546	1579	1345	1514	1500	1463	986	1687	1672	1942
15	1529	2047	1522	1554	1372	1142	1605	1345	921	1708	1661	2060
16	1449	2037	1484	1521	1378	1066	1695	1112	967	1705	1650	1708
17	1360	2029	1454	1507	1385	1012	1736	1096	1072	1677	1639	1800
18	1274	2023	1416	1560	1368	1015	1790	1143	1137	1630	1626	1868
19	1271	2016	1395	1617	1343	1033	1843	1000	1239	1593	1614	1909
20	1374	2009	1372	1675	1321	926	1807	1062	1337	1552	1602	1925
21	1512	1942	1352	1740	1309	823	1774	1197	1383	1612	1590	1796
22	1576	1815	1335	1740	1364	808	1750	1175	1406	1675	1579	1796
23	1621	1768	1367	1741	1345	827	1753	1169	1395	1926	1567	1599
24	1617	1761	1413	1721	1242	842	1689	1186	1328	1870	1555	1591
25	1567	1754	1444	1703	1408	855	1330	1189	1428	1713	1543	1582
26	1482	1748	1459	1693	1384	1305	1298	1194	1609	1575	1532	1573
27	1394	1741	1491	1676	1348	1677	1287	1188	1626	1603	1520	1255
28	1303	1736	1518	1656	1337	1655	1280	1193	1572	1570	1508	1245
29	1211	1418	1545	1640		1561	1333	1200	1499	1313	1495	1235
30	1118	1378	1576	1619		1513	1329	1199	1369	1133	1482	859
31	1257		1605	1599		1461		1183		1031	1469	
Min	1118	1378	938	1507	1242	808	1204	1000	921	1031	917	859
Max	1621	2063	1605	1741	1582	1677	1843	1476	1626	1926	1864	2060
EOM	1257	1378	1605	1599	1337	1461	1329	1329	1369	1031	1469	859

Appendix A (Table 25 of 38) Flatiron Reservoir, CO

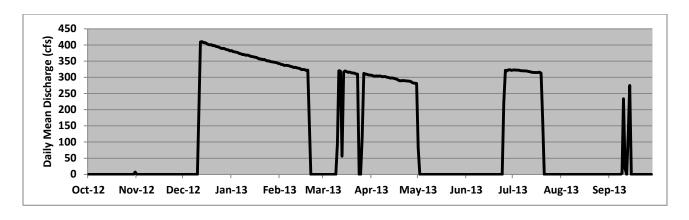

Location. --Lat 40°22.1', long 105°13.3', Larimer County, Hydrologic Unit 10190006, 8 miles southwest of Loveland, Colorado.

Gage.-- Water-level recorder with satellite telemetry. Elevation of gage is 5,600 feet from topographic map.

Remarks.-- Constructed between 1951 and 1953. Impoundment began in January, 1954. Active capacity between elevations 5,462.00 and 5.472.80 is 436 AF. Used as the afterbay storage for Flatiron Powerplant. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	_		_									
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	693	353	592	592	612	634	500	543	645	608	532	496
2	670	411	559	585	583	534	488	554	672	612	691	627
3	571	514	520	545	574	500	470	567	651	650	678	450
4	557	711	479	540	557	489	458	591	648	685	491	460
5	508	710	437	560	566	470	442	595	607	673	689	466
6	464	713	396	571	586	485	443	559	581	670	454	477
7	444	713	711	581	612	508	449	554	544	634	708	429
8	547	712	663	561	613	529	453	574	509	601	487	468
9	627	711	534	523	601	558	468	578	462	587	676	543
10	603	703	451	538	601	622	498	619	472	555	599	644
11	583	674	380	565	596	669	510	590	461	591	465	720
12	555	633	601	587	598	577	524	585	455	599	471	673
13	560	558	492	604	597	571	518	568	453	549	702	496
14	571	488	400	595	596	503	514	625	468	485	473	678
15	578	436	539	599	562	708	517	639	473	506	716	528
16	598	657	591	631	545	560	528	568	472	506	474	586
17	593	678	524	627	536	530	552	473	493	475	698	578
18	590	635	481	609	548	475	556	493	562	505	468	550
19	568	592	461	597	567	420	463	480	587	543	708	513
20	544	552	495	586	579	463	464	467	593	521	474	465
21	544	567	537	577	550	500	470	446	597	434	705	556
22	591	649	575	602	688	486	528	487	587	657	465	502
23	624	662	602	612	655	448	590	485	600	598	726	649
24	674	622	592	612	625	453	613	454	665	597	453	587
25	572	583	542	609	536	375	628	405	698	664	671	525
26	511	532	507	606	576	150	631	404	709	694	469	459
27	486	472	502	609	634	238	625	523	561	623	669	683
28	466	435	521	615	641	555	607	567	533	538	427	557
29	440	691	540	627		562	532	582	556	555	597	426
30	530	634	560	639		531	530	604	622	550	482	674
31	510		572	634		515		623		581	599	
Min	440	353	380	523	536	150	442	404	453	434	427	426
Max	693	713	711	639	688	708	631	639	709	694	726	720
EOM	510	634	572	634	641	515	530	530	622	581	599	674


Appendix A (Table 26 of 38) Flatiron Powerplant Unit 3 Pump, CO

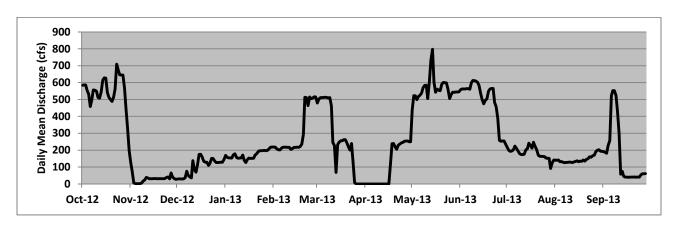
Location. --Lat 40°21'53", long 105°14'09", Larimer County, Hydrologic Unit 10190006, 9 miles west of Loveland, Colorado **Gage.**-- There is a flow meter in place.

Remarks.— Constructed between 1951 and 1953. The Powerplant consists of three generating units. Unit 3 can be used to pump water from Flatiron Reservoir to Carter Lake, or to generate power. The maximum capacity is approximately 480 cubic feet per second, but the efficiency varies according to the water surface levels at Carter Lake and Flatiron Reservoir. Discharges are measured using a flow meter inside the pressure conduit. Record is complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	385	345	0	307	282	0	323	0	0
2	0	7	0	382	343	0	307	281	0	321	0	0
3	0	0	0	382	342	0	306	82	0	323	0	0
4	0	0	0	380	340	0	305	0	0	323	0	0
5	0	0	0	379	339	0	303	0	0	322	0	0
6	0	0	0	378	336	0	304	0	0	322	0	0
7	0	0	0	376	337	0	303	0	0	322	0	0
8	0	0	0	374	337	0	304	0	0	320	0	0
9	0	0	0	373	336	0	304	0	0	320	0	0
10	0	0	0	370	333	0	302	0	0	320	0	0
11	0	0	0	371	333	0	303	0	0	320	0	3
12	0	0	0	368	330	93	302	0	0	319	0	234
13	0	0	190	369	331	320	300	0	0	318	0	17
14	0	0	410	368	329	319	299	0	0	317	0	0
15	0	0	410	365	328	56	297	0	0	316	0	127
16	0	0	407	364	327	316	298	0	0	315	0	275
17	0	0	407	363	324	320	298	0	0	315	0	0
18	0	0	404	362	324	317	296	0	0	315	0	0
19	0	0	401	361	324	315	295	0	0	315	0	0
20	0	0	400	359	321	316	292	0	0	316	0	0
21	0	0	401	356	322	314	290	0	0	313	0	0
22	0	0	398	357	152	313	289	0	0	169	0	0
23	0	0	398	355	0	313	290	0	0	0	0	0
24	0	0	395	355	0	311	290	0	0	0	0	0
25	0	0	394	353	0	310	289	0	0	0	0	0
26	0	0	393	350	0	0	289	0	0	0	0	0
27	0	0	390	351	0	0	288	0	223	0	0	0
28	0	0	389	349	0	116	288	0	322	0	0	0
29	0	0	390	348		312	284	0	320	0	0	0
30	0	0	387	347		310	282	0	323	0	0	0
31	0		386	346		310		0		0	0	
Min	0	0	0	346	0	0	282	0	0	0	0	0
Max	0	7	410	385	345	320	307	282	323	323	0	275
Mean	0	0	237	364	255	161	297	21	40	221	0	22
ac-ft	0	14	14554	22364	14126	9865	17627	1276	2351	13589	0	1301

Appendix A (Table 27 of 38) Charles Hansen Feeder Canal 930 Section, CO


Location. --Lat 40°22'26", long 105°13'52", Larimer County, Hydrologic Unit 10190006, 8 miles southwest of Loveland, Colorado.

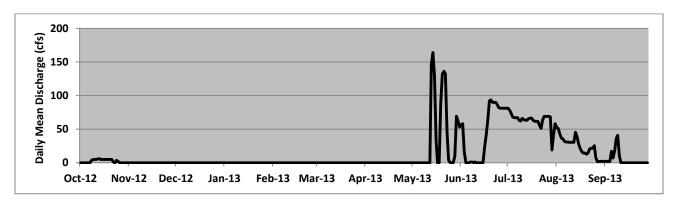
Gage.-- Water-stage recorder with satellite telemetry. Elevation of gage is 5470 feet from topographic map.

Remarks.-- Constructed between 1949 and 1953. The canal is 3.8 miles long and has a maximum capacity of 930 cubic feet per second. The canal is used to convey Colorado-Big Thompson Project water and diverted native water to the Big Thompson River and/or Horsetooth Reservoir. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Data from this station has been questioned previously for its low accuracy, because of algae growth issues. But for WY 2013 the record is complete and fair. This record contains operational data which could be subject to future revisions and changes.

Flow, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	551	330	31	128	217	516	0	250	544	254	124	194
2	577	197	27	146	218	515	0	250	545	236	141	193
3	584	126	29	170	218	479	0	439	557	219	140	191
4	586	74	30	158	218	503	0	522	562	200	140	187
5	586	6	30	154	207	512	0	522	562	192	142	182
6	555	1	29	154	202	511	0	499	563	195	131	229
7	531	1	30	153	202	512	0	518	564	201	133	257
8	458	1	36	172	212	513	0	525	564	224	129	523
9	495	1	75	178	217	512	0	539	561	210	125	553
10	557	5	51	157	218	509	0	570	600	196	128	552
11	555	16	42	152	217	512	0	583	613	179	128	522
12	549	23	36	153	217	462	0	584	611	174	130	431
13	512	39	138	154	217	245	0	506	608	174	128	301
14	508	36	83	171	205	227	0	602	601	176	127	57
15	545	31	70	140	210	68	0	734	583	202	131	75
16	615	31	119	127	217	233	0	797	535	208	133	45
17	628	31	175	145	216	247	0	603	496	241	137	41
18	627	32	176	154	218	255	0	542	474	228	131	40
19	541	32	158	151	216	256	115	561	495	212	135	39
20	514	31	134	151	221	262	239	555	503	247	135	41
21	500	31	129	152	235	262	238	552	549	224	142	40
22	489	32	129	171	294	243	220	591	562	202	135	40
23	515	31	109	178	513	219	205	601	565	170	145	41
24	562	31	122	192	511	201	230	600	565	164	149	40
25	709	32	152	197	464	240	236	598	483	163	161	41
26	675	38	151	197	515	122	244	559	456	163	158	41
27	646	41	135	198	505	9	246	506	386	162	167	53
28	645	30	127	198	509	0	254	528	258	153	170	60
29	645	65	127	197		0	253	544	253	152	190	61
30	568	40	128	198		0	255	543	254	151	200	61
31	448		128	209		0		544		92	203	
Min	448	1	27	127	202	0	0	250	253	92	124	39
Max	709	330	176	209	515	516	255	797	613	254	203	553
Mean	564	47	95	166	280	295	91	544	516	192	144	171
ac-ft	34604	2809	5812	10209	15507	18101	5413	33394	30643	11813	8847	10161

Appendix A (Table 28 of 38) Dille Tunnel near Drake, CO


Location. --Lat 40°25′02", long 105°14′35", Larimer County, Hydrologic Unit 10190006, 11 miles west of Loveland, Colorado, on the Big Thompson River.

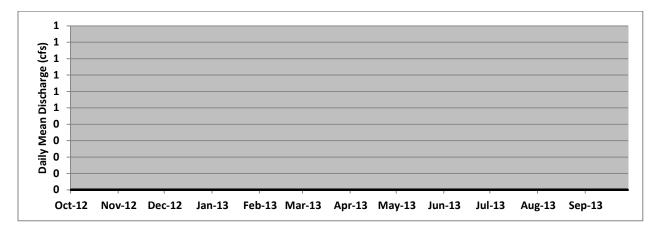
Gage. Water-stage recorder with satellite telemetry at Parshall Flume. Elevation of gage is 5520 feet from topographic map.

Remarks.-- Constructed in 1950. Maximum capacity is 600 cubic feet per second. Dille Tunnel diverts water from the Big Thompson River for power generation and water supply. The hydropower diversion operation, also known as the skim operation, diverts water from the Big Thompson River through Dille Tunnel for power generation at the Big Thompson Power Plant, where the diverted water is returned to the river. The skim daily value is determined based on the data from the gage. Recorder was operated from 01-Oct-2012 to 13-Nov-2012, and from early 29-Mar-2013 to 30-Sep-2013. The tunnel and gage are winterized in between those two periods. Record is complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Hydropower Diversion Flow (Skim), Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	0	0	62	81	42	2
2	0	0	0	0	0	0	0	0	53	81	58	2
3	0	0	0	0	0	0	0	0	56	81	52	2
4	0	0	0	0	0	0	0	0	58	78	51	2
5	0	0	0	0	0	0	0	0	16	73	43	2
6	0	0	0	0	0	0	0	0	0	68	37	2
7	0	0	0	0	0	0	0	0	0	67	36	17
8	0	0	0	0	0	0	0	0	0	67	32	7
9	0	0	0	0	0	0	0	0	1	67	31	18
10	3	0	0	0	0	0	0	0	1	63	31	36
11	5	0	0	0	0	0	0	0	0	62	31	41
12	5	0	0	0	0	0	0	0	1	66	31	11
13	5	0	0	0	0	0	0	0	0	64	31	0
14	6	0	0	0	0	0	0	0	0	63	31	0
15	6	0	0	0	0	0	0	146	0	63	46	0
16	5	0	0	0	0	0	0	164	0	66	39	0
17	5	0	0	0	0	0	0	128	0	66	28	0
18	5	0	0	0	0	0	0	32	23	66	22	0
19	5	0	0	0	0	0	0	0	41	63	17	0
20	5	0	0	0	0	0	0	0	64	62	15	0
21	5	0	0	0	0	0	0	89	92	62	15	0
22	5	0	0	0	0	0	0	132	93	62	13	0
23	5	0	0	0	0	0	0	136	90	56	14	0
24	1	0	0	0	0	0	0	132	90	51	21	0
25	0	0	0	0	0	0	0	47	90	63	22	0
26	3	0	0	0	0	0	0	4	87	69	22	0
27	2	0	0	0	0	0	0	0	82	69	26	0
28	0	0	0	0	0	0	0	0	81	69	8	0
29	0	0	0	0		0	0	0	81	69	2	0
30	0	0	0	0		0	0	10	81	68	2	0
31	0		0	0		0		69		19	2	
Min	0	0	0	0	0	0	0	0	0	19	2	0
Max	6	0	0	0	0	0	0	164	93	81	58	41
Mean	2	0	0	0	0	0	0	35	41	65	27	5
ac-ft	151	0	0	0	0	0	0	2156	2461	4008	1664	281

Appendix A (Table 29 of 38) Dille Tunnel near Drake, CO


Location. --Lat 40°25′02", long 105°14′35", Larimer County, Hydrologic Unit 10190006, 11 miles west of Loveland, Colorado, on the Big Thompson River.

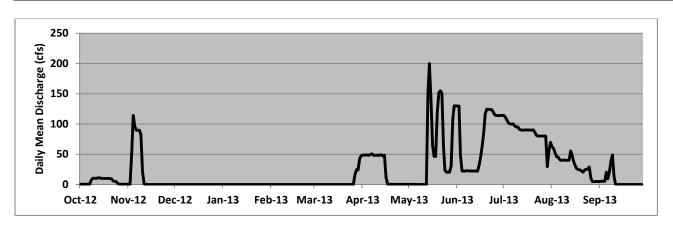
Gage.-- None.

Remarks.-- Constructed in 1950. Maximum capacity is 600 cubic feet per second. Dille Tunnel diverts water from the Big Thompson River for power generation and water supply. The right to divert native run-off is determined by the State of Colorado. Recorder was operated from 01-Oct-2012 to 13-Nov-2012, and from 29-Mar-2013 to 30-Sep-2013. The tunnel and gage are winterized in between those two periods. Record is complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Priority Diversion Flow, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0		0	0	0	0	0	0	0
30	0	0	0	0		0	0	0	0	0	0	0
31	0		0	0		0		0		0	0	
Min	0	0	0	0	0	0	0	0	0	0	0	0
Max	0	0	0	0	0	0	0	0	0	0	0	0
Mean	0	0	0	0	0	0	0	0	0	0	0	0
ac-ft	0	0	0	0	0	0	0	0	0	0	0	0

Appendix A (30 of 38) Dille Tunnel near Drake, CO


Location. --Lat 40°25'02", long 105°14'35", Larimer County, Hydrologic Unit 10190006, 11 miles west of Loveland, Colorado, on the Big Thompson River.

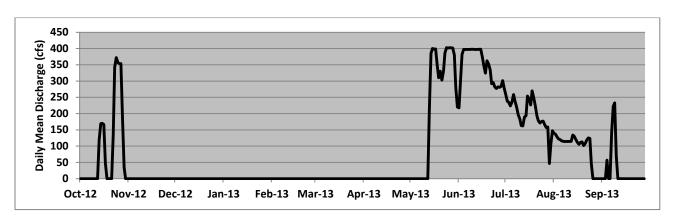
Gage.-- Water-stage recorder with satellite telemetry at Parshall Flume. Elevation of gage is 5520 feet from topographic map.

Remarks.— Constructed in 1950. Maximum capacity is 600 cubic feet per second. Dille Tunnel diverts water from the Big Thompson River for power generation and water supply. Recorder was operated from 01-Oct-2012 to 13-Nov-2012, and from 29-Mar-2013 to 30-Sep-2013. The tunnel and gage are winterized in between those two periods. Record is complete and reliable, although data has not been revised. This record contains operational data which could be subject to future revisions and changes. The official record is published by the Colorado Division of Water Resources.

Discharge, Cubic Feet per Second, Daily Mean Values

1	_											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	42	0	130	114	56	5
2	0	0	0	0	0	0	48	0	130	114	70	5
3	0	0	0	0	0	0	49	0	130	114	62	5
4	0	0	0	0	0	0	49	0	130	111	60	5
5	0	50	0	0	0	0	49	0	49	106	52	5
6	0	114	0	0	0	0	49	0	22	101	46	5
7	0	97	0	0	0	0	48	0	22	100	45	20
8	0	90	0	0	0	0	50	0	22	100	41	9
9	0	90	0	0	0	0	51	0	23	100	40	21
10	8	90	0	0	0	0	48	0	23	96	40	39
11	10	82	0	0	0	0	48	0	22	95	40	49
12	10	21	0	0	0	0	48	0	23	95	40	14
13	10	1	0	0	0	0	48	0	22	91	40	0
14	11	0	0	0	0	0	49	0	22	90	40	0
15	11	0	0	0	0	0	49	151	22	90	55	0
16	10	0	0	0	0	0	47	200	22	90	48	0
17	10	0	0	0	0	0	48	139	32	90	37	0
18	10	0	0	0	0	0	12	64	45	90	31	0
19	10	0	0	0	0	0	0	46	64	90	26	0
20	10	0	0	0	0	0	0	47	88	90	24	0
21	10	0	0	0	0	0	0	118	117	90	24	0
22	10	0	0	0	0	0	0	152	124	90	23	0
23	10	0	0	0	0	0	0	155	124	86	20	0
24	6	0	0	0	0	0	0	151	124	81	24	0
25	5	0	0	0	0	0	0	64	124	80	25	0
26	5	0	0	0	0	0	0	23	120	80	25	0
27	2	0	0	0	0	0	0	20	115	80	29	0
28	1	0	0	0	0	0	0	20	114	80	11	0
29	0	0	0	0		17	0	20	114	80	5	0
30	0	0	0	0		25	0	31	114	80	5	0
31	0		0	0		24		107		29	5	
Min	0	0	0	0	0	0	0	0	22	29	5	0
Max	11	114	0	0	0	25	51	200	130	114	70	49
Mean	5	21	0	0	0	2	28	49	74	91	35	6
ac-ft	323	1259	0	0	0	130	1651	2989	4420	5594	2158	362

Appendix A (Table 31 of 38) Big Thompson Power Plant, CO


Location. --Lat 40°25'16", long 105°13'26", Larimer County, Hydrologic Unit 10190006, 9 miles west of Loveland, Colorado, on the Big Thompson River.

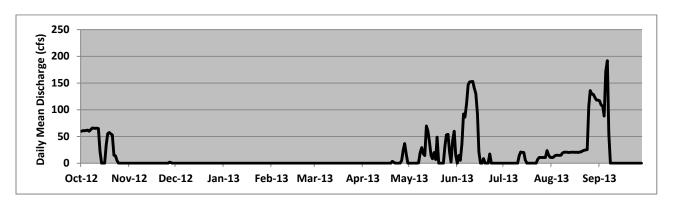
Gage.-- Flow meter with satellite telemetry. Elevation of gage is 5280 feet from topographic map.

Remarks.-- Initial operation in 1959. Maximum capacity is 400 cubic feet per second. Power plant returns hydropower diversions to the Big Thompson River downstream of the Big Thompson River canyon mouth. The plant is also used to deliver Colorado-Big Thompson project and Windy Gap Project water to the Big Thompson River. The plant is winterized from November through April each year. This record contains data recorded between 01-Oct-2012 and 30-Sep-2013. Record is complete and fair. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	0	0	0	0	0	0	0	0	280	301	106	0
2	0	0	0	0	0	0	0	0	220	279	147	0
3	0	0	0	0	0	0	0	0	218	259	140	0
4	0	0	0	0	0	0	0	0	305	238	136	0
5	0	0	0	0	0	0	0	0	382	235	128	0
6	0	0	0	0	0	0	0	0	397	223	122	57
7	0	0	0	0	0	0	0	0	397	235	120	0
8	0	0	0	0	0	0	0	0	397	259	116	0
9	0	0	0	0	0	0	0	0	397	238	115	142
10	0	0	0	0	0	0	0	0	397	220	114	222
11	0	0	0	0	0	0	0	0	398	197	114	233
12	0	0	0	0	0	0	0	0	398	184	114	69
13	0	0	0	0	0	0	0	0	397	163	114	0
14	0	0	0	0	0	0	0	0	397	162	114	0
15	119	0	0	0	0	0	0	218	397	189	134	0
16	169	0	0	0	0	0	0	385	398	193	131	0
17	170	0	0	0	0	0	0	400	397	254	121	0
18	166	0	0	0	0	0	0	398	374	245	111	0
19	47	0	0	0	0	0	0	398	345	227	106	0
20	0	0	0	0	0	0	0	348	324	270	111	0
21	0	0	0	0	0	0	0	310	362	249	113	0
22	0	0	0	0	0	0	0	331	353	224	102	0
23	0	0	0	0	0	0	0	303	334	193	108	0
24	135	0	0	0	0	0	0	330	292	178	118	0
25	342	0	0	0	0	0	0	386	295	171	125	0
26	372	0	0	0	0	0	0	402	282	176	124	0
27	357	0	0	0	0	0	0	402	277	177	47	0
28	353	0	0	0	0	0	0	402	282	166	0	0
29	354	0	0	0		0	0	402	281	157	0	0
30	185	0	0	0		0	0	402	283	159	0	0
31	35		0	0		0		380		47	0	
Min	0	0	0	0	0	0	0	0	218	47	0	0
Max	372	0	0	0	0	0	0	402	398	301	147	233
Mean	90	0	0	0	0	0	0	200	342	209	102	24
ac-ft	5553	0	0	0	0	0	0	12271	20315	12809	6238	1432

Appendix A (Table 32 of 38) Charles Hansen Feeder Canal Wasteway, CO


Location. --Lat 40°25'13", long 105°13'28", Larimer County, Hydrologic Unit 10190006, 9 miles west of Loveland, Colorado, on the Big Thompson River.

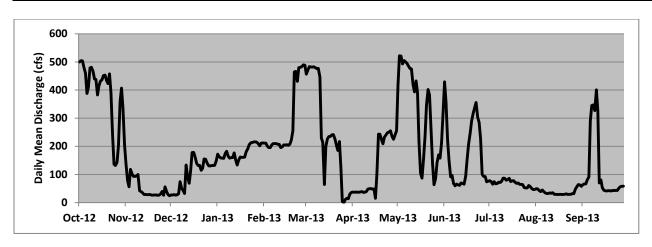
Gage.-- Water-stage recorder with satellite telemetry at 15 foot Parshall Flume. Elevation of gage is 5465 feet from Designer's Operating Criteria.

Remarks.— Constructed between 1949 and 1953. Maximum capacity is 400 cubic feet per second. The structure is used to return diverted water and to deliver Colorado-Big Thompson Project and Windy Gap Project water to the Big Thompson River. The facility is winterized between late November and April. Recorder was operated in October and November, 2012, and between the middle of April and 30-Sep-2013. Record is complete and reliable. These data are provisional operations data and are subject to further revision and change. The official record is published by the Colorado Division of Water Resources.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	44	0	0	0	0	0	0	17	60	0	16	118
2	58	0	0	0	0	0	0	0	16	0	11	118
3	60	0	0	0	0	0	0	0	0	0	11	117
4	61	0	0	0	0	0	0	0	15	0	11	109
5	61	0	0	0	0	0	0	0	5	0	14	107
6	61	0	0	0	0	0	0	0	36	0	15	88
7	62	0	0	0	0	0	0	0	92	0	15	172
8	60	0	0	0	0	0	0	0	86	0	15	192
9	63	0	0	0	0	0	0	1	111	0	15	56
10	66	0	0	0	0	0	0	20	147	0	19	0
11	65	0	0	0	0	0	0	29	152	0	20	0
12	65	0	0	0	0	0	0	18	153	0	21	0
13	65	0	0	0	0	0	0	14	153	14	20	0
14	65	0	0	0	0	0	0	70	141	21	20	0
15	22	0	0	0	0	0	0	61	130	20	20	0
16	0	0	0	0	0	0	0	40	93	20	20	0
17	0	0	0	0	0	0	0	15	22	6	20	0
18	0	0	0	0	0	0	0	8	0	0	20	0
19	35	0	0	0	0	0	0	20	0	0	21	0
20	55	0	0	0	0	0	0	7	9	0	20	0
21	57	0	0	0	0	0	0	49	0	0	21	0
22	55	0	0	0	0	0	3	0	0	0	21	0
23	53	0	0	0	0	0	1	0	0	0	23	0
24	15	0	0	0	0	0	0	0	17	0	24	0
25	14	0	0	0	0	0	0	0	0	7	25	0
26	5	0	0	0	0	0	0	32	0	11	25	0
27	0	0	0	0	0	0	0	53	0	11	107	0
28	0	0	0	0	0	0	4	54	0	11	136	0
29	0	2	0	0		0	24	20	0	11	129	0
30	0	1	0	0		0	37	2	0	11	129	0
31	0		0	0		0		42		23	123	
Min	0	0	0	0	0	0	0	0	0	0	11	0
Max	66	2	0	0	0	0	37	70	153	23	136	192
Mean	38	0	0	0	0	0	2	18	48	5	36	36
ac-ft	2309	5	0	0	0	0	139	1134	2844	328	2189	2131

Appendix A (Table 33 of 38) Charles Hansen Feeder Canal 550 Section, CO


 $\textbf{Location.} \ --\text{Lat} \ 40^{\circ}25^{\circ}25^{\circ\prime\prime}, \ long \ 105^{\circ}13^{\prime\prime}34^{\prime\prime\prime}, \ Larimer \ County, \ Hydrologic \ Unit \ 10190006, 9 \ miles \ west \ of \ Loveland, \ Colorado.$

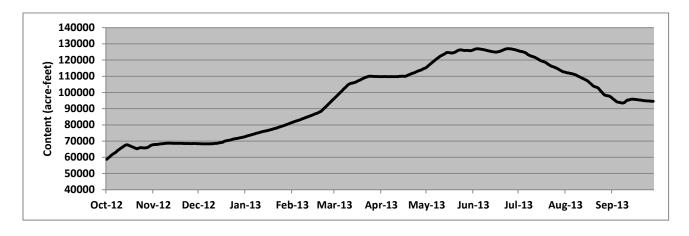
Gage.-- Water-stage recorder with satellite telemetry. Elevation of gage is 5460 feet from topographic map.

Remarks.-- Constructed between 1949 and 1953. The canal is 9.4 miles long and has a maximum capacity of 550 cubic feet per second. The canal is used to convey Colorado-Big Thompson Project water and native runoff to Horsetooth Reservoir. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	484	336	29	132	211	490	31	239	212	74	46	63
2	494	205	25	148	212	489	36	256	322	76	47	58
3	500	137	27	172	211	457	37	418	429	78	49	64
4	504	78	27	163	211	470	37	522	358	75	49	66
5	504	56	28	158	201	483	37	521	221	65	42	66
6	481	118	27	158	196	482	37	493	149	74	39	81
7	459	102	28	157	196	481	37	505	91	67	45	91
8	387	93	32	174	205	482	38	500	97	67	39	290
9	410	93	74	182	210	480	39	495	68	73	34	345
10	479	94	50	164	210	476	36	485	60	72	32	347
11	481	100	43	158	209	477	37	476	66	76	32	327
12	467	42	32	160	208	446	40	475	63	87	34	401
13	439	39	133	160	207	230	48	420	61	86	33	326
14	438	35	91	177	195	214	49	394	70	80	35	70
15	382	29	68	150	198	64	50	433	68	82	30	81
16	415	29	113	134	205	199	47	390	65	86	30	53
17	431	28	178	151	204	227	49	218	94	75	29	44
18	436	28	178	162	206	235	15	104	153	77	29	42
19	451	29	162	161	204	235	100	87	207	78	29	41
20	453	27	138	161	208	241	243	158	247	72	29	43
21	434	27	132	162	222	242	243	235	290	68	29	42
22	423	27	132	181	255	226	224	346	318	70	30	42
23	458	27	115	191	465	204	209	402	337	65	31	43
24	391	26	122	205	466	185	233	383	356	65	29	43
25	242	27	155	213	431	217	240	254	303	64	29	43
26	136	30	154	214	480	125	248	137	285	53	29	43
27	131	40	140	216	481	4	251	63	229	52	32	51
28	143	26	131	216	483	0	255	86	100	52	31	57
29	203	56	130	215		11	236	142	93	60	47	58
30	358	39	132	209		15	225	170	93	57	57	58
31	407		132	202		14		158		50	64	
Min	131	26	25	132	195	0	15	63	60	50	29	41
Max	504	336	178	216	483	490	255	522	429	87	64	401
Mean	401	67	95	174	264	277	114	321	183	70	37	113
ac-ft	24599	4003	5857	10703	14630	17027	6745	19728	10897	4308	2257	6687

Appendix A (34 of 38) Horsetooth Reservoir near Fort Collins, CO


Location. —Lat 40°36′00", long 105°10′05", Larimer County, Hydrologic Unit 10190007, at Horsetooth Dam outlet works, 4.8 miles west of Fort Collins, Colorado.

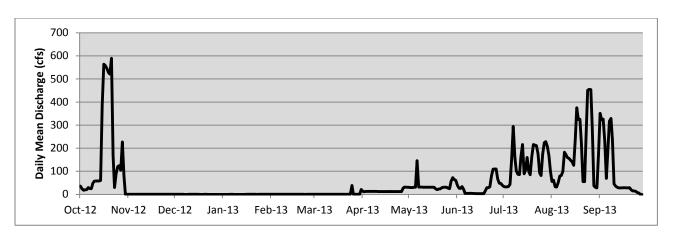
Gage.— Water level recorder with satellite telemetry. Elevation of gage is 5300 from topographic map.

Remarks.—Reservoir is formed by four earth-fill dams. Construction completed in 1949. Impoundment began in 1951. Horsetooth Reservoir is one of two terminal reservoirs for Colorado-Big Thompson Project diversions. Transmountain diversions are stored at Horsetooth Reservoir before final delivery. Maximum capacity is 156,735 AF at elevation 5430.00 ft, with 142,038 AF of active storage. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete and reliable. This record contains operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	57349	67195	68500	72370	80799	94725	109797	114662	125744	126215	112892	97694
2	58077	67567	68393	72590	81190	95652	109764	115025	125961	125907	112600	97249
3	58748	67779	68393	72893	81510	96552	109764	115579	126342	125690	112412	96378
4	59535	67872	68406	73168	81889	97424	109764	116447	126741	125401	112157	95605
5	60353	67872	68339	73416	82253	98412	109865	117266	126923	125220	111986	94819
6	61163	68019	68312	73679	82502	99325	109781	118036	126923	124931	111781	94193
7	61914	68193	68339	73928	82809	100226	109781	118860	126832	124679	111610	93943
8	62503	68273	68352	74206	83117	101114	109713	119459	126650	124175	111322	93803
9	63120	68379	68326	74469	83500	102138	109730	120306	126504	123404	111015	93600
10	63920	68513	68352	74790	83867	102986	109713	121050	126306	122902	110727	93460
11	64635	68607	68393	75013	84222	103920	109730	121672	126106	122527	110202	93756
12	65365	68701	68273	75236	84547	104808	109764	122349	125816	122206	109713	94662
13	65981	68661	68473	75488	84918	105287	109747	122938	125617	121903	109274	95337
14	66640	68661	68594	75768	85274	105684	109747	123350	125419	121529	108820	95369
15	67182	68661	68634	76007	85587	105800	109916	123870	125274	120979	108333	95731
16	67753	68634	68808	76189	85944	106116	109950	124589	125040	120412	107898	95841
17	67660	68594	69035	76359	86362	106365	110051	124715	124986	119829	107446	95809
18	67195	68594	69143	76626	86736	106864	109950	124535	124895	119406	106797	95684
19	66812	68567	69277	76852	87096	107396	110000	124391	125058	119142	105900	95621
20	66429	68594	69950	77092	87472	107731	110439	124355	125274	118860	105106	95463
21	66061	68553	70099	77361	87910	108232	110879	124571	125527	118334	104232	95353
22	65601	68553	70342	77645	88348	108652	111287	124968	125925	117686	103608	95242
23	65208	68540	70477	77915	89258	109156	111593	125509	126378	117109	103312	95070
24	65549	68500	70667	78214	90235	109477	111951	126015	126722	116500	103019	94992
25	65955	68473	70939	78528	91047	109781	112259	126233	126941	116116	102333	94866
26	65942	68486	71265	78842	91956	110017	112686	126269	127050	115735	101196	94709
27	65863	68460	71428	79157	92884	109950	113080	126033	126977	115423	100177	94725
28	65759	68419	71578	79473	93756	109983	113526	125889	126868	114973	99068	94615
29	65863	68500	71796	79803		109899	113750	125997	126650	114455	98348	94568
30	66008	68473	71973	80192		109848	114162	125961	126450	113904	98093	94521
31	66548		72179	80452		109865		125834		113371	97886	
Min	57349	67195	68273	72370	80799	94725	109713	114662	124895	113371	97886	93460
Max	67753	68701	72179	80452	93756	110017	114162	126269	127050	126215	112892	97694
EOM	66548	68473	72179	80452	93756	109865	114162	114162	126450	113371	97886	94521

Appendix A (35 of 38) Charles Hansen Supply Canal below Horsetooth Reservoir, CO


Location. --Lat 40°36′01", long 105°10′18", Larimer County, Hydrologic Unit 10190007, 4 miles west of Fort Collins, Colorado.

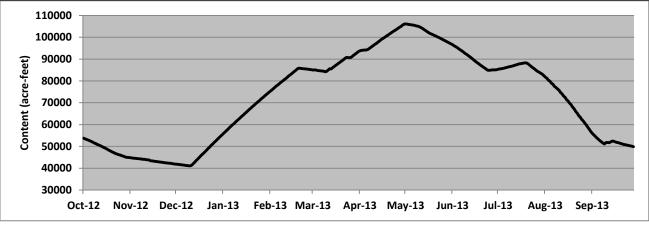
Gage.-- Two flow meters with satellite telemetry measure the flow for each conduits leading toward the hollow jet valves.

Remarks.— Constructed between 1950 and 1952. The canal is 5.1 miles long and has a maximum capacity of 1500 cubic feet per second. The canal is used to deliver Colorado-Big Thompson Project and Windy Gap Project water stored at Horsetooth Reservoir. Recorder was operated from 01-Oct-2012 to 30-Sep-2013 by the Northern Colorado Water Conservancy District and the Colorado Division of Water Resources. Record is complete and fair. This record contains operational data which could be subject to future revisions and changes.

Discharge, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	32	0	0	0	0	0	0	31	64	47	168	28
2	29	0	0	0	0	0	21	31	61	40	97	175
3	36	0	0	0	0	0	13	30	39	33	56	351
4	24	0	0	0	0	0	12	30	27	33	62	323
5	18	0	0	0	0	0	13	30	25	33	33	326
6	20	0	0	0	0	0	13	31	34	35	31	231
7	21	0	0	0	0	0	13	31	22	44	51	69
8	29	0	0	0	0	0	13	146	4	153	80	184
9	25	0	0	0	0	0	13	31	5	294	81	318
10	25	0	0	0	0	0	13	32	4	163	99	329
11	49	0	0	0	0	0	13	32	5	102	183	236
12	57	0	0	0	0	0	13	31	4	87	172	45
13	58	0	0	0	0	0	13	31	4	86	159	36
14	58	0	0	0	0	0	13	31	4	163	156	31
15	58	0	0	0	0	0	12	31	3	216	147	28
16	60	0	0	0	0	0	12	31	3	89	141	28
17	385	0	0	0	0	0	12	31	3	105	126	28
18	564	0	0	0	0	0	12	31	3	160	242	29
19	558	0	0	0	0	0	12	31	3	99	376	29
20	546	0	0	0	0	0	12	24	3	85	324	28
21	528	0	0	0	0	0	12	21	15	163	326	28
22	521	0	0	0	0	0	12	23	29	216	220	29
23	589	0	0	0	0	0	12	24	29	214	55	20
24	170	0	0	0	0	0	12	29	33	211	55	15
25	30	0	0	0	0	0	13	31	80	176	248	15
26	90	0	0	0	0	0	13	31	109	93	451	13
27	121	0	0	0	0	38	13	31	110	82	455	8
28	125	0	0	0	0	0	13	27	110	175	453	6
29	105	0	0	0		0	27	24	67	223	287	0
30	227	0	0	0		0	31	58	49	229	37	0
31	80		0	0		0		72		208	30	
Min	18	0	0	0	0	0	0	21	3	33	30	0
Max	589	0	0	0	0	38	31	146	110	294	455	351
Mean	169	0	0	0	0	1	14	35	32	131	174	100
ac-ft	10367	15	8	7	10	91	805	2172	1884	8031	10698	5915

Appendix A (36 of 38) Carter Lake near Berthoud, Colorado, CO


Location. --Lat 40°19'28", long 105°12'41", Larimer County, Hydrologic Unit 10190006, on Dam 1, 7 miles northwest of Berthoud, Colorado, and 10 miles west of Loveland, Colorado.

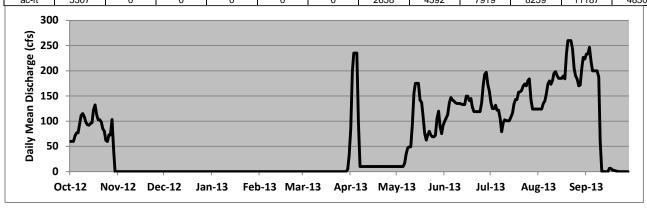
Gage.--Water level recorder with satellite telemetry. Elevation of gage is 5770 from topographic map.

Remarks.--Reservoir is formed by three earth-fill dams. Construction completed in 1952. Carter Lake is one of two terminal reservoirs for Colorado-Big Thompson Project water diversions. Transmountain water diversions are stored at Carter Lake before final delivery. Maximum capacity is 112,200 AF at elevation 5759.00 ft, with 108,900 AF of active capacity. Recorder was operated from 01-Oct-2012 to 30-Sep-2013. Record is complete and fair. This record contains operational data which could be subject to future revisions and changes.

Storage, AF, 2400-hour Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	54334	44958	42038	54547	74138	85224	92914	105542	97314	85078	83055	57854
2	54042	44892	41852	55233	74776	85109	93451	106035	96932	85161	82414	56786
3	53732	44792	41860	55896	75326	84984	93794	106113	96552	85317	81776	55950
4	53396	44684	41732	56578	75927	85068	94020	106012	96085	85463	81251	55260
5	53158	44593	41740	57219	76510	84974	94096	105888	95662	85599	80389	54547
6	52859	44527	41578	57899	77125	84776	94139	105810	95218	85745	79888	53864
7	52570	44436	41489	58583	77701	84724	94160	105687	94732	85891	78970	53237
8	52324	44362	41425	59233	78238	84641	94354	105564	94225	86069	78462	52605
9	51956	44279	41320	59886	78828	84516	94840	105396	93794	86194	77529	52044
10	51599	44221	41208	60458	79377	84464	95337	105228	93236	86414	76964	51503
11	51251	44089	41135	61145	79939	84163	95845	105038	92700	86612	76370	51155
12	50895	44065	41047	61806	80533	84412	96356	104815	92229	86758	75767	51817
13	50592	43950	41329	62423	81056	84974	96834	104513	91759	86968	74716	51791
14	50280	43884	41974	63089	81611	85536	97281	104078	91205	87199	74098	51703
15	49954	43793	42688	63701	82260	85516	97848	103588	90673	87430	73076	52026
16	49592	43457	43457	64334	82807	86048	98361	103133	90078	87629	72454	52473
17	49267	43350	44131	64989	83334	86581	98963	102656	89496	87808	71421	52351
18	48916	43260	44842	65607	83935	87104	99434	102201	88914	87945	70842	52044
19	48489	43153	45590	66237	84506	87587	99896	101770	88408	88071	69778	51869
20	48123	43055	46258	66870	85078	88134	100357	101449	87903	88208	69186	51686
21	47750	42981	46947	67475	85651	88619	100820	101151	87409	88303	68015	51468
22	47420	42874	47623	68092	85829	89136	101294	100842	86873	88113	67254	51268
23	47057	42761	48370	68730	85734	89697	101781	100512	86403	87640	66075	51069
24	46720	42697	49061	69341	85672	90238	102268	100149	85912	87031	65302	50860
25	46485	42574	49764	69954	85599	90747	102723	99852	85421	86456	64126	50722
26	46233	42493	50523	70558	85474	90684	103166	99478	84880	85943	63456	50558
27	46033	42379	51155	71166	85390	90619	103633	99105	84808	85442	62367	50402
28	45773	42330	51861	71784	85338	90747	104089	98788	84932	84849	61704	50237
29	45548	42241	52534	72375		91311	104558	98383	85026	84298	60643	50074
30	45257	42152	53185	72948		91887	104993	98000	85078	83925	59812	49911
31	45049		53882	73601		92400		97640		83490	58738	
Min	45049	42152	41047	54547	74138	84163	92914	97640	84808	83490	58738	49911
Max	54334	44958	53882	73601	85829	92400	104993	106113	97314	88303	83055	57854
EOM	45049	42152	53882	73601	85338	92400	104993	104993	85078	83490	58738	49911

Appendix A (37 of 38) Saint Vrain Canal below Carter Reservoir, CO

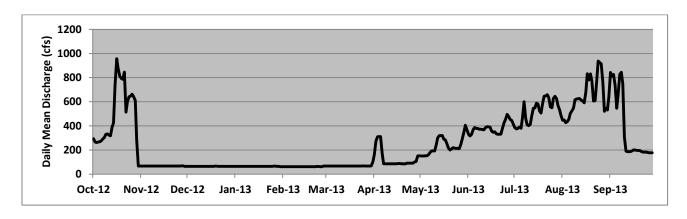

Location. --Lat 40°19'27", long 105°12'35", Larimer County, Hydrologic Unit 10190006, downstream from Carter Reservoir Dam 1, 7 miles northwest of Berthoud, Colorado, and 10 miles west of Loveland, Colorado.

Gage.-- Water-stage recorder with telephone telemetry. Data provided by the Northern Colorado Water Conservancy District. Elevation of gage is 5,590 feet from topographic map.

Remarks.- Constructed between 1952 and 1954. The canal is 9.8 miles long and has a maximum capacity of 625 cubic feet per second. The canal is used to deliver Colorado-Big Thompson Project and Windy Gap Project water as well as diverted native water from conveyance contract holders. Record was provided by the Northern Colorado Water Conservancy District for the period 01-Oct-2012 to 30-Sep-2013. Record is complete and fair. This record contains operational data which could be subject to future revisions and changes.

Flow, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	58	0	0	0	0	0	4	10	75	172	124	227
2	60	0	0	0	0	0	32	10	92	160	124	223
3	60	0	0	0	0	0	85	10	100	137	124	233
4	60	0	0	0	0	0	199	10	107	125	124	233
5	60	0	0	0	0	0	235	10	113	125	124	247
6	71	0	0	0	0	0	235	10	136	132	135	218
7	77	0	0	0	0	0	235	10	147	122	140	200
8	77	0	0	0	0	0	97	17	142	122	154	200
9	96	0	0	0	0	0	10	35	140	105	174	200
10	112	0	0	0	0	0	10	47	137	79	180	200
11	115	0	0	0	0	0	10	49	135	97	173	188
12	108	0	0	0	0	0	10	49	135	103	181	60
13	98	0	0	0	0	0	10	93	135	101	195	0
14	93	0	0	0	0	0	10	156	134	101	198	0
15	92	0	0	0	0	0	10	175	133	101	190	0
16	95	0	0	0	0	0	10	175	133	108	185	0
17	97	0	0	0	0	0	10	175	150	116	185	0
18	122	0	0	0	0	0	10	142	150	134	185	7
19	132	0	0	0	0	0	10	137	141	143	190	6
20	113	0	0	0	0	0	10	110	145	143	184	3
21	103	0	0	0	0	0	10	76	128	158	233	2
22	103	0	0	0	0	0	10	62	119	158	260	2
23	98	0	0	0	0	0	10	73	119	161	260	1
24	85	0	0	0	0	0	10	80	119	170	260	0
25	80	0	0	0	0	0	10	73	119	174	243	0
26	62	0	0	0	0	0	10	69	119	170	205	0
27	60	0	0	0	0	0	10	69	136	180	190	0
28	73	0	0	0	0	0	10	72	172	184	183	0
29	73	0	0	0		0	10	106	193	143	170	0
30	103	0	0	0		0	10	120	197	124	172	0
31	43		0	0		0		90		124	205	
Min	43	0	0	0	0	0	4	10	75	79	124	0
Max	132	0	0	0	0	0	235	175	197	184	260	247
Mean	86	0	0	0	0	0	45	75	133	135	182	82
ac-ft	5307	0	0	0	0	0	2658	4592	7919	8259	11187	4850


Appendix A (38 of 38) Colorado-Big Thompson Project, CO

Location. -- Larimer, Grand, Summit, Boulder, Weld counties in Colorado, hydrologic units 14010001, 14010002 and 10190006, 10190007, on the Colorado River, Big Thompson River and Cache La Poudre River basins.

Remarks.— This table presents a summation of all the daily deliveries of Colorado-Big Thompson Project and Windy Gap Project water through the Saint Vrain Canal, the Charles Hansen Supply Canal, the Dixon Canal, the Charles Hansen Feeder Canal and small deliveries upstream from Flatiron Reservoir. These values include metered water. The Colorado-Big Thompson Project is a transmountain water diversion system. The water diverted is used for agricultural, municipal and industrial purposes, to generate hydroelectric power and to provide recreation for the public. This record contains operational data which could be subject to future revisions and changes. Period of record is between 01-Oct-2012 and 30-Sep-2013. Data was provided by the Northern Colorado Water Conservancy District. Record is complete and reliable.

Total Daily Water Deliveries, Cubic Feet per Second, Daily Mean Values

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	318	67	65	64	62	67	68	151	405	445	532	531
2	308	67	65	64	62	67	103	152	367	416	485	643
3	294	67	65	64	62	67	161	151	329	385	446	842
4	266	67	65	64	62	67	273	151	316	375	449	813
5	262	67	65	64	62	67	310	151	330	379	427	826
6	266	67	65	64	62	67	311	152	370	390	435	737
7	269	67	65	64	62	67	311	153	387	380	455	546
8	275	67	65	64	62	67	173	160	378	467	504	660
9	291	67	65	64	62	67	86	179	379	601	524	826
10	305	67	65	64	62	67	86	191	372	464	547	844
11	330	67	65	64	62	67	86	193	372	409	616	749
12	333	67	65	64	62	67	86	192	369	401	623	308
13	323	67	65	64	62	67	86	237	367	413	626	190
14	318	67	65	64	62	67	86	301	387	484	627	186
15	389	67	65	64	62	67	86	319	394	545	614	186
16	425	67	65	64	62	67	86	319	392	548	605	187
17	747	67	65	64	62	67	86	320	390	588	591	194
18	957	67	65	64	62	67	87	289	356	580	680	202
19	874	67	65	64	62	67	88	285	347	526	833	200
20	813	67	65	64	62	67	87	251	351	506	780	197
21	792	67	67	64	62	67	86	216	335	587	831	196
22	786	67	66	64	62	67	86	200	329	645	769	196
23	845	67	65	64	62	67	85	209	331	649	606	187
24	514	67	65	64	62	67	91	220	331	659	610	182
25	601	67	65	64	64	67	91	215	380	636	755	182
26	642	67	65	64	63	67	91	213	427	558	937	182
27	647	67	65	64	62	69	91	214	453	550	925	179
28	663	67	65	67	62	68	91	212	495	627	915	177
29	642	69	65	65		67	100	248	477	646	767	177
30	611	68	65	64		67	104	294	453	625	521	177
31	276		65	64		67		349		569	546	
Min	262	67	65	64	62	67	68	151	316	375	427	177
Max	957	69	67	67	64	69	311	349	495	659	937	844
Mean	496	67	65	65	62	67	122	222	379	518	632	390
ac-ft	30458	3993	3988	3961	3451	4108	7249	13636	22514	31786	38772	23173

APPENDIX B – OPERATIONS DATA

TABLE 1

WESTERN DIVISION - PICK-SLOAN MISSOURI BASIN PROGRAM

PERTINENT RESERVOIR DATA

					(Data in AF)
Reservoir	Dead Storage 1/	Active Storage 2/	Total Storage	Normal Minimum Storage	Limitation on normal minimum storage
reservon	3101486 17	3101460 27	Storage	Storage	Emiliation on normal miliman storage
Green Mountain output	6,860	146,779	153,639	47,684	Minimum elevation for rated power
Willow Creek	1,486	9,779	10,553	6,675	Elevation of pump canal head-works
Lake Granby	74,190	465,568	539,758	74,190	Lowest outlet elevation
Shadow Mountai	n 506	16,848	17,354	16,026	Minimum permissible Grand Lake
elevation; 8,366 f	t.				
Grand Lake	3/	511	1,015	504	Legislation limits fluctuation
Marys Lake generation	42	885	927	308	Minimum elevation for power
Lake Estes	409	2,659	3,068	740	Minimum elevation to release 550 cfs
Pinewood Lake generation	416	1,765	2,181	613	Minimum elevation for power
Flatiron	125	635	760	324	Minimum elevation to release 550 cfs
Carter Lake	3,306	108,924	112,230	306	Lowest outlet elevation
Horsetooth	7,003	149,732	156,735	17,600	Elevation on highest delivery works
Total	94,343	903,373	998,220	167,970	

^{1/} Storage capacity below elevation of lowest outlet

^{2/} Total storage minus dead storage

^{3/} Not determined

COLORADO-BIG THOMPSON PROJECT

MONTHLY SUMMARY WATER YEAR 2013 OF BLUE RIVER OPERATIONS

WATER YEAR 2013				OF BLUE RIVER	R OPERATION	IS		(AF)					
UNDERLETED DUNOFF	INI	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
UNDEPLETED RUNOFF ABOVE GREEN MTN.													
RESERVOIR		11,000	9,000	7,800	7,300	6,600	8,300	14,200	68,200	108,800	39,000	21,200	31,200
UNDEPLETED RUNOFF ABOVE DILLON RES.		6,500	5,100	4,600	4,300	3,800	4,700	6,900	38,000	67,800	22,600	13,100	21,100
PERCENT OF TOTAL UN- DEPLETED RUNOFF ORI- GINATING ABOVE DILLON		0.591	0.567	0.590	0.589	0.576	0.566	0.486	0.557	0.623	0.580	0.618	0.676
DEPLETIONS BY 1929 COLORADO SPRINGS RIGHT		0	0	0	0	0	0	22	182	538	136	54	254
DEPLETIONS BY 1948													
COLORADO SPRINGS RIGHT		-505	-512	-11	0	0	0	39	1683	6136	1829	199	230
INFLOW TO DILLON		7,000	5,600	4,600	4,300	3,800	4,700	6,800	36,100	61,100	20,600	12,800	20,600
DILLON STORAGE (1000 AF)	198.9	190.7	182.7	178.0	171.9	166.9	163.3	161.8	193.8	240.6	242.9	239.2	245.9
ROBERTS TUNNEL													
DIVERSIONS		11,000	9,700	5,600	5,700	4,300	3,900	5,000	214	10,100	13,900	11,900	4,200
DILLON OUTFLOW TO THE RIVER		3,300	3,200	3,600	4,700	4,500	4,400	3,300	3,400	3,400	3,500	3,700	8,800
TOTAL DEPLETIONS BY DENVER		3,700	2,400	1,000	-406	-658	262	3,500	32,400	57,200	17,000	9,100	11,700
RUNOFF ORIGINATING BETWEEN DILLON AND													
GREEN MTN RESERVOIR		4,600	3,900	3,300	3,000	2,800	3,800	7,500	30,800	41,900	16,700	8,300	10,400
ACTUAL INFLOW TO GREEN MTN RESERVOIR		7,800	7,100	6,900	7,700	7,200	8,100	10,700	33,900	44,900	20,000	11,900	19,100
GREEN MTN RESERVOIR STORAGE (1000 AF)	76.7	69.4	67.4	64.8	171.9	60.6	60.4	65.8	95.1	134.8	137.4	109.8	107.1
TOTAL GREEN MTN OUTFLOW		14,800	9,000	9,500	10,500	8,500	8,300	5,100	4,200	4,200	16,600	38,700	21,400

TABLE 3
PAGE 1 OF 3

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION WATER AND POWER SYSTEM COLORADO-BIG THOMPSON PROJECT

2013 ACTUAL OPERATIONS

		ATER IN	1000 AF		*	** *	* * *	**	***	* * *	ENERGY IN GWH		
	INITIAL OR TOTAL	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
GREEN MOUNTAIN RESERVOIR													
Depleted Watershed Inflow	185.3	7.8	7.1	6.9	7.7	7.2	8.1	10.7	33.9	44.9	20.0	11.9	19.1
Turbine Release	137.6	14.8	9.0	9.5	10.5	8.5	8.1	1.2	0.00	0.00	15.9	38.7	21.4
Bypass	13.2	0.0	0.0	0.0	0.02	0.0	0.3	3.8	4.2	4.2	0.7	0.0	0.00
Spill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
End of Month Content	76.7	69.4	67.4	64.8	61.9	60.6	60.4	65.8	95.1	134.8	137.4	109.8	107.1
Kwh/AF		162.2	122.2	126.3	133.3	111.6	123.5	166.7	0.0	0.0	226.4	237.7	215.0
Generation	25.6	2.4	1.1	1.2	1.4	1.0	1.0	0.2	0.0	0.0	3.6	9.2	4.6
WILLOW CREEK RESERVOIR													
Inflow	55.4	1.1	0.9	0.9	0.7	0.6	0.9	2.8	29.8	11.8	2.9	1.4	1.6
Release to River	11.7	0.6	0.4	0.4	0.4	0.4	0.5	0.4	5.5	1.0	0.9	0.7	0.5
Pumped to Granby	42.4	0.0	3.0	0.0	0.0	0.0	0.0	2.6	22.2	11.2	3.4	0.0	0.0
End of Month Content	9.7	10.1	7.4	7.8	8.1	8.3	8.7	8.1	10.0	9.3	7.7	8.3	9.3
Pump Energy	8.9	0.0	0.6	0.0	0.0	0.0	0.0	0.5	4.8	2.3	0.7	0.0	0.0
GRANBY - SHADOW MOUNTAIN - G	RAND LAKE												
Natural Watershed Inflow	238.6	6.1	2.6	3.4	3.1	2.6	3.5	10.0	63.8	86.8	25.7	9.7	21.3
Total Inflow into Granby	283.4	4.6	6.4	4.1	2.4	1.8	2.5	11.0	100.9	100.3	21.4	7.4	20.6
Granby Fish Release	33.2	1.8	1.2	1.2	1.2	1.2	1.3	1.3	3.8	5.2	5.6	4.7	4.7
Granby Seepage	1.9	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.3
Granby Spill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Adams Tunnel	236.3	34.0	2.5	22.6	34.0	29.7	28.2	25.6	18.0	13.2	20.7	1.8	6.0
Granby End of Month content	333.6	301.8	303.3	282.8	250.5	222.2	195.8	182.2	272.3	362.3	361.8	362.1	371.0
SM-GL End of Month Content	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.3	17.7	18.0	17.9	17.6
Pumped from Granby	197.7	32.9	3.4	23.2	33.3	28.9	27.3	22.5	5.3	1.6	13.9	0.00	5.4
Granby Pump Kwh/AF		167.2	176.5	172.4	177.2	183.4	190.5	195.6	226.4	187.5	165.5	0.0	166.7
Granby Pump Energy	35.6	5.5	0.6	4.0	5.9	5.3	5.2	4.4	1.2	0.3	2.3	0.0	0.9

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION WATER AND POWER SYSTEM COLORADO-BIG THOMPSON PROJECT

2013 ACTUAL OPERATIONS

	WA	TER IN 100	00 AF		* *	** **	* **	* ***	*	** E	NERGY IN GW	/Н	
	INITIAL OR TOTAL	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MARYS LAKE - ESTES - FLATIRON	N												
Adams Tunnel Water	236.3	34.0	2.5	22.6	34.0	29.7	28.2	25.6	18.0	13.2	20.7	1.8	6.0
Marys Lake Generation	40.1	5.8	0.4	3.4	6.0	5.3	5.1	4.6	3.0	2.1	3.4	0.0	1.0
Estes Generation	104.4	15.2	1.0	10.0	15.2	13.3	12.5	10.9	7.8	5.7	9.4	0.6	2.8
Divertible Big-Thompson	70.6	0.0	0.0	0.0	0.0	0.0	0.0	0.2	12.6	20.4	5.1	0.0	32.3
Diverted Big-Thompson Water	37.5	0.1	0.0	0.0	0.0	0.0	0.0	0.1	11.1	20.1	5.6	0.0	0.5
Olympus Tunnel	272.2	33.8	2.5	21.1	33.6	29.6	27.9	24.4	31.3	32.8	25.9	1.8	7.5
Pole Hill Generation	177.3	23.9	1.6	9.7	21.1	21.0	19.5	16.4	22.4	23.6	14.0	0.0	4.1
Flatiron 1 & 2 Generation	243.2	30.2	1.7	18.5	30.4	26.9	24.4	21.4	29.1	29.8	22.2	0.6	8.0
Flatiron 3 Turbine Release	8.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.2	0.8
Flatiron 3 Kwh/AF Gen.		0.0	333.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	194.4	250.0
Flatiron 3 Generation	1.7	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.2
Flatiron 3 Pumping	97.4	0.0	0.0	14.6	22.4	14.2	9.9	17.7	1.3	2.4	13.6	0.0	1.3
Flatiron 3 Kwh/AF Pump		0.0	0.0	280.8	303.6	323.9	333.3	344.6	384.6	333.3	330.9	0.0	307.7
Flatiron 3 Pump Energy	31.1	0.0	0.0	4.1	6.8	4.6	3.3	6.1	0.5	0.8	4.5	0.0	0.4
CARTER LAKE													
Pumped from Flatiron	97.4	0.00	0.0	14.6	22.4	14.2	9.9	17.7	1.3	2.4	13.6	0.00	1.3
Release to Flatiron	8.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.2	8.0
Irrigation Delivery	80.2	8.3	1.5	1.4	1.3	1.1	1.4	4.4	7.6	13.7	13.7	16.6	9.2
Evaporation & Seepage	1.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.6	0.4	0.4	-0.2
End of Month Content	54.6	45.0	42.2	53.9	73.6	85.3	92.4	105.0	97.6	85.1	83.5	58.7	49.9
BIG THOMPSON POWERPLANT													
Diverted Dille Tunnel Water	18.9	0.3	1.3	0.0	0.0	0.0	0.1	1.6	3.0	4.4	5.6	2.2	0.4
Irrigation Delivery	31.5	8.4	0.01	0.02	0.02	0.01	0.02	0.4	2.6	2.6	5.3	7.6	4.5
Turbine Release	58.7	5.6	0.0	0.0	0.0	0.0	0.0	0.0	12.3	20.4	12.8	6.2	1.4
Generation	8.2	8.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	3.0	1.7	0.7	0.2
HORSETOOTH RESERVOIR													
Hansen Feeder Canal Inflow	118.3	24.0	4.0	5.9	10.7	14.6	17.0	6.4	17.4	9.0	2.7	1.5	5.1
Irrigation Delivery	70.6	12.8	1.2	1.3	1.6	1.5	1.2	2.0	5.2	7.2	13.5	14.3	8.8
Evaporation	3.5	0.2	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.9	0.7	0.6	0.2
End of Month Content	56.6	66.5	68.5	72.2	80.5	93.8	109.9	114.2	125.8	126.4	113.4	97.9	94.5
TOTAL CBT DELIVERY * * May include Windy Gap and/or carriage contract water.	182.3	29.5	2.71	2.72	2.92	2.61	2.62	6.8	15.4	23.5	32.5	38.5	22.5

TABLE 3
PAGE 3 OF 3

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION WATER AND POWER SYSTEM COLORADO-BIG THOMPSON PROJECT

2013 ACTUAL OPERATIONS

	W	ATER IN 100	00 AF		* *	* **	* ***	**	* **	* EN	ERGY IN GWH	I	
	INITIAL OR TOTAL	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
BASE GENERATION													
Green Mountain	25.6	2.4	1.1	1.2	1.4	1.0	1.0	0.2	0.0	0.0	3.6	9.2	4.6
Flatiron 3	1.7	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.2
Big Thompson	8.2	0.8	0.0	0.0	0.0	0.0	0.0	0.0	1.8	3.0	1.7	0.7	0.2
TOTAL	35.5	3.2	1.2	1.2	1.4	1.0	1.0	0.2	1.8	3.0	5.3	11.3	5.0
LOAD FOLLOWING GENERATION													
Marys Lake	40.1	5.8	0.4	3.4	6.0	5.3	5.1	4.6	3.0	2.1	3.4	0.0	1.0
Estes	104.4	15.2	1.0	10.0	15.2	13.3	12.5	10.9	7.8	5.7	9.4	0.6	2.8
Pole Hill	177.3	23.9	1.6	9.7	21.1	21.0	19.5	16.4	22.4	23.6	14.0	0.0	4.1
Flatiron 1 & 2	243.2	30.2	1.7	18.5	30.4	26.9	24.4	21.4	29.1	29.8	22.2	0.6	8.0
TOTAL	565.0	75.1	4.7	41.6	72.7	66.5	61.5	53.3	62.3	61.2	49.0	1.2	15.9
PUMP ENERGY													
Willow Creek	8.9	0.0	0.6	0.0	0.0	0.0	0.0	0.5	4.8	2.3	0.7	0.0	0.0
Granby	35.6	5.5	0.6	4.0	5.9	5.3	5.2	4.4	1.2	0.3	2.3	0.0	0.9
Flatiron 3	31.1	0.0	0.0	4.1	6.8	4.6	3.3	6.1	0.5	0.8	4.5	0.0	0.4
TOTAL	75.6	5.5	1.2	8.1	12.7	9.9	8.5	11.0	6.5	3.4	7.5	0.0	1.3
TOTAL GENERATION	600.5	78.3	5.9	42.8	74.1	67.5	62.5	53.5	64.1	64.2	54.3	12.5	20.9
TOTAL GENERATION MINUS PUMP		72.8	4.7	34.7	61.4	57.6	54.0	42.5	57.6	60.8	46.8	12.5	19.6

TABLE 4

COLORADO-BIG THOMPSON PROJECT FLOOD DAMAGE PREVENTED IN WATER YEAR 2013

	Cumulative Total Prior to WY 2012	WY 2013	Cumulative Total Current
Granby, Willow Creek, Shadow Mountain and Grand Lake	\$357,700	\$0.00	\$357,700
Green Mountain	\$152,600	\$0.00	\$152,600
Total	\$510,300	\$0.00	\$510,300

CBTAOP V2.06 Run: 05-Nov-2013 13:04 Most Probable Plan (70-Percent Quota)

2013

Oct

Nov

Dec

Jan

COLORADO-BIG THOMPSON MONTHLY OPERATIONS

HYDROLOGY OPERATIONS Green Mtn Reservoir Initial Cont 107.1 kaf Maximum Cont 154.6 kaf Minimum Cont 8.0 kaf Elev 7925.35 ft Elev 7950.38 ft Elev 7804.68 ft 2013 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Total Dillon Inflow kaf 6.4 4.9 4.1 4.0 3.5 4.4 11.4 47.3 69.3 33.8 14.6 8.8 212.5 Dillon-Grn Mtn Gain kaf 6.7 4.8 3.9 3.7 3.2 4.2 10.7 32.3 45.6 24.2 12.7 9.2 161.2 13.1 9.7 7.7 6.7 8.6 22.1 79.6 114.9 58.0 27.3 18.0 373.7 Undepleted Inflow kaf 8.0 Depletion -6.5 -2.0 0.0 1.0 8.4 40.0 45.0 20.0 0.0 kaf -6.2 0.0 10.0 109.7 Depleted Inflow kaf 19.6 15.9 10.0 7.7 6.7 7.6 13.7 39.6 69.9 38.0 17.3 18.0 264.0 Turbine Release kaf 23.8 20.2 20.0 14.5 11.9 13.4 6.0 6.5 29.0 42.2 41.7 32.5 261.7 Spill/Waste 0.0 0.0 0.0 kaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total River Release kaf 23.8 20.2 20.0 14.5 11.9 13.4 6.0 6.5 29.0 42.2 41.7 32.5 261.7 60 100 100 60 Min Release cfs 60 60 60 60 60 60 60 60 Total River Release cfs 387 339 325 236 214 218 101 106 487 686 678 546 0.2 0.3 0.5 0.9 0.6 4.4 Evaporation kaf 0.4 0.2 0.0 0.0 0.0 0.8 0.5 88.0 End-Month Targets kaf 102.5 98.0 81.2 76.0 70.0 90.0 110.0 150.0 145.0 120.0 End-Month Content kaf 102.5 98.0 88.0 81.2 76.0 70.0 77.4 110.0 150.0 145.0 120.0 ft 7922.53 7919.66 7912.92 7908.01 7904.05 7899.24 7905.13 7927.08 7948.20 7945.78 7932.79 7924.08 End-Month Elevation Willow Crk Reservoir Initial Cont 9.3 kaf Maximum Cont 10.0 kaf Minimum Cont 7.2 kaf Elev 8125.63 ft Elev 8128.14 ft Elev 8116.90 ft 2013 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Total Native Inflow kaf 1.0 0.8 0.8 0.8 0.7 1.0 3.9 22.1 17.7 4.4 1.7 1.3 56.2 Min Release kaf 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1.5 2.6 2.2 0.5 0.4 10.0 Spill/Bypass kaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total River Release kaf 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1.5 2.6 2.2 0.5 0.4 10.0 Pumped to Granby kaf 1.5 1.5 0.0 0.0 0.0 0.0 5.1 18.7 14.0 3.1 1.0 0.9 45.8 0.0 Evaporation kaf 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.7 End-Month Targets kaf 7.2 7.2 9.0 10.0 9.0 9.0 End-Month Content kaf 8.3 7.2 7.6 8.0 8.3 8.9 7.2 9.0 10.0 9.0 9.1 End-Month Elevation ft 8121.73 8116.90 8118.74 8120.48 8121.73 8124.12 8116.90 8124.50 8128.14 8124.50 8124.88 8124.50 Lake Granby Initial Cont 371.0 kaf Maximum Cont 539.8 kaf Minimum Cont 76.5 kaf Elev 8254.70 ft Elev 8280.01 ft Elev 8186.91 ft

Feb

Mar

Apr

Mav

Jul

Aua

Total

Jun

Native inflow	kaf	1.9	1.2	1.2	1.6	1.3	1.7	5.3	22.7	37.0	12.6	4.8	2.3	93.6
														TABLE 5A PAGE 2 of
Rels frm Shadow Mtn	kaf	2.4	2.7	2.8	1.2	1.1	1.2	1.2	8.0	45.0	4.1	2.5	2.1	74.3
Pump frm Windy Gap	kaf	0.0	0.0	0.0	0.0	0.0	0.0	5.0	10.0	5.0	0.0	0.0	0.0	20.0
Pump frm Willow Crk	kaf	1.5	1.5	0.0	0.0	0.0	0.0	5.1	18.7	14.0	3.1	1.0	0.9	45.8
Total Inflow	kaf	5.8	5.4	4.0	2.8	2.4	2.9	16.6	59.4	101.0	19.8	8.3	5.3	233.7
Min River Release	kaf	1.2	1.2	1.2	1.2	1.1	1.2	1.2	3.5	4.5	5.3	5.0	4.5	31.1
Spill/Bypass	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total River Release	kaf	1.2	1.2	1.2	1.2	1.1	1.2	1.2	3.5	4.5	5.3	5.0	4.5	31.1
Pumped to Shadow Mtn	kaf	0.0	6.9	33.0	32.7	29.6	32.7	19.7	0.0	0.0	0.0	10.0	16.5	181.1
Evaporation	kaf	1.4	0.6	0.2	0.0	0.0	0.7	1.1	1.9	2.6	2.5	2.0	1.8	14.8
Seepage loss	kaf	0.3	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.3	0.4	0.4	0.4	3.7
End-Month Content	kaf	373.9	370.3	339.6	308.2	279.7	247.7	242.1	295.8	389.4	401.0	391.9	374.0	
End-Month Elevation	ft	8255.18	8254.58	8249.39	8243.85	8238.58	8232.30	8231.15	8241.59	8257.71	8259.57	8258.11	8255.19	
Shadow Mtn		Ir	nitial Co		17.6 kaf 5.57 ft	Ма	aximum Co		18.4 kaf 7.00 ft	M	inimum Co		16.6 kaf 5.02 ft	
	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
 Native inflow	 kaf	2.9	1.8	1.9	2.3	2.0	2.6	7.9	34.0	55.6	19.0	7.2	3.5	140.7
Pumped from Granby	kaf	0.0	6.9	33.0	32.7	29.6	32.7	19.7	0.0	0.0	0.0	10.0	16.5	181.1
Total Inflow	kaf	2.9	8.7	34.9	35.0	31.6	35.3	27.6	34.0	55.6	19.0	17.2	20.0	321.8
Min River Release	kaf	2.2	2.7	2.8	1.2	1.1	1.2	1.2	1.2	3.0	3.1	2.5	2.1	24.3
Spill/Bypass	kaf	0.2	0.0	0.0	0.0	0.0	0.0	0.0	6.8	42.0	1.0	0.0	0.0	50.0
Total River Release	kaf	2.4	2.7	2.8	1.2	1.1	1.2	1.2	8.0	45.0	4.1	2.5	2.1	74.3
Adams Tunnel Flow	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	25.3	9.8	14.2	14.1	17.4	242.8
Evaporation	kaf	0.4	0.2	0.1	0.0	0.0	0.3	0.4	0.7	0.8	0.7	0.6	0.5	4.7
End-Month Content	kaf	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	
End-Month Elevation	ft	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	
Adams Tunnel	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Tunnel Capacity	kaf	0.1	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	364.2
Actual delivery	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	25.3	9.8	14.2	14.1	17.4	242.8
max delivery	%	100	18	95	100	100	100	80	75	30	42	42	53	
Big T @ Lake Estes	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Big Thompson inflow	kaf	2.2	1.4	1.3	1.2	1.0	1.2	3.3	13.4	30.2	20.2	7.8	4.4	87.6
Min river release	kaf	3.1	1.5	1.5	1.5	1.4	1.5	2.2	6.9	7.4	7.7	6.9	3.7	45.3
	kaf	2.2	1.4	1.3	1.2	1.0	1.2	2.2	6.9	7.4	7.7	6.9	3.7	43.1
			0 0	0.0	0.0	0.0	0.0	1.1	6.5	22.8	12.5	0.9	0.7	44.5
Max div available	kaf	0.0	0.0											
Max div available Priority water div	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max div available Priority water div Skim water diverted	kaf kaf					0.0	0.0	1.1	6.5	22.8	12.5	0.9	0.7	0.0 44.5
Act river release Max div available Priority water div Skim water diverted % max diverted	kaf	0.0	0.0	0.0	0.0									

Irrigation delivery	kaf	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.9
Total river release	kaf	2.3	1.4	1.4	1.3	1.0	1.2	2.3	7.0	7.5	7.8	7.0	3.8	44.0

TABLE 5A PAGE 3 of 8

														PAG
Olympus Tunnel 2	1013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Tunnel Capacity	kaf	33.8	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	397.9
	kaf	0.0	5.8	31.9	33.7	30.5	33.8	27.0	31.7	32.5	26.6	14.9	18.0	286.4
% max delivery	용	0	18	94	100	100	100	83	94	99	79	44	55	
1														
Seepage and Evap	kaf	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2.0
Inflow to Flatiron	kaf	0.0	5.8	31.7	33.5	30.3	33.6	26.8	31.5	32.3	26.4	14.7	17.8	284.4
Carter Lake		In	nitial Con		19.9 kaf	Ma	aximum Co		12.2 kaf	M	inimum Co		6.0 kaf	
			Ele		7.35 ft				8.98 ft				.80 ft	
2	1013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Pump from Flatiron	kaf	0.0	0.0	11.7	22.4	18.1	18.1	16.3	1.1	0.0	0.0	0.0	7.2	94.9
Carter to Flatiron	kaf	5.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9
Evaporation loss	kaf	0.1	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.3	0.2	2.1
Seepage loss	kaf	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	1.7
9	kaf	36.9	33.6	44.3	64.8	80.8	96.3	107.9	101.4	91.3	74.9	56.1	49.0	
End-Month Content	kaf	37.4	34.9	44.3	64.2	79.8	95.0	106.7	101.4	91.5	75.0	56.2	49.0	
End-Month Elevation	ft	5682.08	5678.81	5690.71	5713.18	5729.03	5743.51	5754.12	5749.37	5740.25	5724.28	5704.51	5696.30	
Irrigation demand	kaf	6.4	2.3	2.2	2.3	2.3	2.6	4.2	6.0	7.4	13.7	16.3	12.0	77.7
-	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.2	2.1	2.1	8.4
	kaf	6.4	2.3	2.2	2.3	2.3	2.6	4.2	6.0	9.4	15.9	18.4	14.1	86.1
	kaf	6.4	2.3	2.2	2.3	2.3	2.6	4.2	6.0	9.4	15.9	18.4	14.1	86.1
% required delivery	8	100	100	100	100	100	100	100	100	100	100	100	100	
Shortage	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hansen Canal 930 2	013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Minimum flow	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum flow	kaf	57.2	55.3	57.2	57.2	51.6	57.2	27.7	57.2	55.3	57.2	57.2	55.3	645.6
Actual flow	kaf	5.9	5.8	20.0	11.1	12.2	15.5	10.5	30.4	32.3	26.4	14.7	10.6	195.4
Dille Tunnel 2	1013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Big T @ Canyon Mouth	kaf	3.2	2.2	1.8	1.7	1.4	2.0	4.8	18.6	36.8	24.1	10.2	5.8	112.6
-	kaf	0.0	0.0	0.0	0.0	0.0	0.0	1.1	6.5	22.8	12.5	0.9	0.7	44.5
Big T irr (Estes)	kaf	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.9
_	kaf	1.2	0.0	0.0	0.0	0.0	0.0	1.2	1.2	1.2	1.8	2.9	1.7	11.2
_	kaf	2.1	2.2	1.9	1.8	1.4	2.0	2.6	11.0	12.9	9.9	6.5	3.5	57.8
Water diverted	kaf	2.1	2.2	0.0	0.0	0.0	0.0	2.6	11.0	0.7	9.9	6.5	3.5	38.5
% diverted	용	100	100					100	100	5	100	100	100	
Trifurcation Works 2	1013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total

Rels from Flatiron	kaf	5.9	5.8	20.0	11.1	12.2	15.5	10.5	30.4	32.3	26.4	14.7	10.6	195.4
Rels to 550 Canal	kaf	3.5	5.8	20.0	11.1	12.2	15.5	9.3	23.2	9.1	12.3	10.4	4.8	137.2

													TABLE 5 PAGE 4 of
Big T irrigation kaf	2.4	0.0	0.0	0.0	0.0	0.0	0.1	0.7	0.4	1.6	3.4	5.1	13.7
Dille Tunnel kaf	2.1	2.2	0.0	0.0	0.0	0.0	2.6	11.0	0.7	9.9	6.5	3.5	38.5
Tot rels to river kaf	4.5	2.2	0.0	0.0	0.0	0.0	3.8	18.2	23.9	24.0	10.8	9.3	96.7
Irrigation demand kaf	2.4	0.0	0.0	0.0	0.0	0.0	0.1	0.7	0.4	1.6	3.4	5.1	13.7
Big T irr (Estes) kaf	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.9
Windy Gap demand kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total requirement kaf	2.5	0.0	0.1	0.1	0.0	0.0	0.2	0.8	0.5	1.7	3.5	5.2	14.6
Total delivery kaf	2.5	0.0	0.1	0.1	0.0	0.0	0.2	0.8	0.5	1.7	3.5	5.2	14.6
<pre>% required delivery %</pre>	100	0	100	100	0	0	100	100	100	100	100	100	
Shortage kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hansen Canal 550 2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow from Flatiron kaf	3.5	5.8	20.0	11.1	12.2	15.5	9.3	23.2	9.1	12.3	10.4	4.8	137.2
Maximum flow kaf	33.8	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	397.9
Seepage loss kaf	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2.4
Irrigation demand kaf	0.8	0.4	0.4	0.4	0.3	0.4	0.5	0.7	0.5	1.1	0.9	1.0	7.4
Irrigation delivery kaf	0.8	0.4	0.4	0.4	0.3	0.4	0.5	0.7	0.5	1.1	0.9	1.0	7.4
Minimum flow kaf	2.5	2.4	6.1	6.1	5.6	6.1	2.4	2.5	2.4	2.5	2.5	2.4	43.5
Rels to Horsetooth kaf	2.5	5.2	19.4	10.5	11.7	14.9	8.6	22.3	8.4	11.0	9.3	3.6	127.4
Horsetooth Reservoir	In	itial Co		94.5 kaf	Ma	aximum Co		52.0 kaf	M	inimum Co		.3.0 kaf	
		El	.ev 5395	5.36 ft		E	lev 542	7.66 ft			lev 5316	.81 ft	
2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow kaf	2.5	5.2	19.4	10.5	11.7	14 0	8.6	22.3	8.4	11 0	9.3	2 6	127.4
						14.9				11.0		3.6	
Priority water div kaf Total irr delivery kaf	0.0 14.7	0.0 1.8	0.0	0.0	0.0 2.1	0.0	0.0 3.7	0.0 8.4	0.0 10.6	0.0 20.9	0.0 21.4	0.0 10.8	0.0 100.9
Total irr delivery kaf	14./	1.8	2.0	2.3	2.1	2.2	3.7	8.4	10.6	20.9	21.4	10.8	100.9
Evaporation loss kaf	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.6	0.7	0.6	0.4	3.6
Seepage loss kaf	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.2	1.8
End-Month Targets kaf	82.3	85.2	102.4	110.4	119.9	132.3	136.6	150.0	147.0	136.2	123.4	115.7	
End-Month Content kaf	82.0	85.2	102.4	110.3	119.7	132.2	136.6	150.0	147.0	136.2	123.4	115.6	
End-Month Elevation ft	5387.09	5389.26	5400.30	5405.06							5412.58	5408.15	
Irrigation demand kaf	13.1	0.0	0.0	0.0	0.0	0.0	0.7	2.9	2.7	10.1	12.3	4.7	46.5
Metered delivery kaf	1.6	1.8	2.0	2.3	2.1	2.2	3.0	5.5	5.8	9.3	7.6	5.0	48.2
Windy Gap demand kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	1.5	1.5	1.1	6.2
Total demand kaf	14.7	1.8	2.0	2.3	2.1	2.2	3.7	8.4	10.6	20.9	21.4	10.8	100.9
Total irr delivery kaf	14.7	1.8	2.0	2.3	2.1	2.2	3.7	8.4	10.6	20.9	21.4	10.8	100.9
% required delivery %	100	100	100	100	100	100	100	100	100	100	100	100	
Shortage kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total CBT Delivery kaf	24.4	4.5	4.7	5.1	4.7	5.2	8.6	15.9	16.9	35.9	40.6	27.9	194.4

Windy Gap Ownership	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Accrual	kaf	0.0	0.0	0.0	0.0	0.0	0.0	4.5	9.0	4.5	0.0	0.0	0.0	18.0 TABLE 5. PAGE 5 of
Total release	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	3.7	3.6	3.2	14.6
Spill	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
End-month Ownership	kaf	24.3	24.3	24.3	24.3	24.3	24.3	28.8	37.8	38.2	34.5	30.9	27.7	
PUMPING AND GENERAT	rion of	ERATIONS												
Green Mtn Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Generation	gwh	18.600	18.000	18.600	18.600	8.400	9.300	18.000	18.600	18.000	18.600	18.600	18.000	201.300
Generation	qwh	4.495	3.760	3.636	2.553	2.044	2.247	1.009	1.184	5.858	8.837	8.468	6.281	50.372
% Max Generation	8	24	21	20	14	24	24	6	6	33	48	46	35	
Ave kwh/af		189	186	182	176	172	168	168	182	202	209	203	193	
Willow Crk Pumping	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping	kaf	27.7	26.8	0.0	0.0	0.0	0.0	26.8	27.7	26.8	27.7	27.7	26.8	218.0
Actual pumping	kaf	1.5	1.5	0.0	0.0	0.0	0.0	5.1	18.7	14.0	3.1	1.0	0.9	45.8
Pump energy	gwh	0.320	0.320	0.000	0.000	0.000	0.000	1.086	3.983	2.982	0.660	0.213	0.192	9.756
% max pumping	8	5	6					19	68	52	11	4	3	
Average kwh/af		213	213					213	213	213	213	213	213	
Lake Granby Pumping	g 2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping	kaf	36.9	35.7	36.9	36.9	33.3	36.9	35.7	36.9	35.7	36.9	36.9	35.7	434.4
Actual pumping	kaf	0.0	6.9	33.0	32.7	29.6	32.7	19.7	0.0	0.0	0.0	10.0	16.5	181.1
Pump energy	gwh	0.000	1.028	4.983	5.036	4.677	5.330	3.310	0.000	0.000	0.000	1.470	2.459	28.293
% max pumping	ક		19	89	89	89	89	55				27	46	
Average kwh/af			149	151	154	158	163	168				147	149	
Marys Lake Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Flow	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	25.3	9.8	14.2	14.1	17.4	
Max generation	gwh	6.060	0.000	2.980	6.060	5.400	6.060	5.840	6.060	5.840	6.060	6.060	5.840	62.260
Generation	gwh	0.000	0.000	2.980	6.060	5.400	6.060	4.600	4.530	1.660	2.520	2.510	3.080	39.400
% Max Generation	왕			100	100	100	100	79	75	28	42	41	53	
Ave kwh/af				176	179	177	179	177	179	169	177	178	177	
Lake Estes Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Flow	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	25.3	9.8	14.2	14.1	17.4	
Max generation	gwh	9.980	9.660	9.980	9.980	9.100	9.980	9.660	9.980	9.660	14.920	14.920	14.450	132.270
Generation	gwh	0.000	2.420	9.980	9.980	9.100	9.980	9.660	9.980	4.300	6.600	6.550	7.960	86.510
% Max Generation	8		25	100	100	100	100	100	100	45	44	44	55	
Ave kwh/af			417	440	440	444	440	441	440	439	465	465	457	
Pole Hill Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total

Olympus Tunnel flow Max generation Generation	kaf gwh gwh	0.0 25.260 0.000	5.8 0.000 3.860	31.9 12.910 23.690	33.7 25.260 25.050	30.5 22.800 11.540	33.8 25.260 12.910	27.0 24.460 20.040	31.7 25.260 23.550	32.5 24.460 24.140	26.6 25.260 19.720	14.9 25.260 11.090	18.0 24.460 12.460	286.4 260.650 188.050 TABLE 5A PAGE 6 of 8
% Max Generation Ave kwh/af	%			184 1402	99 743	51 378	51 382	82 742	93 743	99 743	78 741	44 744	51 692	
Flatiron 1&2 Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow to Flatiron Max generation Generation % Max Generation Ave kwh/af	kaf gwh gwh %	0.0 15.100 0.000	5.8 28.130 4.540 16 783	31.7 29.040 27.260 94 860	33.5 29.040 28.800 99 860	30.3 13.640 13.640 100 892	33.6 15.100 15.100 100 893	26.8 28.130 23.480 83 876	31.5 29.040 27.100 93 860	32.3 28.130 27.770 99 860	26.4 29.040 23.240 80 880	14.7 15.100 13.130 87 893	17.8 14.600 14.600 100 890	284.4 274.090 218.660
Flatiron 3 Pump/Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping Pump from Flatiron Pump energy % max pumping Average kwh/af	kaf kaf gwh %	24.5 0.0 0.000	24.7 0.0 0.000	25.0 11.7 3.077 47 263	23.0 22.4 6.294 97 281	18.5 18.1 5.629 98 311	18.5 18.1 6.190 98 342	16.3 16.3 6.064 100 372	16.5 1.1 0.418 7 380	16.8 0.0 0.000	19.0 0.0 0.000	21.4 0.0 0.000	22.4 7.2 2.009 32 279	246.6 94.9 29.681
Max turbine rels Carter to Flatiron Maximum generation Actual generation % max generation Average kwh/af	kaf kaf gwh gwh %	22.0 5.9 3.938 1.056 27 179	20.5 0.0 0.000 0.000	21.6 0.0 0.000 0.000	22.9 0.0 0.000 0.000	21.9 0.0 0.000 0.000	25.2 0.0 0.000 0.000	25.3 0.0 0.000 0.000	26.4 0.0 0.000 0.000	25.0 0.0 0.000 0.000	25.0 0.0 0.000 0.000	23.8 0.0 0.000 0.000	22.0 0.0 0.000 0.000	281.6 5.9 3.938 1.056
Big Thompson Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Total release Turbine release Wasteway release Max generation Generation % Max Generation Ave kwh/af PROJECT GENERATION	-			0.0 0.0 0.0 0.00 0.000	0.0 0.0 0.0 0.00 0.000	0.0 0.0 0.0 0.00 0.000	0.0 0.0 0.0 0.00 0.000	3.8 3.8 0.0 1.700 0.360 21 95	18.2 18.2 0.0 3.940 2.800 71 154	23.9 23.9 0.0 3.800 3.800 100 159	24.0 24.0 0.0 3.940 3.800 96 158	10.8 10.8 0.0 3.940 1.460 37 135	9.3 9.3 0.0 3.800 1.160 31 125	96.7 96.7 0.0 26.760 14.069
Project Generation		0ct	Nov	Dec	Jan	Feb	Mar	λnr	Marr	Tun	Jul	λιια	Con	Total
Project Generation	ZU13				oan	de 1	Mar 	Apr	May	Jun	Jui	Aug	Sep	Total
Base Generation: Big Thompson Green Mtn Flatiron 3 Total	gwh gwh gwh	0.500 4.495 1.056 6.051	0.189 3.760 0.000 3.949	0.000 3.636 0.000 3.636	0.000 2.553 0.000 2.553	0.000 2.044 0.000 2.044	0.000 2.247 0.000 2.247	0.360 1.009 0.000 1.369	2.800 1.184 0.000 3.984	3.800 5.858 0.000 9.658	3.800 8.837 0.000 12.637	1.460 8.468 0.000 9.928	1.160 6.281 0.000 7.441	14.069 50.372 1.056 65.497
Load Following Gene Marys Lake	ration gwh	0.000	0.000	2.980	6.060	5.400	6.060	4.600	4.530	1.660	2.520	2.510	3.080	39.400

Lake Estes Pole Hill Flatiron 1,2	gwh gwh gwh	0.000 0.000 0.000	2.420 3.860 4.540	9.980 23.690 27.260	9.980 25.050 28.800	9.100 11.540 13.640	9.980 12.910 15.100	9.660 20.040 23.480	9.980 23.550 27.100	4.300 24.140 27.770	6.600 19.720 23.240	6.550 11.090 13.130	7.960 12.460 14.600	86.510 188.050 218.660 TABLE 5A PAGE 7 of 8
Total	gwh	0.000	10.820	63.910	69.890	39.680	44.050	57.780	65.160	57.870	52.080	33.280	38.100	532.620
Total generation Total max genera	_		14.769 57.490	67.546 73.510	72.443 88.940		46.297 65.700	59.149 87.790	69.144 92.880	67.528 89.890	64.717 97.820	43.208 83.880	45.541 81.150	598.117 961.268
Project Pump Ene		0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Granby Willow Creek Flatiron 3 Total pump energ	gwh gwh	0.000 0.320 0.000 0.320	1.028 0.320 0.000 1.348	4.983 0.000 3.077 8.060	5.036 0.000 6.294 11.330	4.677 0.000 5.629 10.306	5.330 0.000 6.190 11.520	3.310 1.086 6.064 10.460	0.000 3.983 0.418 4.401	0.000 2.982 0.000 2.982	0.000 0.660 0.000 0.660	1.470 0.213 0.000 1.683	2.459 0.192 2.009 4.660	28.293 9.756 29.681 67.730
Total net genera	ation gwh	5.731	13.421	59.486	61.113	31.418	34.777	48.689	64.743	64.546	64.057	41.525	40.881	530.387
Release Flexibil	-	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Adams Tunnel	Min kaf Max kaf	0.1	5.8 5.8	32.0 32.0	33.8 33.8	30.5 30.5	33.8 33.8	26.0 26.0	25.3 25.3	9.8 9.8	14.2 14.2	14.1 14.1	17.4 17.4	
Marys Lake Marys Lake	Min gwh Max gwh	0.000	0.000	2.980 2.980	6.060 6.060	5.400 5.400	6.060 6.060	4.600 4.600	4.530 4.530	1.660 1.660	2.520 2.520	2.510 2.510	3.080 3.080	
Lake Estes Lake Estes	Min gwh Max gwh	0.000	2.420 2.420	9.980 9.980	9.980 9.980	9.100 9.100	9.980 9.980	9.660 9.660	9.980 9.980	4.300 4.300	6.600 6.600	6.550 6.550	7.960 7.960	
Olympus Tunnel Olympus Tunnel	Min kaf Max kaf	0.0	5.8 5.8	31.9 31.9	33.7 33.7	30.5 30.5	33.8 33.8	27.0 27.0	31.7 31.7	32.5 32.5	26.6 26.6	14.9 14.9	18.0 18.0	
Pole Hill Pole Hill	Min gwh Max gwh	0.000	0.000	12.910 12.910	25.190 25.190	22.800 22.800	25.260 25.260	20.200	23.690 23.690	24.300 24.300	19.880 19.880	11.230 11.230	13.800 13.800	
Flatiron 1&2 Flatiron 1&2	Min gwh Max gwh	0.000	4.540 4.540	27.260 27.260	28.800 28.800	13.640 13.640	15.100 15.100	23.480 23.480	27.100 27.100	27.770 27.770	23.240 23.240	13.130 13.130	14.600 14.600	
Load following Load following	Min gwh Max gwh	0.000	6.960 6.960	53.130 53.130	70.030 70.030	50.940 50.940	56.400 56.400	57.940 57.940	65.300 65.300	58.030 58.030	52.240 52.240	33.420 33.420	39.440 39.440	
Total project Total project	Min gwh Max gwh	6.051 6.051	10.909 10.909	56.766 56.766	72.583 72.583	52.984 52.984	58.647 58.647	59.309 59.309	69.284 69.284	67.688 67.688	64.877 64.877	43.348 43.348	46.881 46.881	
GENERATION CAPAC														
Project Generati		0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Base Generation: Green Mtn Flatiron 3		6.0 1.4	5.2	4.9	3.4	3.0	3.0	1.4	1.6	8.1	11.9	11.4	8.7	

Big Thompson Total base load	mw mw	0.7 8.1	0.3 5.5	4.9	3.4	3.0	3.0	0.5 1.9	3.8 5.4	5.3 13.4	5.1 17.0	2.0 13.4	1.6 10.3	
														TABLE 5. PAGE 8 of
Load Following Gen	eration:													
Marys Lake														
Min Capacity	mw	0.0	0.0	2.7	8.1	1.4	8.1	0.0	0.0	0.0	0.0	0.0	0.0	
Duration	hr/d	12.0	12.4	1.0	12.0	1.6	12.0	4.3	4.8	11.4	10.9	10.9	10.6	
Max Capacity	mw	0.0	2.7	8.1	8.1	8.1	8.1	8.1	8.1	4.7	6.7	6.7	8.1	
Duration	hr/d	12.0	11.6	23.0	12.0	22.0	12.0	18.7	18.2	11.6	12.1	12.1	12.4	
Lake Estes														
Min Capacity	mw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Duration	hr/d	12.0	12.4	11.0	11.0	12.4	11.0	12.0	12.0	12.0	12.0	12.0	12.0	
Max Capacity	mw	0.0	7.0	45.0	45.0	40.1	45.0	32.4	31.4	12.4	17.0	16.8	21.3	
Duration	hr/d	12.0	11.6	10.0	10.0	11.7	10.0	12.0	12.0	12.0	12.0	12.0	12.0	
Pole Hill														
Min Capacity	mw	0.0	0.0	0.0	34.0	0.0	34.0	0.0	0.0	34.0	0.0	0.0	0.0	
Duration	hr/d	12.0	12.4	0.6	12.0	1.8	12.0	4.2	0.7	12.0	4.5	12.0	10.8	
Max Capacity	mw	0.0	11.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	31.8	34.0	
Duration	hr/d	12.0	11.6	23.4	12.0	22.4	12.0	19.8	23.3	12.0	19.5	12.0	13.2	
Flatiron 1&2														
Min Capacity	mw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Duration	hr/d	12.0	12.4	10.3	8.9	11.5	8.8	12.0	10.6	9.7	12.0	12.0	11.8	
Max Capacity	mw	0.0	13.0	83.4	86.0	79.2	86.0	66.4	83.0	84.6	65.2	36.4	43.8	
Duration	hr/d	12.0	11.6	10.3	10.0	11.4	10.0	12.0	10.5	10.1	12.0	12.0	12.2	
Total Load Followi	.ng													
Min Capacity	mw	0.0	0.0	2.7	42.1	1.4	42.1	0.0	0.0	34.0	0.0	0.0	0.0	
Max Capacity	mw	0.0	33.7	170.5	173.1	161.4	173.1	140.9	156.5	135.7	122.9	91.7	107.2	
Total Project Capa	city													
Min Capacity	mw	8.1	5.5	7.6	45.5	4.4	45.1	1.9	5.4	47.4	17.0	13.4	10.3	
Max Capacity	mw	8.1	39.2	175.4	176.5	164.4	176.1	142.8	161.9	149.1	139.9	105.1	117.5	

CBTAOP V2.06 Run: 05-Nov-2013 16:40 Minimum Reasonable Plan (80-Percent Ouota)

Rels frm Shadow Mtn kaf

2.4 2.7 2.8

COLORADO-BIG THOMPSON MONTHLY OPERATIONS

HYDROLOGY OPERATIONS _____ Green Mtn Reservoir Initial Cont 107.1 kaf Maximum Cont 154.6 kaf Minimum Cont 8.0 kaf Elev 7925.35 ft Elev 7950.38 ft Elev 7804.68 ft 2013 Nov Dec Jan Apr May Jun Jul Aug Sep Oct Feb Mar 6.4 4.9 4.1 kaf 4.0 3.5 4.4 7.8 26.7 34.0 14.1 8.6 6.7 125.2 Dillon Inflow Dillon-Grn Mtn Gain kaf 6.7 4.8 3.9 3.7 3.2 4.2 8.5 19.9 24.4 12.4 9.1 7.1 107.9 9.7 7.7 13.8 Undepleted Inflow kaf 13.1 8.0 6.7 8.6 16.3 46.6 58.4 26.5 17.7 233.1 Depletion kaf -6.5 -6.2 -2.0 0.0 0.0 1.0 4.8 23.5 31.0 10.0 5.0 0.0 60.6 Depleted Inflow kaf 19.6 15.9 10.0 7.7 6.7 7.6 11.5 23.1 27.4 16.5 12.7 13.8 172.5 20.2 20.0 14.5 11.9 13.4 3.7 7.4 27.7 27.7 26.8 200.7 Turbine Release kaf 23.8 3.6 0.0 Spill/Waste kaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 20.2 20.0 14.5 13.4 3.6 3.7 7.4 27.7 27.7 26.8 Total River Release kaf 11.9 200.7 Min Release cfs 60 60 60 60 60 60 60 60 125 450 450 450 61 60 387 339 325 Total River Release cfs 236 214 218 124 450 450 450 0.7 0.7 Evaporation kaf 0.4 0.2 0.0 0.0 0.0 0.2 0.3 0.5 0.5 0.4 3.9 End-Month Targets kaf 102.5 98.0 88.0 81.2 76.0 70.0 90.0 110.0 150.0 145.0 120.0 105.0 kaf 102.5 76.0 70.0 77.6 96.5 End-Month Content 98.0 88.0 81.2 115.8 103.9 88.4 End-Month Elevation ft 7922.53 7919.66 7912.92 7908.01 7904.05 7899.24 7905.29 7918.69 7930.44 7923.40 7913.20 7903.27 Willow Crk Reservoir Initial Cont 9.3 kaf Maximum Cont 10.0 kaf Minimum Cont Elev 8125.63 ft Elev 8128.14 ft Elev 8116.90 ft 2013 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Native Inflow kaf 1.0 0.8 0.8 0.8 0.7 1.0 3.7 11.7 6.8 2.6 1.0 0.8 31.7 Min Release kaf 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1.5 2.6 2.2 0.5 0.4 10.0 Spill/Bypass kaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total River Release kaf 0.4 0.4 0.4 0.4 0.4 0.4 1.5 2.6 2.2 0.4 0.5 0.4 10.0 Pumped to Granby kaf 1.5 1.5 0.0 0.0 0.0 0.0 4.9 8.3 3.1 1.3 0.4 0.3 21.3 kaf 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.7 Evaporation End-Month Targets kaf 7.2 7.2 9.0 10.0 9.0 9.0 8.3 7.2 7.6 8.0 8.3 8.9 7.2 10.0 End-Month Content kaf 9.0 9.0 9.0 End-Month Elevation ft 8121.73 8116.90 8118.74 8120.48 8121.73 8124.12 8116.90 8124.50 8128.14 8124.50 8124.50 Lake Granby Initial Cont 371.0 kaf Maximum Cont 539.8 kaf Minimum Cont 76.5 kaf Elev 8254.70 ft Elev 8280.01 ft Elev 8186.91 ft Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 1.9 1.2 1.2 6.1 16.9 20.4 7.7 2.4 kaf 1.6 1.3 1.7 1.7 Native inflow 64.1

1.2 1.2 16.1 3.1 2.5

2.1

37.6

1.2 1.1 1.2

Pump frm Windy Gap	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	5.0
Pump frm Willow Crk	kaf	1.5	1.5	0.0	0.0	0.0	0.0	4.9	8.3	3.1	1.3	0.4	0.3	21.3
Total Inflow	kaf	5.8	5.4	4.0	2.8	2.4	2.9	12.2	31.4	39.6	12.1	5.3	4.1	128.0
Min River Release	kaf	1.2	1.2	1.2	1.2	1.1	1.2	1.2	3.5	4.5	5.3	5.0	4.5	31.1
Spill/Bypass	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total River Release	kaf	1.2	1.2	1.2	1.2	1.1	1.2	1.2	3.5	4.5	5.3	5.0	4.5	31.1
Pumped to Shadow Mtr		0.0	6.9	33.0	32.7	29.6	32.7	18.5	3.2	0.0	17.7	12.7	10.1	197.1
Evaporation	kaf	1.4	0.6	0.2	0.0	0.0	0.7	1.1	1.8	2.3	2.2		1.5	13.5
Seepage loss	kaf	0.3	0.3	0.3	0.3	0.2	0.3	0.2		0.3	0.3		0.3	3.4
End-Month Content	kaf	373.9	370.3	339.6	308.2	279.7	247.7	238.9	261.5	294.0	280.6	266.2	253.9	
End-Month Elevation	Ιt	8255.18	8254.58	8249.39	8243.85	8238.58	8232.30	8230.49	8235.06	8241.26	8238.75	8235.98	8233.55	
Shadow Mtn		т,	nitial C	ont '	17.6 kaf	M	aximum C	ont	18.4 kaf	М	inimum C	on+ 1	.6.6 kaf	
SHAGOW MCH		1.			6.57 ft	1*1			7.00 ft	1*1			5.02 ft	
	2013	Oct	Nov	Dec	Jan	Feb		Apr		Jun	Jul	Aug	Sep	Total
Native inflow	kaf	2.9	1.8	1.9	2.3	2.0	2.6	9.1	25.3	30.5	11.5	3.7	2.5	96.1
Pumped from Granby	kaf	0.0	6.9	33.0	32.7	29.6	32.7	18.5	3.2	0.0	17.7	12.7	10.1	197.1
Total Inflow	kaf	2.9	8.7	34.9	35.0	31.6	35.3	27.6	28.5	30.5	29.2	16.4	12.6	293.2
Min River Release	kaf	2.2	2.7	2.8	1.2	1.1	1.2	1.2	1.2	3.0	3.1	2.5	2.1	24.3
Spill/Bypass	kaf	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.1	0.0	0.0	0.0	13.3
Total River Release	kaf	2.4	2.7	2.8	1.2	1.1	1.2	1.2	1.2	16.1	3.1	2.5	2.1	37.6
Adams Tunnel Flow	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	26.6	13.6	25.4	13.3	10.0	250.9
Evaporation	kaf	0.4	0.2	0.1	0.0	0.0	0.3	0.4	0.7	0.8	0.7	0.6	0.5	4.7
End-Month Content	kaf	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	
End-Month Elevation	Ιt	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	
Adams Tunnel	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Tunnel Capacity	kaf	0.1	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	364.2
Actual delivery	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	26.6	13.6	25.4	13.3	10.0	250.9
% max delivery	왕	100	18	95	100	100	100	80	79	42	75	39	31	
Big T @ Lake Estes	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
n' m' ' 61							1.0		10.0	10 5	10.0			
Big Thompson inflow	kaf	2.2	1.4	1.3	1.2	1.0	1.2	2.8	12.8	18.5 7.4	10.8	5.5	3.1	61.8
Min river release	kaf	3.1	1.5	1.5 1.3	1.5 1.2	1.4 1.0	1.5 1.2	2.2		7.4	7.7	6.9 5.5	3.7 3.1	45.3 41.1
Act river release	kaf	2.2	1.4		0.0		0.0	0.6			7.7 3.1		0.0	20.7
Max div available Priority water div	kaf kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.6	5.9 0.0	11.1	0.0	0.0	0.0	20.7
Skim water diverted	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.6	5.9	11.1	3.1	0.0	0.0	20.7
% max diverted	Kal %	0.0	0.0	0.0	0.0	0.0	0.0	100	100	100	100	0.0	0.0	20.7
o max aivercea	70							100	100	100	100			
Irrigation demand	kaf	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.9
Irrigation delivery	kaf	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1		0.1	0.9
Total river release	kaf	2.3	1.4	1.4	1.3	1.0	1.2	2.3	7.0	7.5	7.8	5.6	3.2	42.0

TABLE 5B PAGE 3 of 8

Olympus Tunnel	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Tunnel Capacity	kaf	33.8	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	397.9
Actual delivery	kaf	0.0	5.8	31.9	33.7	30.5	33.8	26.5	32.4	24.6	28.4	13.2	9.9	270.7
% max delivery	용	0	18	94	100	100	100	81	96	75	84	39	30	
-														
Seepage and Evap	kaf	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2.0
Inflow to Flatiron	kaf	0.0	5.8	31.7	33.5	30.3	33.6	26.3	32.2	24.4	28.2	13.0	9.7	268.7
Carter Lake		I	nitial Co		19.9 kaf	M	aximum C		12.2 kaf	Мi	inimum C		6.0 kaf	
					7.35 ft				8.98 ft				.80 ft	
	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Pump from Flatiron	kaf	0.0	0.0	11.7	22.4	18.1	18.2	16.3	1.1	0.0	10.5	4.3	0.0	102.6
Carter to Flatiron	kaf	5.9	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9
Carter to Flatifoli	Kal	5.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9
Evaporation loss	kaf	0.1	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.3	0.2	2.1
Seepage loss	kaf	0.1	0.1	0.1	0.1	0.1		0.2	0.2	0.2	0.2	0.1	0.1	1.7
End-Month Targets	kaf	36.9	33.6	44.2	64.6	80.6	96.0	107.5	100.5	89.9	82.2		49.0	
End-Month Content	kaf	37.4	34.9	44.2	64.0	79.5	94.7	106.2	100.5	90.0	82.2	65.3	49.3	
End-Month Elevation		5682.08										5714.34		
Irrigation demand	kaf	6.4	2.3	2.3	2.4	2.4	2.7	4.4	6.4	8.0	15.5	18.7	13.6	85.1
Metered delivery	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Windy Gap demand	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.2	2.1	2.1	8.4
Total demand	kaf	6.4	2.3	2.3	2.4	2.4	2.7	4.4	6.4	10.0	17.7	20.8	15.7	93.5
Total delivery	kaf	6.4	2.3	2.3	2.4	2.4	2.7	4.4	6.4	10.0	17.7	20.8	15.7	93.5
% required delivery	용	100	100	100	100	100	100	100	100	100	100	100	100	
Shortage	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hansen Canal 930	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Minimum flow	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum flow	kaf	57.2	55.3	57.2	57.2		57.2	27.7	57.2	55.3	57.2	57.2	55.3	645.6
Actual flow	kaf	5.9	5.8	20.0	11.1	12.2	15.4	10.0	31.1	24.4	17.7	8.7	9.7	172.0
Dille Tunnel	2013	Oct	Nov	Dec	Jan	Feb	Mar	λnx	Малг	Jun	Jul	λυα	Son	Total
Dille lumei	2013		NOV	Dec			Mar 	Apr	May			Aug	Sep	10tai
Big T @ Canyon Moutl	h kaf	3.2	2.2	1.8	1.7	1.4	2.0	3.6	15.6	22.5	13.4	7.0	4.0	78.4
Less Estes skim	kaf	0.0	0.0	0.0	0.0		0.0	0.6	5.9	11.1	3.1	0.0	0.0	20.7
Big T irr (Estes)	kaf	0.1	0.0	0.1	0.1		0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.9
Handy Ditch release		1.2	0.0	0.0	0.0		0.0	1.2	1.2	1.2	1.8	2.9	1.7	11.2
Water available	kaf	2.1	2.2	1.9	1.8		2.0	1.9	8.6	10.3	8.6	4.2	2.4	47.4
Water diverted	kaf	2.1	2.2	0.0	0.0		0.0	1.9	8.6	10.3	8.6	4.2	2.4	40.3
% diverted	8	100	100	- / -				100	100	100	100	100	100	
Trifurcation Works	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Rels from Flatiron	kaf	5.9	5.8	20.0	11.1	12.2	15.4	10.0	31.1	24.4	17.7	8.7	9.7	172.0
Rels to 550 Canal	kaf	3.5	5.8	20.0	11.1	12.2	15.4	9.3	24.3	12.8	12.8	4.6	3.7	135.5
Big T irrigation	kaf	2.4	0.0	0.0	0.0	0.0	0.0	0.1	0.9	0.5	1.8	4.1	6.0	15.8

Dille Tunnel	kaf	2.1	2.2	0.0	0.0	0.0	0.0	1.9	8.6	10.3	8.6	4.2	2.4	40.3
Tot rels to river	kaf	4.5	2.2	0.0	0.0	0.0	0.0	2.6	15.4	21.9	13.5	8.3	8.4	76.8
Irrigation demand	kaf	2.4	0.0	0.0	0.0	0.0	0.0	0.1	0.9	0.5	1.8	4.1	6.0	15.8
Big T irr (Estes)	kaf	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.9
Windy Gap demand	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total requirement	kaf	2.5	0.0	0.1	0.1	0.0	0.0	0.2	1.0	0.6	1.9	4.2	6.1	16.7
Total delivery	kaf	2.5	0.0	0.1	0.1	0.0	0.0	0.2	1.0	0.6	1.9	4.2	6.1	16.7
<pre>% required delivery</pre>	%	100	0	100	100	0	0	100	100	100	100	100	100	
Shortage	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hansen Canal 550	2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
	1 6				11 1	10.0				10.0	10.0	4.6		125 5
Inflow from Flatiron		3.5	5.8	20.0	11.1	12.2	15.4	9.3	24.3	12.8	12.8	4.6	3.7	135.5
Maximum flow	kaf	33.8	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	397.9
Seepage loss	kaf	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2.4
Irrigation demand	kaf	0.8	0.4	0.4	0.4	0.4	0.4	0.5	0.7	0.5	1.1	1.0	1.1	7.7
Irrigation delivery	kaf	0.8	0.4	0.4	0.4	0.4	0.4	0.5	0.7	0.5	1.1	1.0	1.1	7.7
Minimum flow	kaf	2.5	2.4	6.1	6.1	5.6	6.1	2.4	2.5	2.4	2.5	2.5	2.4	43.5
Rels to Horsetooth	kaf	2.5	5.2	19.4	10.5	11.6	14.8	8.6	23.4	12.1	11.5	3.4	2.4	125.4
		_		. ,					-0 0 1 6				2 2 1 5	
Horsetooth Reservoir	<u>-</u>	Ir	nitial Co		94.5 kaf	Ma	aximum Co		52.0 kaf	M	inimum Co		3.0 kaf	
					5.36 ft	_ ,			7.66 ft	_			.81 ft	
	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow	kaf	2.5	5.2	19.4	10.5	11.6	14.8	8.6	23.4	12.1	11.5	3.4	2.4	125.4
Priority water div	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total irr delivery	kaf	14.7	1.8	2.1	2.3	2.1	2.2	3.8	9.1	11.3	24.0	25.2	12.1	110.7
rocar iii aciivery	Nai	11.7	1.0	2.1	2.3	2.1	2.2	3.0	٧. ـ	11.5	21.0	23.2	12.1	110.7
Evaporation loss	kaf	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.6	0.7	0.6	0.4	3.6
Seepage loss	kaf	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	1.7
End-Month Targets	kaf	82.3	85.2	102.3	110.3	119.6	132.0	136.2	150.0	150.0	136.6	114.1	102.0	±.,
End-Month Content	kaf	82.0	85.2	102.3	110.2	119.5	131.9	136.2	150.0	150.0	136.6	114.1	103.9	
End-Month Elevation							5417.24							
End Politin Elevation	10	3307.03	3307.20	5100.21	3103.00	3110.30	5117.21	3117.31	3120.00	3120.00	3113.73	3107.20	5101.22	
Irrigation demand	kaf	13.1	0.0	0.0	0.0	0.0	0.0	0.7	3.5	3.2	13.0	15.9	5.9	55.3
Metered delivery	kaf	1.6	1.8	2.1	2.3	2.1	2.2	3.1	5.6	6.0	9.5	7.8	5.1	49.2
Windy Gap demand	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	1.5	1.5	1.1	6.2
Total demand	kaf	14.7	1.8	2.1	2.3	2.1	2.2	3.8	9.1	11.3	24.0	25.2	12.1	110.7
Total irr delivery	kaf	14.7	1.8	2.1	2.3	2.1	2.2	3.8	9.1	11.3	24.0	25.2	12.1	110.7
% required delivery	RGI %	100	100	100	100	100	100	100	100	100	100	100	100	110.7
Shortage	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
biior cage	naı	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total CBT Delivery	kaf	24.4	4.5	4.9	5.2	4.9	5.3	8.9	17.2	18.3	41.0	47.6	31.8	214.0
TOOMI ODI DOTIVOIT	7202		1.5		3.2		3.3	0.5		20.5	11.0	17.0	31.0	221.0
Windy Gap Ownership	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Accrual	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5	0.0	0.0	0.0	0.0	4.5
Total release	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	3.7	3.6	3.2	14.6
Spill	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
End-month Ownership	kaf	24.3	24.3	24.3	24.3	24.3	24.3	24.3	28.8	24.7	21.0	17.4	14.2	

PUMPING AND GENERATION OPERATIONS

Green Mtn Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Generation	gwh	18.600	18.000	18.600	18.600	8.400	9.300	18.000	18.600	18.000	18.600	18.600	18.000	201.300
Generation	gwh	4.495	3.760	3.636	2.553	2.044	2.247	0.606	0.658	1.404	5.316	5.088	4.663	36.470
% Max Generation	8	24	21	20	14	24	24	3	4	8	29	27	26	
Ave kwh/af		189	186	182	176	172	168	168	178	190	192	184	174	
Willow Crk Pumping	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping	kaf	27.7	26.8	0.0	0.0	0.0	0.0	26.8	27.7	26.8	27.7	27.7	26.8	218.0
Actual pumping	kaf	1.5	1.5	0.0	0.0	0.0	0.0	4.9	8.3	3.1	1.3	0.4	0.3	21.3
Pump energy	gwh	0.320	0.320	0.000	0.000	0.000	0.000	1.044	1.768	0.660	0.277	0.085	0.064	4.538
% max pumping	%	5	6					18	30	12	5	1	1	
Average kwh/af		213	213					213	213	213	213	213	213	
Lake Granby Pumping	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping	kaf	36.9	35.7	36.9	36.9	33.3	36.9	35.7	36.9	35.7	36.9	36.9	35.7	434.4
Actual pumping	kaf	0.0	6.9	33.0	32.7	29.6	32.7	18.5	3.2	0.0	17.7	12.7	10.1	197.1
Pump energy	qwh	0.000	1.028	4.983	5.036	4.677	5.330	3.108	0.534	0.000	2.814	2.045	1.656	31.211
% max pumping	%		19	89	89	89	89	52	9		48	34	28	
Average kwh/af			149	151	154	158	163	168	167		159	161	164	
Marys Lake Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Flow	 kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	26.6	13.6	25.4	13.3	10.0	
Max generation	qwh	6.060	0.000	2.980	6.060	5.400	6.060	5.840	6.060	5.840	6.060	6.060	5.840	62.260
Generation	gwh	0.000	0.000	2.980	6.060	5.400	6.060	4.600	4.720	2.420	4.540	2.360	1.700	40.840
% Max Generation	8	0.000	0.000	100	100	100	100	79	78	41	75	39	29	10.010
Ave kwh/af	· ·			176	179	177	179	177	177	178	179	177	170	
Lake Estes Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Flow	kaf	0.1	5.8	32.0	33.8	30.5	33.8	26.0	26.6	13.6	25.4	13.3	10.0	
Max generation	gwh	9.980	9.660	9.980	9.980	9.100	9.980	9.660	9.980	9.660	14.920	14.920	14.450	132.270
Generation	gwh	0.000	2.420	9.980	9.980	9.100	9.980	9.660	9.980	6.300	11.200	6.150	4.400	89.150
% Max Generation	%		25	100	100	100	100	100	100	65	75	41	30	
Ave kwh/af			417	440	440	444	440	441	440	463	441	462	440	
Pole Hill Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Olympus Tunnel flow	kaf	0.0	5.8	31.9	33.7	30.5	33.8	26.5	32.4	24.6	28.4	13.2	9.9	270.7
Max generation	gwh	25.260	0.000	12.910	25.260	22.800	25.260	24.460	25.260	24.460	25.260	25.260	24.460	260.650
Generation	gwh	0.000	3.860	23.690	25.050	11.540	12.910	19.640	24.060	18.280	21.060	9.800	6.590	176.480
% Max Generation	ુ			184	99	51	51	80	95	75	83	39	27	
Ave kwh/af				1402	743	378	382	741	743	743	742	742	666	

Flatiron 1&2 Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow to Flatiron Max generation Generation % Max Generation	kaf gwh gwh %	0.0 15.100 0.000	5.8 28.130 4.540	31.7 29.040 27.260 94	33.5 29.040 28.800 99	30.3 13.640 13.640	33.6 15.100 15.100	26.3 28.130 23.180 82	32.2 29.040 27.680 95	24.4 28.130 21.860 78	28.2 29.040 24.360 84	13.0 15.100 11.600	9.7 14.600 8.030 55	268.7 274.090 206.050
Ave kwh/af			783	860	860	892	893	881	860	896	864	892	828	
Flatiron 3 Pump/Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping Pump from Flatiron Pump energy % max pumping Average kwh/af	kaf kaf gwh %	24.5 0.0 0.000	24.7 0.0 0.000	25.0 11.7 3.077 47 263	23.0 22.4 6.294 97 281	18.6 18.1 5.611 97 310	18.6 18.2 6.206 98 341	16.4 16.3 6.047 99 371	16.6 1.1 0.416 7 378	17.0 0.0 0.000	18.7 10.5 3.560 56 339	20.3 4.3 1.350 21 314	21.8 0.0 0.000	245.2 102.6 32.561
Max turbine rels Carter to Flatiron Maximum generation Actual generation % max generation Average kwh/af	kaf kaf gwh gwh %	22.0 5.9 3.938 1.056 27 179	20.5 0.0 0.000 0.000	21.6 0.0 0.000 0.000	22.9 0.0 0.000 0.000	21.9 0.0 0.000 0.000	25.2 0.0 0.000 0.000	25.3 0.0 0.000 0.000	26.3 0.0 0.000 0.000	24.9 0.0 0.000 0.000	25.2 0.0 0.000 0.000	24.4 0.0 0.000 0.000	22.4 0.0 0.000 0.000	282.6 5.9 3.938 1.056
Big Thompson Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Total release Turbine release Wasteway release Max generation Generation % Max Generation Ave kwh/af	kaf kaf kaf gwh gwh	4.5 4.5 0.0 3.940 0.500 13 111	2.2 2.2 0.0 1.700 0.189 11 86	0.0 0.0 0.0 0.000 0.000	0.0 0.0 0.0 0.000 0.000	0.0 0.0 0.0 0.000 0.000	0.0 0.0 0.0 0.000 0.000	2.6 2.6 0.0 1.700 0.223 13 86	15.4 15.4 0.0 3.940 2.280 58 148	21.9 21.9 0.0 3.800 3.480 92 159	13.5 13.5 0.0 3.940 2.000 51 148	8.3 8.3 0.0 3.940 0.960 24 116	8.4 8.4 0.0 3.800 0.980 26 117	76.8 76.8 0.0 26.760 10.612
PROJECT GENERATION														
Project Generation	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Base Generation: Big Thompson Green Mtn Flatiron 3 Total	gwh gwh gwh gwh	0.500 4.495 1.056 6.051	0.189 3.760 0.000 3.949	0.000 3.636 0.000 3.636	0.000 2.553 0.000 2.553	0.000 2.044 0.000 2.044	0.000 2.247 0.000 2.247	0.223 0.606 0.000 0.829	2.280 0.658 0.000 2.938	3.480 1.404 0.000 4.884	2.000 5.316 0.000 7.316	0.960 5.088 0.000 6.048	0.980 4.663 0.000 5.643	10.612 36.470 1.056 48.138
Load Following Gene Marys Lake Lake Estes Pole Hill Flatiron 1,2 Total	eration gwh gwh gwh gwh gwh	0.000 0.000 0.000 0.000 0.000	0.000 2.420 3.860 4.540 10.820	2.980 9.980 23.690 27.260 63.910	6.060 9.980 25.050 28.800 69.890	5.400 9.100 11.540 13.640 39.680	6.060 9.980 12.910 15.100 44.050	4.600 9.660 19.640 23.180 57.080	4.720 9.980 24.060 27.680 66.440	2.420 6.300 18.280 21.860 48.860	4.540 11.200 21.060 24.360 61.160	2.360 6.150 9.800 11.600 29.910	1.700 4.400 6.590 8.030 20.720	40.840 89.150 176.480 206.050 512.520

Total generation	_		14.769 57.490		72.443 88.940	41.724 59.340		57.909 87.790	69.378 92.880		68.476 97.820	35.958 83.880	26.363 81.150	560.658 961.268
Project Pump End		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Granby Willow Creek Flatiron 3 Total pump energ	gwh gwh gwh	0.000 0.320 0.000 0.320	1.028 0.320 0.000 1.348	4.983 0.000 3.077 8.060	5.036 0.000 6.294 11.330	4.677 0.000 5.611 10.288	5.330 0.000 6.206 11.536	3.108 1.044 6.047 10.199	0.534 1.768 0.416 2.718	0.000 0.660 0.000 0.660	2.814 0.277 3.560 6.651	2.045 0.085 1.350 3.480	1.656 0.064 0.000 1.720	31.211 4.538 32.561 68.310
Total net genera	ation gwh	5.731	13.421	59.486	61.113	31.436	34.761	47.710	66.660	53.084	61.825	32.478	24.643	492.348
Release Flexibi	lity 2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Adams Tunnel	Min kaf Max kaf	0.1	5.8 5.8	32.0 32.0	33.8 33.8	30.5	33.8 33.8	26.0 26.0	26.6 26.6	13.6 13.6	25.4 25.4	13.3 13.3	10.0	
Marys Lake Marys Lake	Min gwh Max gwh	0.000	0.000	2.980 2.980	6.060 6.060	5.400 5.400	6.060 6.060	4.600 4.600	4.720 4.720	2.420 2.420	4.540 4.540	2.360 2.360	1.700 1.700	
Lake Estes Lake Estes	Min gwh Max gwh	0.000	2.420 2.420	9.980 9.980	9.980 9.980	9.100 9.100	9.980 9.980	9.660 9.660	9.980 9.980	6.300 6.300	11.200 11.200	6.150 6.150	4.400 4.400	
Olympus Tunnel Olympus Tunnel	Min kaf Max kaf	0.0	5.8 5.8	31.9 31.9	33.7 33.7	30.5 30.5	33.8 33.8	26.5 26.5	32.4 32.4	24.6 24.6	28.4 28.4	13.2 13.2	9.9 9.9	
Pole Hill Pole Hill	Min gwh Max gwh	0.000	0.000	12.910 12.910	25.190 25.190	22.800 22.800	25.260 25.260	19.800 19.800	24.220 24.220	18.420 18.420	21.220 21.220	9.960 9.960	6.730 6.730	
Flatiron 1&2 Flatiron 1&2	Min gwh Max gwh	0.000	4.540 4.540	27.260 27.260	28.800 28.800	13.640 13.640	15.100 15.100	23.180 23.180	27.680 27.680	21.860 21.860	24.360 24.360	11.600 11.600	8.030 8.030	
Load following Load following	Min gwh Max gwh	0.000	6.960 6.960	53.130 53.130	70.030 70.030	50.940 50.940	56.400 56.400	57.240 57.240	66.600 66.600	49.000 49.000	61.320 61.320	30.070 30.070	20.860	
Total project Total project	Min gwh Max gwh	6.051 6.051	10.909 10.909	56.766 56.766	72.583 72.583	52.984 52.984	58.647 58.647	58.069 58.069	69.538 69.538	53.884 53.884	68.636 68.636	36.118 36.118	26.503 26.503	
GENERATION CAPA														
Project Generat		0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Base Generation Green Mtn Flatiron 3		6.0	5.2	4.9	3.4	3.0	3.0	0.8	0.9	2.0	7.1	6.8	6.5	
Big Thompson Total base loa	mw	0.7 8.1	0.3 5.5	4.9	3.4	3.0	3.0	0.3 1.1	3.1 4.0	4.8 6.8	2.7 9.8	1.3 8.1	1.4 7.9	

Load Following Ger	eration:												
Marys Lake													
Min Capacity	mw	0.0	0.0	2.7	8.1	1.4	8.1	0.0	0.0	0.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.4	1.0	12.0	1.6	12.0	4.3	3.9	10.7	4.7	10.6	12.0
Max Capacity	mw	0.0	2.7	8.1	8.1	8.1	8.1	8.1	8.1	6.3	8.1	6.0	5.0
Duration	hr/d	12.0	11.6	23.0	12.0	22.0	12.0	18.7	19.1	12.3	18.3	12.5	11.0
Lake Estes													
Min Capacity	mw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.4	11.0	11.0	12.4	11.0	12.0	12.0	12.0	12.0	12.0	12.0
Max Capacity	mw	0.0	7.0	45.0	45.0	40.1	45.0	32.4	33.1	16.1	31.5	15.7	12.7
Duration	hr/d	12.0	11.6	10.0	10.0	11.7	10.0	12.0	12.0	12.0	12.0	12.0	12.0
Pole Hill													
Min Capacity	mw	0.0	0.0	0.0	34.0	0.0	34.0	0.0	34.0	0.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.4	0.6	12.0	1.8	12.0	4.6	12.0	6.0	3.2	12.0	12.0
Max Capacity	mw	0.0	11.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	27.6	19.7
Duration	hr/d	12.0	11.6	23.4	12.0	22.4	12.0	19.5	12.0	18.0	20.8	12.0	12.0
Flatiron 1&2													
Min Capacity	mw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.4	10.3	8.9	11.5	8.8	12.0	9.8	12.0	12.0	12.0	12.0
Max Capacity	mw	0.0	13.0	83.4	86.0	79.2	86.0	64.9	84.4	60.2	70.8	32.0	23.4
Duration	hr/d	12.0	11.6	10.3	10.0	11.4	10.0	12.0	10.1	12.0	12.0	12.0	12.0
Total Load Followi	.ng												
Min Capacity	mw	0.0	0.0	2.7	42.1	1.4	42.1	0.0	34.0	0.0	0.0	0.0	0.0
Max Capacity	mw	0.0	33.7	170.5	173.1	161.4	173.1	139.4	159.6	116.6	144.4	81.3	60.8
Total Project Capa	city												
Min Capacity	mw	8.1	5.5	7.6	45.5	4.4	45.1	1.1	38.0	6.8	9.8	8.1	7.9
Max Capacity	mw	8.1	39.2	175.4	176.5	164.4	176.1	140.5	163.6	123.4	154.2	89.4	68.7

CBTAOP V2.06 Run: 05-Nov-2013 13:04
Maximum Reasonable Plan (60-Percent Quota)

Pump frm Windy Gap kaf

0.0

0.0

0.0

0.0

COLORADO-BIG THOMPSON MONTHLY OPERATIONS

HYDROLOGY OPERATIONS _____ Initial Cont 107.1 kaf Maximum Cont 154.6 kaf Minimum Cont Green Mtn Reservoir Elev 7925.35 ft Elev 7950.38 ft Elev 7804.68 ft 2013 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug ____ _____ Dillon Inflow 4.1 72.2 kaf 6.4 4.9 4.0 3.5 4.4 7.9 43.8 108.4 27.1 12.0 298.7 Dillon-Grn Mtn Gain kaf 6.7 4.8 3.9 3.7 3.2 4.2 8.6 30.2 69.2 47.3 20.2 11.1 213.1 Undepleted Inflow 13.1 9.7 8.0 7.7 6.7 8.6 16.5 74.0 177.6 119.5 47.3 23.1 kaf 511.8 -6.5 -6.2 35.0 Depletion kaf -2.0 0.0 0.0 1.0 8.4 25.0 15.0 10.0 0.0 79.7 Depleted Inflow kaf 19.6 15.9 10.0 7.7 6.7 7.6 8.1 49.0 142.6 104.5 37.3 23.1 432.1 Turbine Release kaf 23.8 20.2 20.0 14.5 11.9 18.4 12.8 28.6 86.9 88.7 51.7 42.6 420.1 0.0 0.0 0.0 Spill/Waste kaf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 20.2 14.5 11.9 12.8 28.6 86.9 51.7 42.6 Total River Release kaf 20.0 18.4 88.7 420.1 60 60 60 60 100 Min Release cfs 60 60 60 100 60 60 60 Total River Release cfs 387 339 325 236 299 215 465 1460 1443 841 214 716 0.2 0.2 0.3 0.4 0.7 Evaporation kaf 0.4 0.0 0.0 0.0 0.8 0.6 0.5 4.1 End-Month Targets kaf 102.5 98.0 88.0 81.2 76.0 65.0 60.0 80.0 135.0 150.0 135.0 88.0 81.2 65.0 60.0 135.0 End-Month Content kaf 102.5 98.0 76.0 80.0 150.0 135.0 115.0 End-Month Elevation ft 7922.53 7919.66 7912.92 7908.01 7904.05 7894.98 7890.45 7907.11 7940.78 7948.20 7940.78 7929.98 Willow Crk Reservoir Initial Cont 9.3 kaf Maximum Cont 10.0 kaf Minimum Cont 7.2 kaf Elev 8125.63 ft Elev 8128.14 ft Elev 8116.90 ft 2013 Oct Dec Jan Feb Mar Apr May Jul Aug Jun Native Inflow kaf 1.0 0.8 0.8 0.8 0.7 1.0 3.4 30.6 33.2 7.8 2.8 1.7 84.6 Min Release 1.5 0.4 0.4 0.4 2.6 2.2 0.5 0.4 10.0 kaf 0.4 0.4 0.4 0.4 kaf 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 Spill/Bypass 0.0 0.0 0.0 2.7 Total River Release kaf 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1.5 5.3 2.2 0.5 0.4 12.7 Pumped to Granby 1.5 1.5 0.0 0.0 0.0 0.0 4.6 27.2 26.8 6.5 1.7 1.7 kaf 71.5 Evaporation kaf 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.7 End-Month Targets kaf 7.2 7.2 9.0 10.0 9.0 9.0 kaf 7.2 7.6 8.0 8.3 8.9 7.2 9.0 10.0 9.0 End-Month Content 8.3 9.0 End-Month Elevation ft 8121.73 8116.90 8118.74 8120.48 8121.73 8124.12 8116.90 8124.50 8128.14 8124.50 8126.37 8124.50 Lake Granby Initial Cont 371.0 kaf Maximum Cont 539.8 kaf Minimum Cont 76.5 kaf Elev 8254.70 ft Elev 8280.01 ft Elev 8186.91 ft Nov 2013 Dec Jan Mar Apr Mav Jun Jul Aug Oct Feb Total ------Native inflow kaf 1.9 1.2 1.2 1.6 1.3 1.7 5.1 27.0 53.8 23.5 7.6 4.3 130.2 2.4 2.7 2.8 1.2 77.4 30.5 Rels frm Shadow Mtn kaf 1.2 1.1 1.2 14.8 5.5 2.1 142.9

0.0

5.0

10.0

5.0

0.0

0.0

0.0

20.0

0.0

														IAGI
Pump frm Willow Crk	kaf	1.5	1.5	0.0	0.0	0.0	0.0	4.6	27.2	26.8	6.5	1.7	1.7	71.5
_	kaf	5.8	5.4		2.8	2.4	2.9	15.9	79.0	163.0	60.5	14.8	8.1	364.6
	kaf	1.2	1.2		1.2	1.1	1.2	1.2	3.5	4.5	5.3		4.5	31.1
	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total River Release	kaf	1.2	1.2	1.2	1.2	1.1	1.2	1.2	3.5	4.5	5.3	5.0	4.5	31.1
Pumped to Shadow Mtn	kaf	0.0	6.8	32.8	32.7	29.6	32.7	19.8	0.0	0.0	0.0	0.0	4.9	159.3
_	kaf	1.4	0.6	0.2	0.0	0.0	0.7	1.1	1.9	2.8	2.8	2.3	2.1	15.9
-	kaf	0.3	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.4	0.4		0.5	4.0
	kaf	373.9	370.4	339.9	308.5	280.0	248.0	241.6	314.9	470.2	522.2	529.2	525.3	1.0
End-Month Elevation				8249.44										
Hid Hollen Bicvacion		0233.10	0251.00	0217.11	0213.71	0230.01	0252.50	0231.03	0213.00	0270.13	0277.30	0270.51	0270.00	
Shadow Mtn		Ir	nitial Co	ont :	17.6 kaf	Ma	aximum Co	ont :	18.4 kaf	M	inimum C	ont	16.6 kaf	
			E	lev 8366	5.57 ft		E	lev 836	7.00 ft		E	lev 836	6.02 ft	
2	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Native inflow	kaf	2.9	1.8	1.9	2.3	2.0	2.6	7.7	40.5	80.7	35.3	11.5	6.5	195.7
	kaf	0.0	6.8	32.8	32.7	29.6	32.7	19.8	0.0	0.0	0.0		4.9	159.3
-	kaf	2.9	8.6	34.7	35.0	31.6	35.3	27.5	40.5	80.7	35.3	11.5		355.0
IOCAI IIIIIOW	Kal	2.9	0.0	34.7	35.0	31.0	35.3	27.5	40.5	00.7	35.3	11.5	11.4	355.0
Min River Release	kaf	2.2	2.7	2.8	1.2	1.1	1.2	1.2	1.2	3.0	3.1	2.5	2.1	24.3
Spill/Bypass	kaf	0.2	0.0	0.0	0.0	0.0	0.0	0.0	13.6	74.4	27.4	3.0	0.0	118.6
Total River Release	kaf	2.4	2.7	2.8	1.2	1.1	1.2	1.2	14.8	77.4	30.5	5.5	2.1	142.9
	, ,	0 1		21 0	22.0	20 5	22.0	05.0	05.0	0 5	4 1	- 4	0 0	005.4
	kaf	0.1	5.7	31.8	33.8	30.5	33.8	25.9	25.0	2.5	4.1	5.4	8.8	207.4
	kaf	0.4	0.2		0.0	0.0	0.3	0.4	0.7	0.8	0.7		0.5	4.7
	kaf	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	
End-Month Elevation	Ιt	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	8366.57	
Adams Tunnel 2	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
	kaf	0.1	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	364.2
-	kaf	0.1	5.7	31.8	33.8	30.5	33.8	25.9	25.0	2.5	4.1	5.4	8.8	207.4
% max delivery	%	100	17	94	100	100	100	79	74	8	12	16	27	
Big T @ Lake Estes 2	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Big Thompson inflow	kaf	2.2	1.4	1.3	1.2	1.0	1.2	3.7	19.3	47.5	26.5	13.8	5.8	124.9
Min river release	kaf	3.1	1.5	1.5	1.5	1.4	1.5	2.2	6.9	7.4	7.7	6.9	3.7	45.3
Act river release	kaf	2.2	1.4	1.3	1.2	1.0	1.2	2.2	10.4	17.2	7.7	6.9	3.7	56.4
Max div available	kaf	0.0	0.0	0.0	0.0	0.0	0.0	1.5	12.4	40.1	18.8	6.9	2.1	81.8
Priority water div	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Skim water diverted	kaf	0.0	0.0	0.0	0.0	0.0	0.0	1.5	8.9	30.3	18.8	6.9	2.1	68.5
% max diverted	왕							100	72	76	100	100	100	
Tanadanahdan daman d	1	0 1	0 0	0 0	0 1	0 0	0 0	0 1	0 1	0 1	0 1	0 1	0 1	0 0
3	kaf	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1		0.1	0.8
3	kaf	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1			0.8
Total river release	kaf	2.3	1.4	1.3	1.3	1.0	1.2	2.3	10.5	17.3	7.8	7.0	3.8	57.2
Olympus Tunnel 2	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
_														

Max Tunnel Capacity Actual delivery % max delivery	kaf kaf %	33.8 0.0 0	32.7 5.7 17	33.8 31.8 94	33.8 33.7 100	30.5 30.5 100	33.8 33.8 100	32.7 27.3 83	33.8 33.8 100	32.7 32.7 100	33.8 22.8 67	33.8 12.2 36	32.7 10.8 33	397.9 275.1
Seepage and Evap Inflow to Flatiron	kaf kaf	0.0	0.0 5.7	0.2 31.6	0.2 33.5	0.2 30.3	0.2 33.6	0.2 27.1	0.2 33.6	0.2 32.5	0.2 22.6	0.2 12.0	0.2 10.6	2.0 273.1
Carter Lake		In	nitial Co		9.9 kaf	Ma	aximum Co		12.2 kaf 8.98 ft	M	inimum Co		6.0 kaf 5.80 ft	
	2013	Oct	Nov	Dec Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Pump from Flatiron Carter to Flatiron	kaf kaf	0.0 5.9	0.0	11.6	22.3	18.1	18.1	16.2 0.0	2.0	0.0	0.0	0.0	0.0	88.3 5.9
Evaporation loss Seepage loss End-Month Targets End-Month Content	kaf kaf kaf kaf	0.1 0.1 36.9 37.4	0.1 0.1 33.7 35.0	0.0 0.1 44.4 44.4	0.1 0.1 65.0 64.3	0.1 0.1 81.0 80.0	0.1 0.2 96.6 95.3	0.2 0.2 108.3 107.1	0.2 0.2 103.1 103.1	0.3 0.2 92.6 93.7	0.4 0.2 77.7 78.7	0.3 0.1 60.8 62.0	0.2 0.1 49.0 49.0	2.1 1.7
End-Month Elevation		5682.08												
Irrigation demand	kaf	6.4	2.2	2.1	2.2	2.2	2.5	4.0	5.6	6.9	12.2	14.2	10.6	71.1
Metered delivery Windy Gap demand	kaf kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 2.1	0.0 2.1	0.0 8.4
Total demand	kaf	6.4	2.2	2.1	2.2	2.2	2.5	4.0	5.6	8.9	14.4	16.3	12.7	79.5
Total delivery	kaf	6.4	2.2	2.1	2.2	2.2	2.5	4.0	5.6	8.9	14.4	16.3	12.7	79.5
% required delivery	%	100	100	100	100	100	100	100	100	100	100	100	100	
Shortage	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hansen Canal 930	2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Minimum flow	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum flow	kaf	57.2	55.3	57.2	57.2	51.6	57.2	27.7	57.2	55.3	57.2	57.2	55.3	645.6
Actual flow	kaf	5.9	5.7	20.0	11.2	12.2	15.5	10.9	31.6	32.5	22.6	12.0	10.6	190.7
Dille Tunnel	2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Big T @ Canyon Mouth	n kaf	3.2	2.2	1.8	1.7	1.4	2.0	5.9	30.8	64.4	34.2	19.2	8.5	175.3
Less Estes skim	kaf	0.0	0.0	0.0	0.0	0.0	0.0	1.5	8.9	30.3	18.8	6.9	2.1	68.5
Big T irr (Estes)	kaf	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.8
Handy Ditch release	kaf	1.2	0.0	0.0	0.0	0.0	0.0	1.2	1.2	1.2	1.8	2.9	1.7	11.2
Water available	kaf	2.1	2.2	1.8	1.8	1.4	2.0	3.3	20.8	33.0	13.7	9.5	4.8	96.4
Water diverted	kaf	2.1	2.2	0.0	0.0	0.0	0.0	3.3	15.3	0.0	4.5	9.5	4.8	41.7
% diverted	%	100	100					100	74		33	100	100	
Trifurcation Works	2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Rels from Flatiron	kaf	5.9	5.7	20.0	11.2	12.2	15.5	10.9	31.6	32.5	22.6	12.0	10.6	190.7
Rels to 550 Canal	kaf	3.5	5.7	20.0	11.2	12.2	15.5	9.3	22.2	1.9	2.4	2.2	4.1	110.2
Big T irrigation	kaf	2.4	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.3	1.4	2.9	4.4	12.0
Dille Tunnel	kaf	2.1	2.2	0.0	0.0	0.0	0.0	3.3	15.3	0.0	4.5	9.5	4.8	41.7
Tot rels to river	kaf	4.5	2.2	0.0	0.0	0.0	0.0	4.9	24.7	30.6	24.7	19.3	11.3	122.2

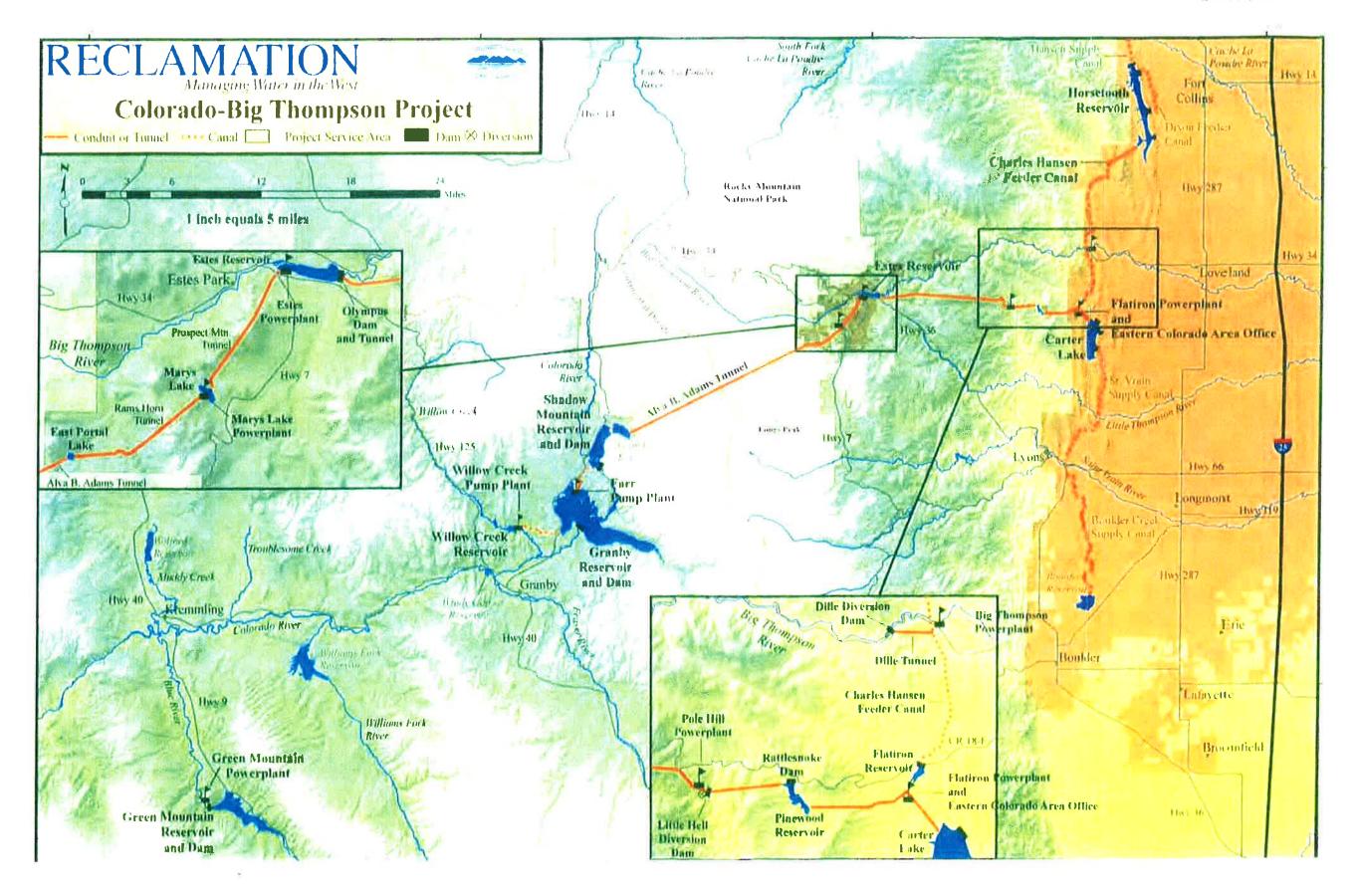
TABLE 5C PAGE 4 of 8

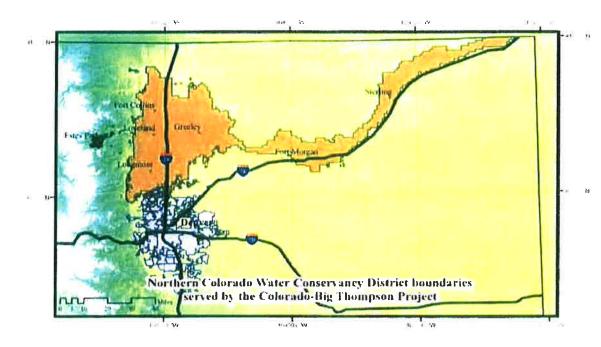
Irrigation demand	kaf	2.4	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.3	1.4	2.9	4.4	12.0
Big T irr (Estes)	kaf	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.8
Windy Gap demand	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total requirement	kaf	2.5	0.0	0.0	0.1	0.0	0.0	0.2	0.6	0.4	1.5	3.0	4.5	12.8
Total delivery	kaf	2.5	0.0	0.0	0.1	0.0	0.0	0.2	0.6	0.4	1.5	3.0	4.5	12.8
% required delivery	용	100	0	0	100	0	0	100	100	100	100	100	100	
Shortage	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hansen Canal 550	2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow from Flatiro	n kaf	3.5	5.7	20.0	11.2	12.2	15.5	9.3	22.2	1.9	2.4	2.2	4.1	110.2
Maximum flow	kaf	33.8	32.7	33.8	33.8	30.5	33.8	32.7	33.8	32.7	33.8	33.8	32.7	397.9
Seepage loss	kaf	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2.4
Irrigation demand	kaf	0.8	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.5	1.0	0.2	0.2	6.9
Irrigation delivery		0.8	0.3	0.4	0.4	0.3	0.4	0.4	0.7	0.5	1.0	0.8	0.9	6.9
3	kaf		2.4		6.1						1.0			
Minimum flow		2.5		6.1		5.6	6.1	2.4	2.5	1.2		1.2	1.2	38.5
Rels to Horsetooth	kaf	2.5	5.2	19.4	10.6	11.7	14.9	8.7	21.3	1.2	1.2	1.2	3.0	100.9
Horsetooth Reservoi	r	Iı	nitial Co	ont 9	94.5 kaf	Ma	aximum Co	nt 1!	52.0 kaf	M	inimum Co	nt 1	3.0 kaf	
			E	Lev 5395	36 ft		El	ev 542'	7.66 ft		El	ev 5316	.81 ft	
	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow	kaf	2.5	5.2	19.4	10.6	11.7	14.9	8.7	21.3	1.2	1.2	1.2	3.0	100.9
Priority water div	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total irr delivery	kaf	14.7	1.8	2.0	2.3	2.1	2.2	3.6	7.7	10.2	18.5	18.3	9.7	93.1
Evaporation loss	kaf	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.6	0.6	0.5	0.4	3.4
Seepage loss	kaf	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	1.7
End-Month Targets	kaf	82.3	85.2	102.4	110.5	120.0	132.5	136.9	150.0	139.6	120.9	102.5	97.2	
End-Month Content	kaf	82.0	85.2	102.4	110.4	119.8	132.3	136.9	150.0	140.2	122.1	104.4	97.2	
End-Month Elevation	ft	5387.09	5389.26	5400.30	5405.12		5417.46				5411.85	5401.52	5397.07	
Irrigation demand	kaf	13.1	0.0	0.0	0.0	0.0	0.0	0.6	2.3	2.3	7.8	9.3	3.7	39.1
Metered delivery	kaf	1.6	1.8	2.0	2.3	2.1	2.2	3.0	5.4	5.8	9.2	7.5	4.9	47.8
Windy Gap demand	kaf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	1.5	1.5	1.1	6.2
Total demand	kaf	14.7	1.8	2.0	2.3	2.1	2.2	3.6	7.7	10.2	18.5	18.3	9.7	93.1
Total irr delivery	kaf	14.7	1.8	2.0	2.3	2.1	2.2	3.6	7.7	10.2	18.5	18.3	9.7	93.1
-	Nar									10.2	10.5	10.5	2.1	23.1
% mamified delitromer	0,									100	100	100	100	
% required delivery		100	100	100	100	100	100	100	100	100	100	100	100	0 0
<pre>% required delivery Shortage</pre>	% kaf									100 0.0	100 0.0	100	100	0.0
		100	100	100	100	100	100	100	100					0.0 177.7
Shortage	kaf kaf	100	100	100	100	100	100	100	100	0.0	0.0	0.0	0.0	
Shortage Total CBT Delivery Windy Gap Ownership	kaf kaf 2013	100 0.0 24.4 Oct	100 0.0 4.3 Nov	100 0.0 4.5 Dec	100 0.0 5.0 Jan	100 0.0 4.6 Feb	100 0.0 5.1 Mar	100 0.0 8.2 Apr	100 0.0 14.6 May	0.0 15.9 Jun	0.0 31.7 Jul	0.0 34.8 Aug	0.0 24.6 Sep	177.7 Total
Shortage Total CBT Delivery Windy Gap Ownership Accrual	kaf kaf 2013 kaf	100 0.0 24.4 Oct	100 0.0 4.3 Nov 	100 0.0 4.5 Dec	100 0.0 5.0 Jan 	100 0.0 4.6 Feb	100 0.0 5.1 Mar 	100 0.0 8.2 Apr 4.5	100 0.0 14.6 May 	0.0 15.9 Jun 	0.0 31.7 Jul 	0.0 34.8 Aug 	0.0 24.6 Sep 	177.7 Total 18.0
Shortage Total CBT Delivery Windy Gap Ownership Accrual Total release	kaf kaf 2013 kaf kaf	100 0.0 24.4 Oct 0.0 0.0	100 0.0 4.3 Nov 0.0 0.0	100 0.0 4.5 Dec 0.0 0.0	100 0.0 5.0 Jan 0.0 0.0	100 0.0 4.6 Feb 0.0 0.0	100 0.0 5.1 Mar 0 0.0 0.0	100 0.0 8.2 Apr 4.5 0.0	100 0.0 14.6 May 9.0 0.0	0.0 15.9 Jun 4.5 4.1	0.0 31.7 Jul 0.0 3.7	0.0 34.8 Aug 0.0 3.6	0.0 24.6 Sep 0.0 3.2	177.7 Total 18.0 14.6
Shortage Total CBT Delivery Windy Gap Ownership Accrual	kaf kaf 2013 kaf kaf kaf	100 0.0 24.4 Oct	100 0.0 4.3 Nov 	100 0.0 4.5 Dec	100 0.0 5.0 Jan 	100 0.0 4.6 Feb	100 0.0 5.1 Mar 	100 0.0 8.2 Apr 4.5	100 0.0 14.6 May 	0.0 15.9 Jun 	0.0 31.7 Jul 	0.0 34.8 Aug 	0.0 24.6 Sep 	177.7 Total 18.0

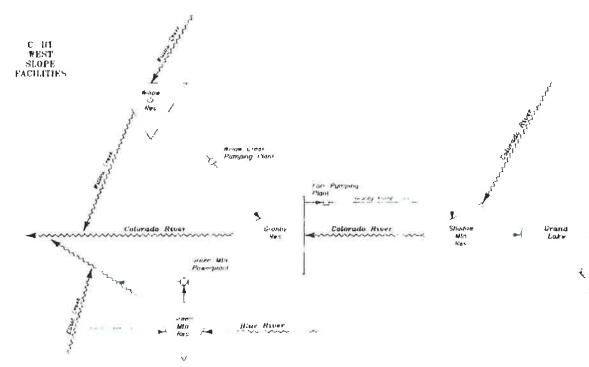
PUMPING AND GENERATION OPERATIONS

TABLE 5C PAGE 5 of 8

Green Mtn Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Max Generation	gwh	18.600	18.000	18.600	18.600	8.400	9.300	17.440	18.600	18.000	18.600	18.600	18.000	200.740
Generation	gwh	4.495	3.760	3.636	2.553	2.044	3.052	2.049	4.733	16.554	18.387	10.717	8.499	80.479
% Max Generation	용	24	21	20	14	24	33	12	25	92	99	58	47	
Ave kwh/af		189	186	182	176	172	166	160	165	190	207	207	200	
Willow Crk Pumping	2013	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping	kaf	27.7	26.8	0.0	0.0	0.0	0.0	26.8	27.7	26.8	27.7	27.7	26.8	218.0
Actual pumping	kaf	1.5	1.5	0.0	0.0	0.0	0.0	4.6	27.2	26.8	6.5	1.7	1.7	71.5
Pump energy	gwh	0.320	0.320	0.000	0.000	0.000	0.000	0.980	5.794	5.708	1.385	0.362	0.362	15.231
% max pumping	용	5	6					17	98	100	23	6	6	
Average kwh/af		213	213					213	213	213	213	213	213	
Lake Granby Pumping	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping	kaf	36.9	35.7	36.9	36.9	33.3	36.9	35.7	36.9	35.7	36.9	36.9	35.7	434.4
Actual pumping	kaf	0.0	6.8	32.8	32.7	29.6	32.7	19.8	0.0	0.0	0.0	0.0	4.9	159.3
Pump energy	gwh	0.000	1.013	4.920	5.036	4.677	5.330	3.326	0.000	0.000	0.000	0.000	0.686	24.988
% max pumping	용		19	89	89	89	89	55					14	
Average kwh/af			149	150	154	158	163	168					140	
Marys Lake Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Flow	kaf	0.1	5.7	31.8	33.8	30.5	33.8	25.9	25.0	2.5	4.1	5.4	8.8	
Max generation	gwh	6.060	0.000	2.980	6.060	5.400	6.060	5.840	6.060	5.840	6.060	6.060	5.840	62.260
Generation	gwh	0.000	0.000	2.980	6.060	5.400	6.060	4.590	4.500	0.400	0.710	0.880	1.460	33.040
% Max Generation	용			100	100	100	100	79	74	7	12	15	25	
Ave kwh/af				176	179	177	179	177	180	160	173	163	166	
Lake Estes Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Flow	 kaf	0.1	5.7	31.8	33.8	30.5	33.8	25.9	25.0	2.5	4.1	5.4	8.8	
Max generation	qwh	9.980	9.660	9.980	9.980	9.100	9.980	9.660	9.980	9.660	14.920	14.920	14.450	132.270
Generation	qwh	0.000	2.380	9.980	9.980	9.100	9.980	9.660	9.980	1.050	1.740	2.260	3.800	69.910
% Max Generation	%		25	100	100	100	100	100	100	11	12	15	26	
Ave kwh/af			418	440	440	444	440	441	440	420	424	419	432	
Pole Hill Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Olympus Tunnel flow	kaf	0.0	5.7	31.8	33.7	30.5	33.8	27.3	33.8	32.7	22.8	12.2	10.8	275.1
Max generation	gwh	25.260	0.000	12.910	25.260	22.800	25.260	24.460	25.260	24.460	25.260	25.260	24.460	260.650
Generation	gwh	0.000	3.790	23.620	25.050	11.540	12.910	20.270	25.120	24.300	16.920	9.100	7.700	180.320
% Max Generation	%			183	99	51	51	83	99	99	67	36	31	
Ave kwh/af				1398	743	378	382	742	743	743	742	746	713	

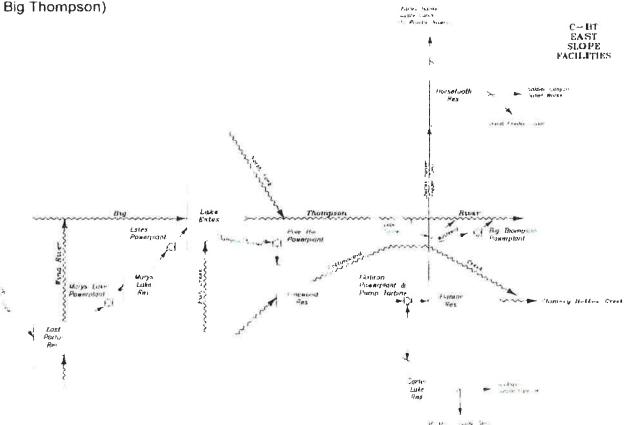

Flatiron 1&2 Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Inflow to Flatiron Max generation Generation % Max Generation Ave kwh/af	kaf gwh gwh %	0.0 15.100 0.000	5.7 28.130 4.460 16 782	31.6 29.040 27.180 94 860	33.5 29.040 28.800 99 860	30.3 13.640 13.640 100 892	33.6 15.100 15.100 100 893	27.1 28.130 23.660 84 873	33.6 29.040 28.880 99 860	32.5 28.130 27.950 99 860	22.6 29.040 20.240 70 896	12.0 15.100 10.700 71 892	10.6 14.600 9.200 63 868	273.1 274.090 209.810
Flatiron 3 Pump/Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Maximum pumping Pump from Flatiron Pump energy % max pumping Average kwh/af	kaf kaf gwh %	24.5 0.0 0.000	24.7 0.0 0.000	25.0 11.6 3.051 46 263	23.0 22.3 6.266 97 281	18.5 18.1 5.629 98 311	18.5 18.1 6.190 98 342	16.3 16.2 6.043 99 373	16.3 2.0 0.764 12 382	16.6 0.0 0.000	18.7 0.0 0.000	20.7	22.1 0.0 0.000	244.9 88.3 27.943
Max turbine rels Carter to Flatiron Maximum generation Actual generation % max generation Average kwh/af	kaf kaf gwh gwh %	22.0 5.9 3.938 1.056 27 179	20.5 0.0 0.000 0.000	21.6 0.0 0.000 0.000	22.9 0.0 0.000 0.000	21.9 0.0 0.000 0.000	25.2 0.0 0.000 0.000	25.3 0.0 0.000 0.000	26.4 0.0 0.000 0.000	25.1 0.0 0.000 0.000	25.2 0.0 0.000 0.000	24.1 0.0 0.000 0.000	22.2 0.0 0.000 0.000	282.4 5.9 3.938 1.056
Big Thompson Gen	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Total release Turbine release Wasteway release Max generation Generation % Max Generation Ave kwh/af	kaf kaf kaf gwh gwh	4.5 4.5 0.0 3.940 0.500 13 111	2.2 2.2 0.0 1.700 0.189 11 86	0.0 0.0 0.0 0.00 0.000	0.0 0.0 0.0 0.00 0.000	0.0 0.0 0.0 0.00 0.000	0.0 0.0 0.0 0.00 0.000	4.9 4.9 0.0 1.700 0.500 29 102	24.7 24.7 0.0 3.940 3.940 100 160	30.6 23.9 6.7 3.800 3.800 100 159	24.7 24.7 0.0 3.940 3.940 100 160	19.3 19.3 0.0 3.940 2.960 75 153	11.3 11.3 0.0 3.800 1.560 41 138	122.2 115.5 6.7 26.760 17.389
PROJECT GENERATION	AND PU	MPING SU	MMARY											
Project Generation	2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Base Generation: Big Thompson Green Mtn Flatiron 3 Total	gwh gwh gwh	0.500 4.495 1.056 6.051	0.189 3.760 0.000 3.949	0.000 3.636 0.000 3.636	0.000 2.553 0.000 2.553	0.000 2.044 0.000 2.044	0.000 3.052 0.000 3.052	0.500 2.049 0.000 2.549	3.940 4.733 0.000 8.673	3.800 16.554 0.000 20.354	3.940 18.387 0.000 22.327	2.960 10.717 0.000 13.677	1.560 8.499 0.000 10.059	17.389 80.479 1.056 98.924
Load Following Gene Marys Lake Lake Estes Pole Hill Flatiron 1,2 Total	ration gwh gwh gwh gwh gwh	0.000 0.000 0.000 0.000 0.000	0.000 2.380 3.790 4.460 10.630	2.980 9.980 23.620 27.180 63.760	6.060 9.980 25.050 28.800 69.890	5.400 9.100 11.540 13.640 39.680	6.060 9.980 12.910 15.100 44.050	4.590 9.660 20.270 23.660 58.180	4.500 9.980 25.120 28.880 68.480	0.400 1.050 24.300 27.950 53.700	0.710 1.740 16.920 20.240 39.610	0.880 2.260 9.100 10.700 22.940	1.460 3.800 7.700 9.200 22.160	33.040 69.910 180.320 209.810 493.080

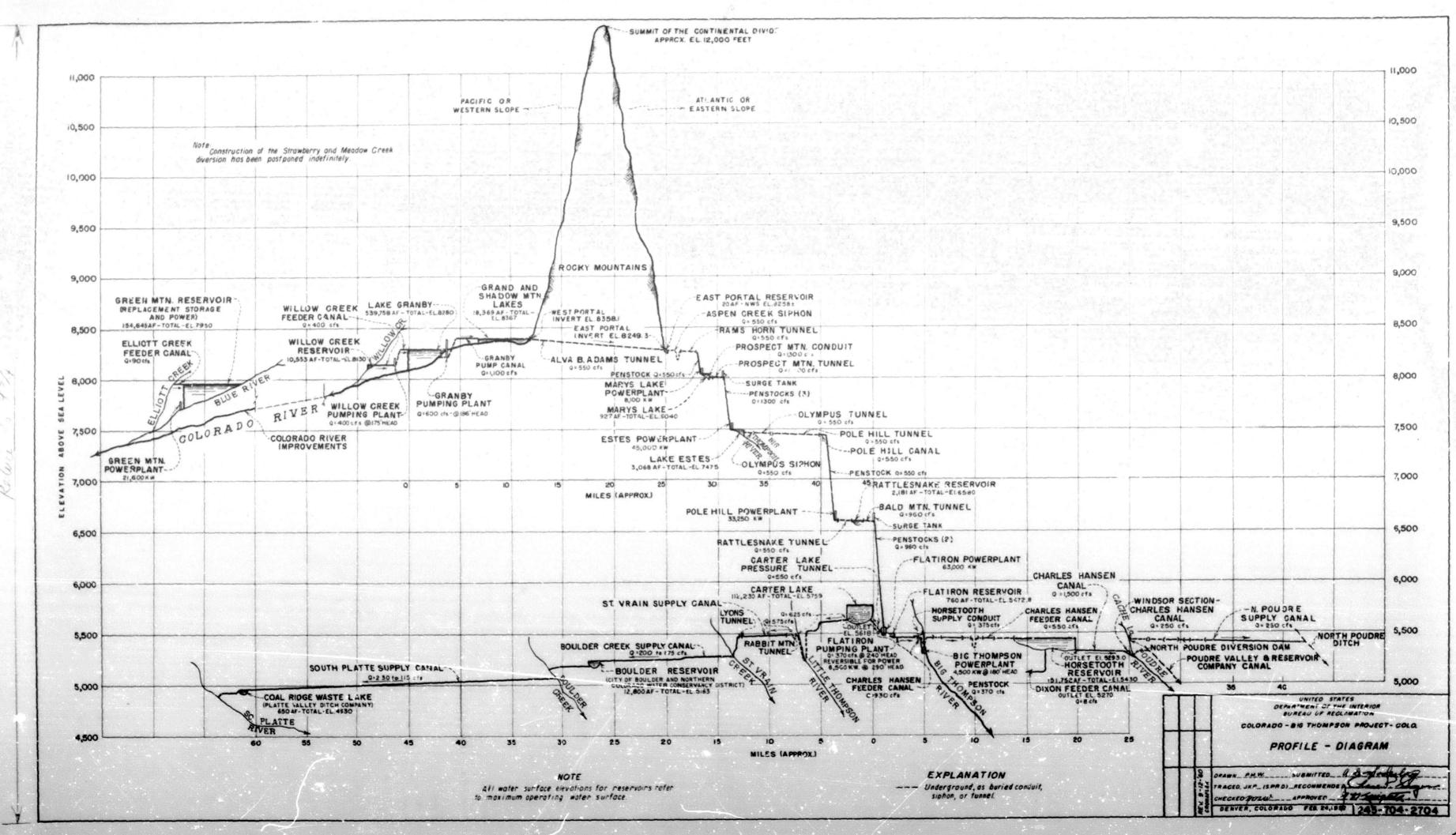

Total generatio Total max gener	_		14.579 57.490	67.396 73.510	72.443 88.940	41.724 59.340	47.102 65.700	60.729 87.230	77.153 92.880	74.054 89.890	61.937 97.820	36.617 83.880	32.219 81.150	592.004 960.708
Project Pump En		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Granby Willow Creek Flatiron 3	gwh gwh gwh	0.000 0.320 0.000	1.013 0.320 0.000	4.920 0.000 3.051	5.036 0.000 6.266	4.677 0.000 5.629	5.330 0.000 6.190	3.326 0.980 6.043	0.000 5.794 0.764	0.000 5.708 0.000	0.000 1.385 0.000	0.000 0.362 0.000	0.686 0.362 0.000	24.988 15.231 27.943
Total pump ener	gy gwh	0.320	1.333	7.971	11.302	10.306	11.520	10.349	6.558	5.708	1.385	0.362	1.048	68.162
Total net gener	ation gwh	5.731	13.246	59.425	61.141	31.418	35.582	50.380	70.595	68.346	60.552	36.255	31.171	523.842
Release Flexibi	lity 2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Adams Tunnel Adams Tunnel	Min kaf Max kaf	0.1	5.7 5.7	31.8 31.8	33.8	30.5	33.8 33.8	25.9 25.9	25.0 25.0	2.5	4.1 4.1	5.4 5.4	8.8	
Marys Lake Marys Lake	Min gwh Max gwh	0.000	0.000	2.980 2.980	6.060 6.060	5.400 5.400	6.060 6.060	4.590 4.590	4.500 4.500	0.400 0.400	0.710 0.710	0.880	1.460 1.460	
Lake Estes Lake Estes	Min gwh Max gwh	0.000	2.380 2.380	9.980 9.980	9.980 9.980	9.100 9.100	9.980 9.980	9.660 9.660	9.980 9.980	1.050 1.050	1.740 1.740	2.260 2.260	3.800 3.800	
Olympus Tunnel Olympus Tunnel	Min kaf Max kaf	0.0	5.7 5.7	31.8 31.8	33.7 33.7	30.5 30.5	33.8 33.8	27.3 27.3	33.8 33.8	32.7 32.7	22.8 22.8	12.2 12.2	10.8 10.8	
Pole Hill Pole Hill	Min gwh Max gwh	0.000	0.000	12.910 12.910	25.190 25.190	22.800 22.800	25.260 25.260	20.410 20.410	25.260 25.260	24.460 24.460	17.060 17.060	9.240 9.240	8.000	
Flatiron 1&2 Flatiron 1&2	Min gwh Max gwh	0.000	4.460 4.460	27.180 27.180	28.800 28.800	13.640 13.640	15.100 15.100	23.660 23.660	28.880 28.880	27.950 27.950	20.240 20.240	10.700 10.700	9.200 9.200	
Load following Load following	Min gwh Max gwh	0.000	6.840 6.840	53.050 53.050	70.030 70.030	50.940 50.940	56.400 56.400	58.320 58.320	68.620 68.620	53.860 53.860	39.750 39.750	23.080 23.080	22.460 22.460	
Total project Total project	Min gwh Max gwh	6.051 6.051	10.789 10.789	56.686 56.686	72.583 72.583	52.984 52.984	59.452 59.452	60.869 60.869	77.293 77.293	74.214 74.214	62.077 62.077	36.757 36.757	32.519 32.519	
GENERATION CAPA														
Project Generat	ion 2013	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Base Generation Green Mtn Flatiron 3	: mw mw	6.0	5.2	4.9	3.4	3.0	4.1	2.8	6.4	23.0	24.7	14.4	11.8	
Big Thompson Total base lo	mw ad mw	0.7 8.1	0.3 5.5	4.9	3.4	3.0	4.1	0.7 3.5	5.3 11.7	5.3 28.3	5.3 30.0	4.0 18.4	2.2 14.0	
Load Following	Generation	:												
Marys Lake Min Capacit	y mw	0.0	0.0	2.7	8.1	1.4	8.1	0.0	0.0	0.0	0.0	0.0	0.0	


TABLE 5C PAGE 8 of 8

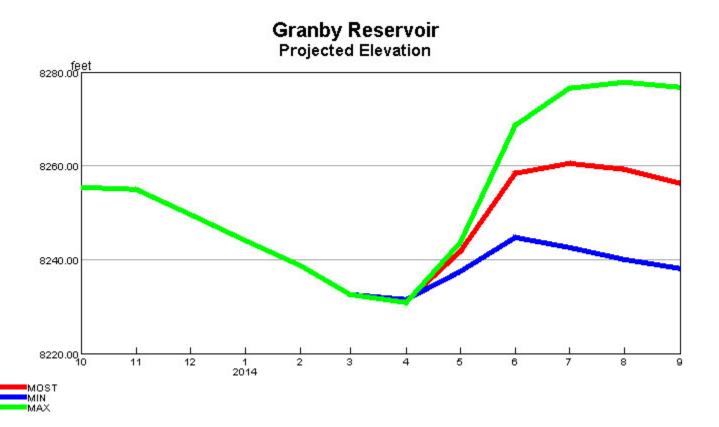
Duration	hr/d	12.0	12.6	1.1	12.0	1.6	12.0	4.4	5.0	18.5	15.8	13.2	9.4
Max Capacity	mw	0.0	2.7	8.1	8.1	8.1	8.1	8.1	8.1	2.7	2.7	2.7	3.5
Duration	hr/d	12.0	11.4	22.9	12.0	22.0	12.0	18.6	18.0	5.5	8.2	10.8	13.6
Lake Estes													
Min Capacity	mw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.6	11.3	11.0	12.4	11.0	12.0	12.0	18.5	15.8	13.2	12.0
Max Capacity	mw	0.0	7.0	44.4	45.0	40.1	45.0	32.3	30.9	7.0	7.0	7.0	11.0
Duration	hr/d	12.0	11.4	10.3	10.0	11.7	10.0	12.0	12.0	5.5	8.2	10.8	12.0
Pole Hill													
Min Capacity	mw	0.0	0.0	0.0	34.0	0.0	34.0	0.0	34.0	34.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.6	0.7	12.0	1.8	12.0	4.0	12.0	12.0	7.3	12.0	12.0
Max Capacity	mw	0.0	11.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	25.4	21.6
Duration	hr/d	12.0	11.4	23.3	12.0	22.4	12.0	20.0	12.0	12.0	16.7	12.0	12.0
Flatiron 1&2													
Min Capacity	mw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Duration	hr/d	12.0	12.6	10.4	8.9	11.5	8.8	12.0	8.8	9.6	12.0	12.0	12.0
Max Capacity	mw	0.0	13.0	83.2	86.0	79.2	86.0	67.3	86.0	85.0	55.2	30.0	25.8
Duration	hr/d	12.0	11.4	10.4	10.0	11.4	10.0	12.0	10.0	10.1	12.0	12.0	12.0
Total Load Followi	ing												
Min Capacity	mw	0.0	0.0	2.7	42.1	1.4	42.1	0.0	34.0	34.0	0.0	0.0	0.0
Max Capacity	mw	0.0	33.7	169.7	173.1	161.4	173.1	141.7	159.0	128.7	98.9	65.1	61.9
Total Project Capa	acity												
Min Capacity	mw	8.1	5.5	7.6	45.5	4.4	46.2	3.5	45.7	62.3	30.0	18.4	14.0
Max Capacity	mw	8.1	39.2	174.6	176.5	164.4	177.2	145.2	170.7	157.0	128.9	83.5	75.9

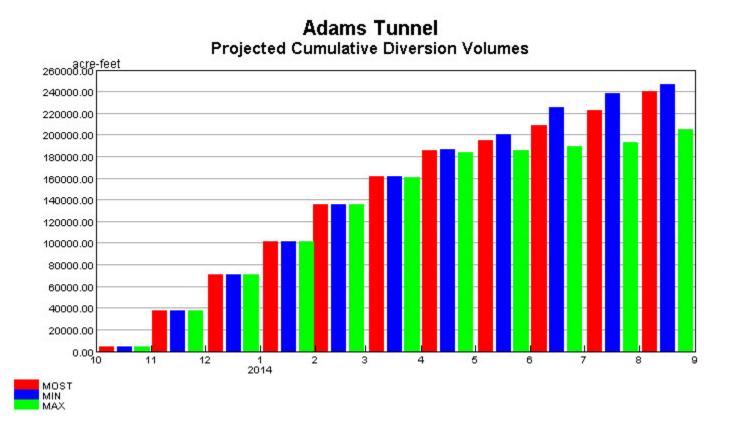
APPENDIX C - EXHIBITS



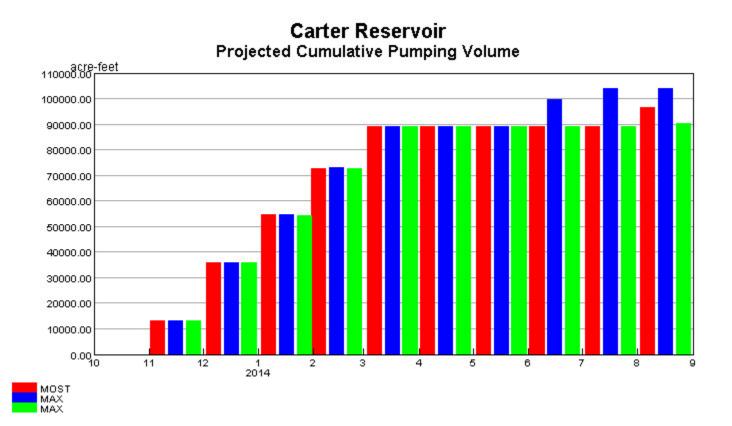


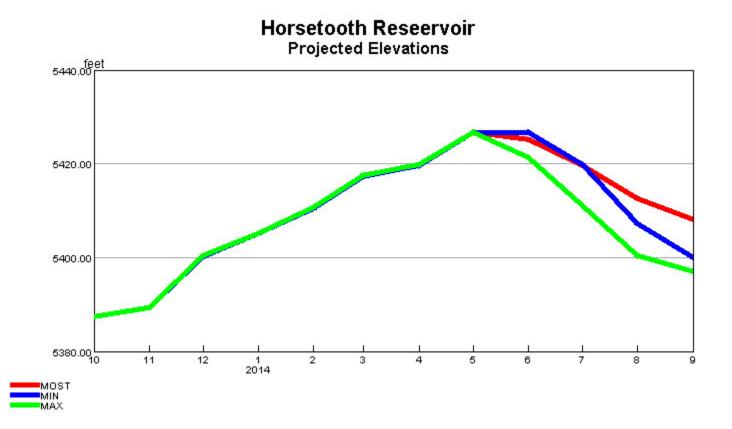
Colorado-Big Thompson Facts


- A trans-mountain, trans-basin water diversion, storage, and delivery project
- Signed into law by President Roosevelt in 1937
- Construction period 1938-1952
- Ten major reservoirs (Green Mountain, Willow Creek, Granby, Shadow Mountain, Marys Lake, Estes, Pinewood, Carter, Flatiron and Horsetooth)
- Twenty major dams and dikes
- Twenty-two tunnels, canals and other conduits covering about 130 miles
- Six hydroelectric powerplants (Green Mountain, Marys, Estes, Pole Hill, Flatiron, Big Thompson)


- Water right allows for diversion of up to 310,000 acre-feet of water a year
- Average annual diversion over life of project is 260,000 acre-feet
- Water falls over 2000 feet from Continental Divide to Colorado's eastern Plains, providing for hydroelectric power generation.
- Together, all six powerplants generate approximately 759 million kilo-Watt hours of electricity a year—enough to power 58,300 American homes for a year
- The C-BT provides water to 29 cities and towns, including 620,000 irrigated acres and a population of 725,000 people

Green Mountain Reservoir Projected Elevations 7960.00 7940.00 7920.00 7900.00 7880.00 11 12 1 2 3 4 5 6 7 8 9





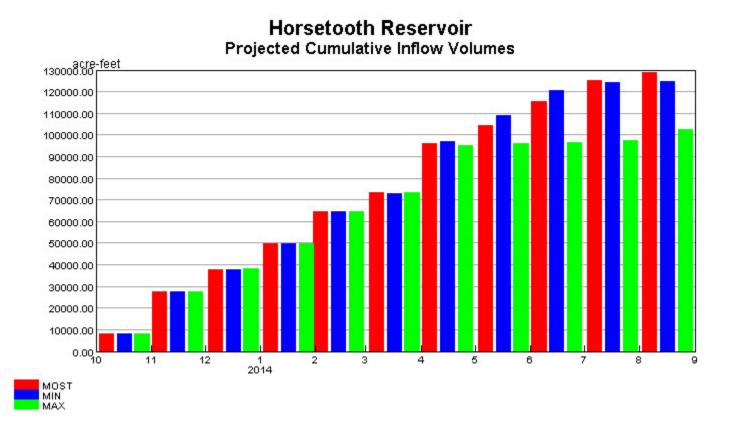

Olympus Tunnel Projected Cumulative Diversion Volumes 300000.00 s 275000.00 250000.00 225000.00 200000.00 175000.00 150000.00 125000.00 100000.00 75000.00 50000.00 25000.00 0.00 11 12 1 2014 MOST MIN MAX

Exhibit 7

* * * * * * * * *

This is the 62nd annual report for the Pick-Sloan Missouri Basin Program Western Division System (System) power operations. For the purpose of this report, the System also includes the Yellowtail Powerplant Units 1 & 2 and the generating facilities of the Fryingpan-Arkansas Project. The purpose of the report is to inform interested parties of the generation and pump energy requirements of the hydropower system. The report consists of two parts: One part describes the actual generation and pumping operations for WY 2012 and the other part presents the plan of generation and pumping operations for WY 2013.

An update on the System generation and pumping operations is included in the "Water Supply and Utilization" report, which is issued monthly.

WESTERN DIVISION SYSTEM POWER OPERATIONS GENERATION AND PUMP ENERGY

TABLE OF CONTENTS

WY	2013 - GENERATION AND PUMP ENERGY SUMMARY1
WY	2014 - GENERATION AND PUMP ENERGY FORECAST2
<u>AP</u>	PENDIX A - TABLES
1	Western Division System: Gross Generation - WY 2013
2	Western Division System: Pump Energy - WY 2013
3	Western Division System: WY 2013 Actual System Generation and Pump Energy
4a	Western Division System: WY 2014 Most Probable Water Supply Plan for Generation and
	Pump Energy
4b	Western Division System: WY 2014 Reasonable-Minimum Water Supply Plan for
	Generation and Pump Energy
4c	Western Division System: WY 2014 Reasonable-Maximum Water Supply Plan for
	Generation and Pump Energy
5	Recommended Monthly Outages for Regular Maintenance of C-BT Facilities (Conveyance
	Facilities and Reservoirs)
6	Powerplant Data: Western Division System
7	Pumping Plant Data: Western Division System

APPENDIX B - EXHIBITS

- 1 Western Division Water Resource Map
- 2 Western Division System: 2013 Generation versus Load
- 3A Western Division System: 2014 Projected Generation Most Probable Inflow Condition
- 3B Western Division System: 2014 Projected Generation Reasonable-Minimum Inflow Condition
- 3C Western Division System: 2014 Projected Generation Reasonable-Maximum Inflow Condition

WESTERN DIVISION POWER SYSTEM WATER YEAR 2013 – GENERATION AND PUMP ENERGY SUMMARY

WY 2013 (WY2013) was a productive year for power plants in the Colorado-Big Thompson (C-BT) and the Fryingpan-Arkansas (FryArk) projects. C-BT powerplants produced an accumulated gross generation total of 599.1 gigawatt-hours (GWh) of electricity during WY2013 representing 100 percent of its 30-year average. Meanwhile, the gross generation produced by the entire Western Division Power System's (System) was 2,014.8 GWh or 76 percent of the 30-year average. Gross generation includes one-half of the Yellowtail generation. Total generation is the gross generation less the energy used for pumping at Farr Plant, Willow Creek Pump, Flatiron Unit 3 and the two Mount Elbert units. The System total generation was 1,457.4 GWh. The average for a WY is 2,400.7 GWh. The total System load includes firm energy deliveries, C-BT use-energy, support-energy, plant station service, and an estimate of transmission-system losses.

The Western Division Power System boundaries are illustrated in Exhibit 1. Table 1 in this section includes the total generation for every powerplant in the system. Table 3 shows monthly generation and pumping energy, by plant, as well as monthly System loads for the WY. The total energy that was required to operate the pumps in the System is included in Table 2. Some of the numbers included in this section were provided by Western Area Power Administration (WAPA).

Inflow for all the C-BT reservoirs during WY 2013 was below average until September 2013. The period of late May through early September was particularly dry and warm. The C-BT snowpack in general was below average the entire fall, winter and spring seasons. Diversions through the Adams Tunnel were high during most of the winter and spring. But with a quota of 60 percent declared by the Northern Colorado Water Conservancy District, the diversions of water from the west were relaxed in the late spring, which allowed for a strong skim operation from May - July. The Olympus Tunnel was able to skim 37,495 AF of water for power generation during WY 2013, producing an estimated 64,000 MW of electricity.

Pumping from the Willow Creek Canal during WY 2013 required 8.9 GWh, while Farr Plant and Flatiron Powerplant required 35.6 and 31.1 GWh, respectively. The three plants pumping operations were above-average in WY2013. Their power requirements were 120 percent of the 30-year average. The total energy used from the System to pump water during WY 2013 (including Mount Elbert) totaled 557.4 GWh. The average energy used per WY is 245.2 GWh. Mount Elbert's total energy used to pump water was 481.8 GWh. Mount Elbert's average energy used according to the 10-year average (Years 1990-1999) is 182.1 GWh.

According to the numbers provided by WAPA's office in Loveland, sales of electric power totaled 2,537,272 mega-watt hours (MWh) during WY 2013, with a revenue of \$94,424,122. Energy deficits were covered by a combination of scheduled interchange energy, use of the Mount Elbert pumped storage plant, and power purchases. The power purchases totaled 885,587 MWh during WY 2013 for which WAPA paid a total of \$26,960,443.

WESTERN DIVISION POWER SYSTEM WATER YEAR 2014 – GENERATION AND PUMP ENERGY FORECAST

Under the most-probable runoff condition plan developed on October, 2013, the gross generation for the C-BT powerplants is projected to be 584.4 GWh during WY2014, while pump energy requirements from the C-BT Power System are expected to reach 67.8 GWh. The total generation for the entire Western Division Power System (System) is expected to be 1,819.3 GWh, with a total load of 2,163.4 GWh, leaving a shortfall of 344.1 GWh. The System generation includes one-half of the total Yellowtail Powerplant generation and the Mount Elbert Powerplant generation resulting from Fryingpan-Arkansas Project water deliveries. The total load includes energy deliveries under firm contracts, seasonal support energy deliveries, energy dedicated for C-BT use, estimates of station service energy, and estimates of transmission system losses.

Under the reasonable-minimum runoff conditions plan from October, 2013, the Gross generation for the C-BT powerplants is projected to be 560.8 GWh in WY 2014 while the total System generation is projected to be 1,449.1 GWh during WY 2014, 370.2 GWh less than the total generation projected under most probable runoff conditions. Under this plan, pump energy requirements for the C-BT would total 68.3 GWh. The total System load is expected to be 2163.4 GWh over the entire WY, leaving a total generation shortfall of 714.3 GWh. Under the reasonable-minimum runoff conditions, total generation shortfalls are expected for every month of the WY.

If reasonable-maximum runoff conditions occur during WY 2014, the C-BT powerplants should produce 592.0 GWh of power generation while the System total generation should reach 1998.7 GWh, 179.4 GWh more than the generation projected under most-probable runoff conditions. Under the reasonable-maximum conditions the total C-BT pump energy requirements would be 68.1 GWh. The total System load is expected to be 2,163.4 GWh over the entire WY, leaving a total generation shortfall of 164.7 GWh.

Tables 4A through 4C summarize the projected monthly System generation, pump energy, and loads for the three forecasted runoff conditions for WY 2014. Exhibits 3A through 3C graphically display the gross generation less pumping for the C-BT contributing to the System for the most probable, reasonable-minimum, and reasonable-maximum inflow conditions. Tables 5A and 5B lists the scheduled maintenance for the various facilities in the C-BT. Tables 6 and 7 summarize the capacity data for the powerplants and pumping plants within the System, including the Yellowtail and Mount Elbert Units.

Table 1
WESTERN DIVISION SYSTEM
GENERATION FOR WY 2013

	Septe	ember Gross Ge	eneration	Accum. Gross Generation <u>1</u> /				
Powerplant	2013	Avg <u>2</u> /	% of Avg.	WY 2013	Avg <u>2</u> /	% of Avg		
	(GWH)	(GWH)		(GWH)	(GWH)			
Green Mtn.	4.6	6.4	72	25.7	51.9	50		
Marys Lake	1.0	2.6	38	40.1	37.3	108		
Estes	2.8	7.4	38	104.4	100.3	104		
Pole Hill	4.1	11.1	37	177.3	172.3	103		
Flatiron 1&2	8.2	14.9	55	243.4	226.7	107		
Big Thompson	0.2	0.9	22	8.2	10.9	75		
Seminoe	7.7	7.3	105	90.8	132.5	69		
Kortes	9.0	7.9	114	113.3	140.3	81		
Fremont C.	8.6	22.1	39	147.9	239.6	62		
Alcova	3.1	10.4	30	93.6	118.1	79		
Glendo	1.6	7.2	22	54.9	80.3	68		
Guernsey	0.6	3.2	19	9.1	19.4	47		
Boysen	1.1	5.9	19	38.5	69.3	56		
Heart Mtn.	3.2	2.9 <u>3</u> /	110	18.2	15.7 <u>3</u> /	116		
Buffalo Bill	4.0	6.5 <u>3</u> /	62	51.5	68.3 <u>3</u> /	75		
Shoshone	1.7	1.9 <u>3</u> /	89	17.6	20.3 <u>3</u> /	88		
Spirit Mtn.	3.2	2.9 <u>3</u> /	110	17.7	14.7 <u>3</u> /	120		
Mt. Elbert	22.5	14.5 <u>4</u> /	155	339.3	169.0 <u>4</u> /	201		
Yellowtail	41.7	63.9 <u>5</u> /	65	423.3	959.0 <u>5</u> /	44		
Total	128.9	199.9	64	2014.8	2645.9	76		

<u>1</u>/ Oct-Sep

<u>2</u>/ 1976-2005 average

<u>3</u>/ 1995-2012 average

<u>4</u>/ 1990-1999 average

 $[\]underline{5}/$ 1971-1990 average; In general 1/2 of Yellowtail energy is dedicated to the Western Division System through marketing arrangement. The other 1/2 is marketed in Eastern Division System.

Table 2

PUMP ENERGY USED DURING WY2013

	Sep	tember Pump E	nergy	Oct-September Pump Energy			
Pumping Plant	2013 (GWH)	Avg <u>1</u> / (GWH)	% of Avg	WY2013 (GWH)	Avg <u>1</u> / (GWH)	% of Avg	
Willow Crk	0.0	0.2	-	8.9	5.7	156	
Farr	0.9	2.5	36	35.6	30.6	116	
Flatiron 3	0.4	0.9	44	31.1	26.8	116	
Mt. Elbert	33.2	18.8 <u>2</u> /	177	481.8	182.1 <u>2</u> /	265	
Total	34.5	22.4	154	557.4	245.2	227	

<u>1</u>/ 1976-2005 average

<u>2</u>/ 1990-1999 average

Table 3

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION POWER SYSTEM WATER YEAR 2013 OPERATIONS

GROSS GENERATION LESS PUMPING IN GIGAWATT-HOURS

	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL
Mt. Elbert *	3.4	0.7	3.8	0.9	2.6	0.3	2.8	0.9	1.7	0.6	0.5	0.0	18.3
Green Mtn.	2.4	1.1	1.2	1.4	1.0	1.0	0.2	0.0	0.0	3.6	9.2	4.6	25.6
Willow Cr. pump	0.0	0.6	0.0	0.0	0.0	0.0	0.5	4.8	2.3	0.7	0.0	0.0	8.9
Farr pump	5.5	0.6	4.0	5.9	5.3	5.2	4.4	1.2	0.3	2.3	0.0	0.9	35.6
Marys Lake	5.8	0.4	3.4	6.0	5.3	5.1	4.6	3.0	2.1	3.4	0.0	1.0	40.1
Estes	15.2	1.0	10.0	15.2	13.3	12.5	10.9	7.8	5.7	9.4	0.6	2.8	104.4
Pole Hill	23.9	1.6	9.7	21.1	21.0	19.5	16.4	22.4	23.6	14.0	0.0	4.1	177.3
Flatiron 1&2	30.2	1.7	18.5	30.4	26.9	24.4	21.4	29.1	29.8	22.2	0.6	8.0	243.2
Flatiron 3	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.2	1.7
Flatiron 3 pump	0.0	0.0	4.1	6.8	4.6	3.3	6.1	0.5	0.8	4.5	0.0	0.4	31.1
Big Thompson	0.8	0.0	0.0	0.0	0.0	0.0	0.0	1.8	3.0	1.7	0.7	0.2	8.2
Seminoe	4.2	4.1	4.3	4.4	3.7	4.3	5.8	8.7	16.6	19.6	7.4	7.7	90.8
Kortes	5.3	5.0	5.1	5.6	5.0	5.4	7.1	10.4	22.5	24.7	8.2	9.0	113.3
Fremont Canyon	0.0	3.7	7.4	7.1	6.7	10.1	17.7	17.9	19.1	18.4	31.2	8.6	147.9
Alcova	3.0	3.2	3.6	3.7	3.3	5.3	6.4	7.4	17.6	23.2	13.8	3.1	93.6
Glendo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	11.0	23.6	17.8	1.6	54.9
Guernsey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	2.4	1.8	3.6	0.6	9.1
Pilot Butte **	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Boysen	2.4	2.1	2.4	2.2	2.2	2.3	2.5	4.7	5.9	5.9	4.8	1.1	38.5
Shoshone	0.7	1.3	1.4	1.3	1.4	0.7	1.2	1.8	2.0	2.1	2.0	1.7	17.6
Buffalo Bill	1.9	0.5	0.7	0.6	0.1	0.9	3.7	9.5	10.9	11.0	7.7	4.0	51.5
Spirit Mtn.	1.4	0.0	0.0	0.0	0.0	0.0	0.5	2.7	3.2	3.4	3.3	3.2	17.7
Diamond Cr. pump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heart Mtn.	1.6	0.0	0.0	0.0	0.0	0.0	8.0	3.3	2.9	3.2	3.2	3.2	18.2
Yellowtail/2	8.5	14.9	16.6	16.3	14.9	16.0	16.3	20.5	21.4	23.0	22.7	20.9	211.6
Fry-Ark	3.4	0.7	3.8	0.9	2.6	0.3	2.8	0.9	1.7	0.6	0.5	0.0	18.3
CBT	72.8	4.7	34.7	61.4	57.6	54.0	42.5	57.6	60.8	46.8	12.5	19.6	524.9
North Platte	12.5	16.0	20.4	20.8	18.7	25.1	37.0	46.0	89.2	111.3	82.0	30.6	509.6
Bighorn	16.5	18.8	21.1	20.4	18.6	19.9	25.0	42.5	46.3	48.6	43.7	34.1	355.1
TOTAL GEN	105.2	40.1	80.0	103.4	97.5	99.3	107.2	147.0	198.0	207.3	138.6	84.3	1408.0
TOTAL LOAD	162.5	162.3	177.2	172.6	137.1	149.2	176.3	184.8	211.2	262.2	211.2	156.8	2163.4
SURPLUS/DEFICIT	-57.3	-122.2	-97.2	-69.2	-39.6	-49.9	-69.1	-37.8	-13.2	-54.9	-72.6	-72.6	-755.4

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION POWER SYSTEM WATER YEAR 2014 FORECASTED OPERATIONS MOST PROBABLE WATER SUPPLY CONDITION GROSS GENERATION AND PUMPING IN GIGAWATT-HOURS

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP **TOTAL** Mt. Elbert * 1.3 2.4 2.5 3.1 2.5 3.5 3.9 4.7 2.4 4.4 2.0 1.0 33.7 4.5 3.8 2.6 2.0 2.2 8.5 50.4 Green Mtn. 3.6 1.0 1.2 5.9 8.8 6.3 Willow Cr. pump 0.3 0.3 0.0 0.0 0.0 0.0 4.0 3.0 0.7 0.2 0.2 9.8 1.1 5.0 4.7 Farr pump 0.0 1.0 5.0 5.3 3.3 0.0 0.0 0.0 1.5 2.5 28.3 0.0 0.0 5.4 39.5 Marys Lake 3.0 6.1 6.1 4.6 4.5 1.7 2.5 25 3.1 0.0 10.0 10.0 9.1 10.0 9.7 8.0 86.7 Estes 2.4 10.0 4.3 6.6 6.6 Pole Hill 0.0 3.9 11.5 12.9 12.5 188.1 23.7 25.1 20.0 23.6 24.1 19.7 11.1 Flatiron 1&2 0.0 4.5 27.3 28.8 13.6 15.1 23.5 27.1 27.8 23.2 13.1 14.6 218.6 Flatiron 3 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 29.7 Flatiron 3 pump 0.0 0.0 3.1 6.3 5.6 6.2 6.1 0.4 0.0 0.0 0.0 2.0 1.5 0.5 0.2 0.0 0.0 0.0 0.0 2.8 3.8 3.8 1.2 14.2 Big Thompson 0.4 Seminoe 4.6 4.4 4.5 4.5 4.0 4.5 4.5 18.2 19.0 20.2 19.8 18.4 126.6 Kortes 5.6 5.4 5.6 5.6 5.0 5.6 5.4 20.6 19.9 20.6 20.6 19.9 139.8 0.5 6.5 5.9 8.8 32.4 26.0 201.5 Fremont Canyon 6.3 6.6 12.4 31.5 31.2 33.4 Alcova 4.2 4.1 4.2 4.2 3.8 5.4 4.1 16.8 16.3 16.8 16.8 14.2 110.9 Glendo 0.0 0.0 0.0 0.0 0.0 1.1 0.6 17.8 13.7 23.4 17.2 6.7 80.5 0.0 0.0 0.5 3.8 3.8 Guernsey 0.0 0.0 0.0 0.0 3.7 3.6 2.7 18.1 Pilot Butte** 0.4 0.0 0.0 0.0 0.0 0.0 0.6 1.2 1.2 1.2 7.0 1.2 1.2 Boysen 0.0 0.0 0.0 2.5 2.3 2.6 3.7 10.3 11.4 10.1 8.0 5.9 56.8 Shoshone 0.9 0.9 2.2 2.2 2.2 2.2 2.2 18.3 1.1 1.1 1.1 1.1 1.1 **Buffalo Bill** 1.7 3.7 1.7 1.7 1.5 1.7 7.9 13.4 13.0 13.4 12.7 9.6 82.0 Spirit Mtn. 1.7 0.0 0.0 0.0 0.0 0.0 1.6 2.7 2.9 3.2 3.2 3.2 18.5 Diamond Cr. pump 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Heart Mtn. 1.9 0.0 0.0 0.0 0.0 0.0 4.5 4.3 25.9 2.0 4.5 4.3 4.5 Yellowtail/2 21.2 23.3 24.0 23.7 20.7 23.3 23.0 60.1 35.6 33.3 368.8 44.1 36.5 ---4.4 Fry-Ark 1.3 2.4 2.4 2.5 3.1 2.5 3.5 3.9 4.7 2.0 1.0 33.7 CBT 5.8 31.3 34.8 41.6 41.0 530.8 13.5 59.5 61.3 48.7 64.8 64.6 63.9 20.2 20.9 25.4 110.4 87.9 677.4 North Platte 14.9 20.8 18.7 27.5 108.7 103.8 118.2 Bighorn 28.0 28.1 26.8 29.0 25.4 28.5 39.9 78.4 95.1 67.4 59.7 577.4 71.1 --------------------**TOTAL GEN** 50.0 64.2 109.6 113.6 78.5 91.2 119.6 255.8 268.3 257.6 221.3 189.6 1819.3 TOTAL LOAD 162.5 162.3 177.2 137.1 149.2 176.3 262.2 211.2 156.8 172.6 184.8 211.2 2163.4 SURPLUS/DEFICIT -112.5 -98.1 -67.6 -59.0 -58.6 -58.0 -56.7 71.0 57.1 -4.7 10.1 32.8 -344.1

^{*} PROJECTED VALUES ARE HISTORIC AVERAGE FLOW THROUGH ENERGY

PROJECTED VALUES ARE MARKETED ENERGY

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION POWER SYSTEM WATER YEAR 2014 FORECASTED OPERATIONS REASONABLE MINIMUM WATER SUPPLY CONDITION GROSS GENERATION AND PUMPING IN GIGAWATT-HOURS

	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL
Mt. Elbert *	1.3	2.4	2.4	2.5	3.1	2.5	3.5	3.9	4.7	4.4	2.0	1.0	33.7
Green Mtn.	4.5	3.8	3.6	2.6	2.0	2.2	0.6	0.7	1.4	5.3	5.1	4.7	36.5
Willow Cr. pump	0.3	0.3	0.0	0.0	0.0	0.0	1.0	1.8	0.7	0.3	0.1	0.1	4.5
Farr pump	0.0	1.0	5.0	5.0	4.7	5.3	3.1	0.5	0.0	2.8	2.0	1.7	31.2
Marys Lake	0.0	0.0	3.0	6.1	5.4	6.1	4.6	4.7	2.4	4.5	2.4	1.7	40.8
Estes	0.0	2.4	10.0	10.0	9.1	10.0	9.7	10.0	6.3	11.2	6.2	4.4	89.2
Pole Hill	0.0	3.9	23.7	25.1	11.5	12.9	19.6	24.1	18.3	21.1	9.8	6.6	176.5
Flatiron 1&2	0.0	4.5	27.3	28.8	13.6	15.1	23.2	27.7	21.9	24.4	11.6	8.0	206.1
Flatiron 3	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
Flatiron 3 pump	0.0	0.0	3.1	6.3	5.6	6.2	6.0	0.4	0.0	3.6	1.4	0.0	32.6
Big Thompson	0.5	0.2	0.0	0.0	0.0	0.0	0.2	2.3	3.5	2.0	1.0	1.0	10.6
Seminoe	4.5	4.3	4.5	4.4	3.9	4.3	4.3	10.0	10.0	10.3	10.0	9.3	79.9
Kortes	5.6	5.4	5.6	5.6	5.0	5.6	5.4	12.2	11.8	12.2	12.2	11.8	98.2
Fremont Canyon	0.5	6.3	6.5	6.5	5.9	8.7	24.4	21.5	21.3	22.7	21.4	7.6	153.3
Alcova	4.2	4.1	4.2	4.2	3.8	5.4	11.1	11.6	11.3	11.6	11.6	4.2	87.2
Glendo	0.0	0.0	0.0	0.0	0.0	1.3	1.9	4.0	15.4	21.9	12.0	0.7	57.3
Guernsey	0.0	0.0	0.0	0.0	0.0	0.0	0.4	2.8	3.7	3.8	3.8	2.5	17.1
Pilot Butte **	1.2	0.5	0.0	0.0	0.0	0.0	0.8	1.9	4.0	3.8	3.7	1.7	17.6
Boysen	0.0	0.0	0.0	2.5	2.3	2.5	3.7	5.5	5.7	6.1	5.0	4.0	37.2
Shoshone	1.1	1.1	1.1	1.1	0.9	0.9	1.1	1.1	1.2	1.2	1.2	1.1	13.2
Buffalo Bill	2.8	2.3	1.7	1.7	1.5	1.7	4.1	13.2	12.8	13.1	11.9	9.0	75.8
Spirit Mtn.	1.2	0.0	0.0	0.0	0.0	0.0	1.1	3.1	3.2	3.2	3.1	3.0	18.0
Diamond Cr. pump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heart Mtn.	0.9	0.0	0.0	0.0	0.0	0.0	0.9	1.7	1.9	3.3	2.6	2.2	13.5
Yellowtail/2	21.1	21.3	21.9	21.7	19.0	21.3	16.9	19.6	23.0	24.1	23.4	21.6	255.0
Fry-Ark	1.3	2.4	2.4	2.5	3.1	2.5	3.5	3.9	4.7	4.4	2.0	1.0	33.7
CBT	5.7	13.4	59.5	61.1	31.4	34.8	47.7	66.7	53.1	61.8	32.5	24.6	492.3
North Platte	14.8	20.1	20.7	20.7	18.6	25.3	47.6	62.1	73.3	82.5	71.0	36.1	493.0
Bighorn	28.3	25.2	24.8	27.0	23.7	26.5	28.5	46.2	51.7	54.9	50.7	42.6	430.1
TOTAL GEN	50.2	61.2	107.4	111.3	76.8	89.0	127.3	178.9	182.8	203.7	156.2	104.3	1449.1
TOTAL LOAD	162.5	162.3	177.2	172.6	137.1	149.2	176.3	184.8	211.2	262.2	211.2	156.8	2163.4
SURPLUS/DEFICIT	-112.3	-101.1	-69.8	-61.3	-60.3	-60.2	-49.0	-5.9	-28.4	-58.5	-55.0	-52.5	-714.3

^{*} PROJECTED VALUES ARE HISTORIC AVERAGE FLOW THROUGH ENERGY

^{**} PROJECTED VALUES ARE MARKETED ENERGY

PICK-SLOAN MISSOURI BASIN PROGRAM WESTERN DIVISION POWER SYSTEM WATER YEAR 2014 FORECASTED OPERATIONS REASONABLE MAXIMUM WATER SUPPLY CONDITION GROSS GENERATION AND PUMPING IN GIGAWATT-HOURS

	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL
Mt. Elbert *	1.3	2.4	2.4	2.5	3.0	2.5	3.5	3.9	4.7	4.4	2.0	1.0	33.6
Green Mtn.	4.5	3.8	3.6	2.6	2.0	3.1	2.0	4.7	16.6	18.4	10.7	8.5	80.5
Willow Cr. pump	0.3	0.3	0.0	0.0	0.0	0.0	1.0	5.8	5.7	1.4	0.4	0.4	15.2
Farr pump	0.0	1.0	4.9	5.0	4.7	5.3	3.3	0.0	0.0	0.0	0.0	0.7	25.0
Marys Lake	0.0	0.0	3.0	6.1	5.4	6.1	4.6	4.5	0.4	0.7	0.9	1.5	33.0
Estes	0.0	2.4	10.0	10.0	9.1	10.0	9.7	10.0	1.1	1.7	2.3	3.8	69.9
Pole Hill	0.0	3.8	23.6	25.1	11.5	12.9	20.3	25.1	24.3	16.9	9.1	7.7	180.3
Flatiron 1&2	0.0	4.5	27.2	28.8	13.6	15.1	23.7	28.9	28.0	20.2	10.7	9.2	209.8
Flatiron 3	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1
Flatiron 3 pump	0.0	0.0	3.1	6.3	5.6	6.2	6.0	0.8	0.0	0.0	0.0	0.0	27.9
Big Thompson	0.5	0.2	0.0	0.0	0.0	0.0	0.5	3.9	3.8	3.9	3.0	1.6	17.4
Seminoe	4.6	4.4	4.5	4.5	4.1	8.5	23.8	25.7	29.9	5.7	5.8	5.6	127.0
Kortes	5.6	5.4	5.6	5.6	5.0	10.6	26.7	27.6	26.7	5.6	5.6	5.4	135.4
Fremont Canyon	0.5	6.4	6.5	6.6	6.0	8.9	12.9	10.2	10.9	32.4	31.4	28.5	160.9
Alcova	4.2	4.1	4.2	4.2	3.8	5.4	4.1	4.3	4.2	14.2	14.2	13.8	80.5
Glendo	0.0	0.0	0.0	0.0	0.0	1.3	0.6	17.0	11.9	24.1	17.8	6.9	79.5
Guernsey	0.0	0.0	0.0	0.0	0.0	0.0	0.5	3.8	3.7	3.8	3.8	3.6	19.1
Pilot Butte**	1.6	0.0	0.0	0.0	0.0	0.0	0.7	1.5	3.5	4.1	3.0	1.7	16.1
Boysen	0.0	0.0	0.0	2.6	2.3	7.7	10.3	9.8	10.9	11.9	10.8	6.8	73.1
Shoshone	1.1	1.1	1.1	1.1	0.9	0.9	2.2	2.2	2.2	2.2	2.2	1.7	19.1
Buffalo Bill	2.2	4.2	1.7	1.7	1.5	1.7	13.0	13.4	13.0	13.4	13.4	13.0	92.1
Spirit Mtn.	1.7	0.0	0.0	0.0	0.0	0.0	1.5	2.5	2.7	3.2	3.2	3.0	17.7
Diamond Cr. pump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heart Mtn.	1.9	0.0	0.0	0.0	0.0	0.0	2.2	4.5	4.3	4.5	4.5	4.3	26.0
Yellowtail/2	21.2	25.6	26.2	25.8	22.5	40.1	59.4	98.0	96.8	93.1	47.1	38.9	594.8
Fry-Ark	1.3	2.4	2.4	2.5	3.0	2.5	3.5	3.9	4.7	4.4	2.0	1.0	33.6
CBT	5.7	13.2	59.4	61.1	31.4	35.6	50.4	70.6	68.3	60.6	36.3	31.2	523.8
North Platte	14.9	20.2	20.8	20.8	18.8	34.6	68.5	88.6	87.2	85.7	78.6	63.7	602.4
Bighorn	29.7	30.9	29.1	31.2	27.2	50.5	89.2	131.9	133.3	132.4	84.1	69.3	838.9
TOTAL GEN	51.6	66.7	111.7	115.7	80.5	123.1	211.6	295.0	293.6	283.1	201.0	165.1	1998.7
TOTAL LOAD	162.5	162.3	177.2	172.6	137.1	149.2	176.3	184.8	211.2	262.2	211.2	156.8	2163.4
SURPLUS/DEFICIT	-110.9	-95.6	-65.5	-56.9	-56.6	-26.1	35.3	110.2	82.4	20.9	-10.2	8.3	-164.7

^{*} PROJECTED VALUES ARE HISTORIC AVERAGE FLOW THROUGH ENERGY

^{**} PROJECTED VALUES ARE MARKETED ENERGY

COLORADO-BIG THOMPSON AND FRYINGPAN-ARKANSAS PROJECTS ESTIMATED MAINTENANCE SCHEDULE FOR WATER YEAR 2014

		Begin	End	Generation	Water ops
<u>Facility</u>	Description of Work	<u>Date</u>	<u>Date</u>	Affected	<u>Affected</u>
Estes Unit 2	Headcover Repair	15-Oct-13	31-May-14	Y	N
Estes Unit 3	Annual Maintenance	1-Jun-14	15-July-14	Y	N
Estes Units - All	Units not available for Black Start Annual Test				
Flatiron Unit 3	Annual Maintenance	5-May-14	6-Jun-14	N	Υ
Flatiron Unit 2	Annual Maintenance	14-Apr-14	23-May-14	Y	N
Flatiron Unit 1	KW1A Annual Transformer Maintenance	10-Mar-14	13-Mar-14	Y	N
Flatiron Unit 1	Annual Maintenance	24-Feb-14	4-Apr-14	Y	N
Big T Powerplant	Annual Maintenance	6-Jan-14	14-Feb-14	N	N
Hansen Canal 930 Section	Annual Maintenance of Canal	28-Mar-14	11-Apr-14	Y	Y
Hansen Canal 550 Section	Annual Maintenance of Canal	19-Sep-14	3-Oct-14	Y	Y
Green Mountain Unit 1	GM Unit 1 Annual Maintenance	6-Jan-14	14-Feb-14	N	N
Green Mountain Unit 2	GM Unit 2 Annual Maintenance	3-Mar-14	11-Apr-14	N	N
Green Mountain Unit 1	KZ1A Annual Transformer Maintenance	27-Jan-14	28-Jan-13	N	N
Green Mountain Unit 2	KZ2A Annual Transformer Maintenance	17-Mar-14	18-Mar-14	N	N
Mt Elbert Unit 1	Penstock Inspection	2-Dec-13	5-Dec-13	Y	N
Mt Elbert Unit 2	Motor/Generator Cleaning, Testing, Inspection	9-Sep-13	7-Mar-14	Y	N

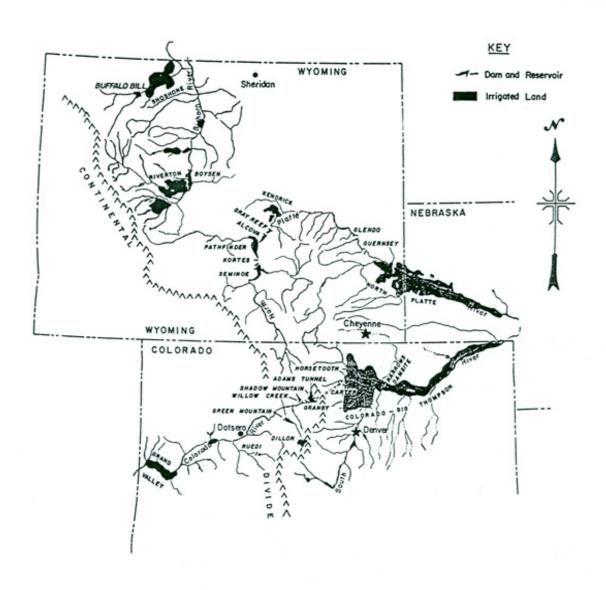
TABLE 6

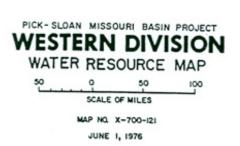
WESTERN DIVISION - PICK-SLOAN MISSOURI BASIN PROGRAM

POWERPLANT DATA

Facility	No. Units	Capacity Each Unit	Total Installed Capacity	Normal Operating Head (ft)	Output at Rated Head (ft ³ /s)
Green Mountain	2	13,000	26,000	192-262	1,660
Marys Lake	1	8,100	8,100	202-217	550
Estes	3	16,500	49,500	551-571	1,300
Pole Hill	1	33,250	33,250	830-838	550
Flatiron	2	43,000	86,000	1,096 - 1,118	1,070
(Flatiron <u>1</u> /)	1	8,500	8,500	158-287	440
Big Thompson	1	5,300	5,300	183- 184	350
Seminoe	3	15,000	45,000	97-227	2,850
Kortes	3	12,000	36,000	192-204	2,700
Fremont Canyon	2	33,000	66,000	247-363	2,200
Alcova	2	18,000	36,000	153-165	2,200
Glendo	2	19,000	38,000	73-156	2,800
Guernsey	2	2,400	4,800	89-91	820
Pilot Butte <u>2</u> /	2	800	1,600		
Boysen	2	7,500	15,000	72-112	2,415
Shoshone <u>3</u> /	1	3,000	3,000		
Buffalo Bill <u>3</u> /	3	6,000	18,000		
Heart Mountain	1	5,000	5,000	265-275	355
Mt. Elbert	2	103,000	206,000	447-477	6,400
Yellowtail	4	72,000	288,000	327-440	8,500
TOTAL	34		979,050		

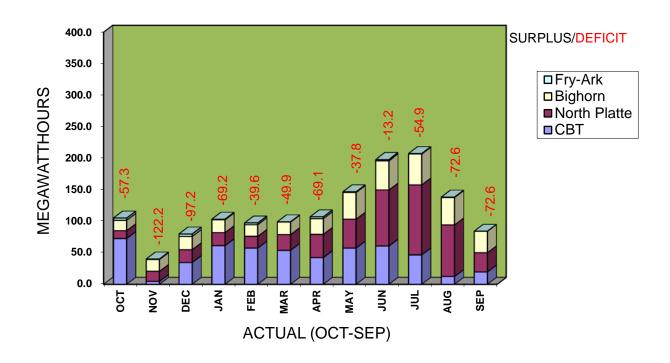
WESTERN DIVISION - PICK-SLOAN MISSOURI BASIN PROGRAM

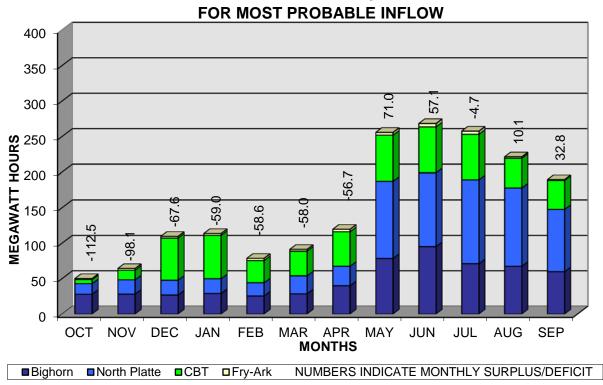

PUMPING PLANT DATA


Pumping Units Plant Rating

			Normal		Kwh to Pump 1- Acre-ft at
		Capacity	Operating Head		Maximum
Facilities	No	(ft ³ /s)	(ft)	Installed (Hp)	Head
Granby	3	600	92-186	18,000	227
Willow Creek	2	400	167-169	18,000	227
Flatiron	1 <u>1</u> /	440	173-287	13,000	391
Mt. Elbert	2	5,690	447-477	340,000	620

APPENDIX B - EXHIBITS


Exhibit 1


Exhibit 2

GROSS GENERATION LESS PUMPING WATER YEAR 2013

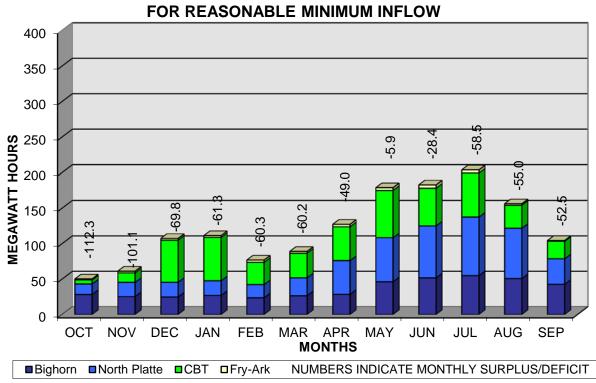
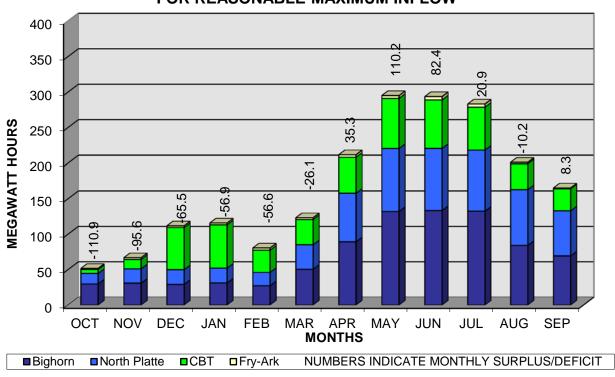


Exhibit 3A

PROJECTED GROSS GENERATION LESS PUMPING WATER YEAR 2014 FOR MOST PROBABLE INFLOW



PROJECTED GROSS GENERATION LESS PUMPING WATER YEAR 2014 FOR PEASONARI E MINIMUM INFLOW

Exhibit 3C

PROJECTED GROSS GENERATION LESS PUMPING WATER YEAR 2014 FOR REASONABLE MAXIMUM INFLOW

