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Outline

* Objectives and key concepts

 Historical perspective

» Case studies

* Foundation discontinuities and potential failure modes
* Discontinuity shear strength

* Foundation uplift pressures and forces

* Foundation modulus and loading considerations

* Multi-block systems

» Exercise (important to complete this)




Objectives

 Understand the mechanisms that affect concrete dam foundation
failure

* Understand how to construct an event tree to represent concrete
dam foundation failure (exercise)

» Understand how to estimate the probability of concrete dam
breach due to foundation failure (exercise)
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Key Concepts

. Founda_tion deficiencies are the number one cause of concrete
dam failures

 The location, orientation, and strength (including scale effects) of
discontinuities often control the stability of concrete dams on rock

» Kinematic analyses can be used to evaluate concrete dam
foundation stability — often 3-D analyses are needed (even for

gravity dams)
* The effects of uplift pressures and drainage must be considered

 Loading from the dam and dam-foundation interaction must be
considered

* Internal erosion of soill fo_undations under co_ncrete dams not
covered here — see section on Internal Erosion




Concrete Dam Failures, after ICOLD 1995+

Overtopping 5 (9%)

Foundation® 29 (53%)
Uplift 4 (7%)

Materials 5 (9%)

Structural 6 (11%)
Spillway 5 (9%)

Seismic Deformation** 1(2%)

Total 95

*Includes Camara Dam, 2004 **Shi Kang Dam, 1999 Chi Taiwan E.Q.




Case Studies
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Camara Dam, Brazil

* Originally designed as an
embankment dam

« Switched to 160-ft-high
RCC gravity dam after
majority of explorations
were completed

« Additional explorations for
RCC dam were not
adequate

 Gallery through dam for
grout and drainage curtain




Camara Dam, Brazil
Interpretation of soll E“ﬁ* ﬂ"g:

pocket on left
abutment to be
excavated and filled
with concrete.

Foliation (S1)

Residual Soil W

\ Rock Foundation

Dam foundation gneissic migmatites with foliation
dipping 30 to 35 degrees toward the right abutment.




Camara Dam, Brazil

* Reservoir filled to within 5 m of
full pool quickly in early 2004 due
to heavy rains

* Filling continued into June 2004

» Reports of material carried by
drain flows, plugged drains, and
wet spot d/s toe left abutment
during this time period

« Dam failed June 17, 2004 e e g e
* 5 deaths oo SNe Ay O

* 800 homeless | _
Note that dam bridged over failure zone
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Camara Dam, Brazil

Arrow points to remnant of shear zone
Note unfractured footwall
Note direction of sliding toward channel *
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Other Notable Foundation Failures
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Discontinuities and
Potential Failure Modes




Foundation Stability Analysis
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Figure 16. Rock Block within the Foundation of an Arch Dam. Plane 1, Plane 2, and Plane 3 are
Discontinuity Planes; Uplift 1, Uplift 2, and Uplift 3 are Water Forces; W is the Block Weight;
and Dam Force is the Thrust from the Dam (adapted from Londe [22]).




Structural Contours for Major Bedding
Plane Partings and Faults

Fault Contours

shown in —
blue X\\
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Construction
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Discontinuity Strength — Scale Effects

» Small scale rough samples .{amralFracmreTESt
overestimate strength S

» Saw cuts typically under-estimate /&ﬁ\ _
basic friction angle ] S —= e

» Test actual joints and subtract / 4
roughness (dilation angle) by AR 2=
measuring horizontal and vertical 2| | ]
displacements) to obtain basic Iy 3
friction angle

* Add in large scale field roughness L

measured from outcrops S
. car Lhsp acement
* See manual for details Adapted from Bandis et al (1983)
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Foundation Uplift Pressures




oundation Water Pressures
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Effects of Foundation Drains
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* Drain depth (into fdn.) should be about 40% of hydraulic
height, drains must be cleaned and maintained. g%
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P ™ Figure C3. Uplift Measurements at Hoover Dam.
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Grout Effectiveness

B

T ol ey B =5 Careful when grouting under
i _f - s reservoir head. Grout may travel
- — St o wp <0 o downstream and set up, backing up
T e increased pressures upstream
25 Ee = n - 2D
A To5° D+ ot 7 under the dam.
If counting on grout

curtain cutoff to reduce
pressures, must verify
with measurements

| _ Arthur Casagrande, 1% Rankine Lecture
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Water Forces on Block Planes

Water force calculations for area defined by points 1, 2, 4, and 7
Pressure heads:

0«
e 0 True slope arsas: /
3 I m 2320 /
O o

e m 760

23
S
o
Phreatic Surfoce (WS 2218) =—

Phreatic Surfoce (WS 2151) w4
Pressure Head = 0 Rl

Total Head = 2031 59';.-—1 )

S0 o 0
- L L] 1

SCALE OF FEET

O PIEZOMETER
A OPEN HOLE (ANGLED

Water Force:

A1 = [[4340431+40)/4){2320)(62.4 pef)
A2 = [[3140+54+23)/4)(760)(62.4 pef)

A3 = [[54423+477)/3](615){62.4 pcf)

SUM = 5.82E+06

1

Figure 23. Example Water Force Calculation. Note: 1 ft=0.3048 m, 1pcf =16 kg/m’, 1 b =4.451

RRTWENT OF THE
s oeP B i Eﬂﬂo&
m (it
Bty o pecLMATER

Determine submerged area
for each block plane

Discretize each plane wetted
area

Calculate force for each area

Sum to get total force on each
plane




Dam Loading and Rock
Mass Modulus
Considerations




Dam Loads and Inertia Loads
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Figure 21. Finite Element Mesh Footprint Shown in Relationship to Foundation Blocks Identified at

Include static loads  Morrow Point Dam. Note:1 ft =0.3043 m
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Foundation Rock Mass Modulus

 Affects load distribution, is critical to calculating dam loading
* |s not the intact laboratory modulus — affected by discontinuities
* |s probably not the geophysical modulus — strain too small

* Foundation modulus can be determined from empirical
relationships, in-situ testing, or calibration to measured
deformations or shake test frequencies

* In two cases where jacking tests were performed before and after
grouting (Davis Dam and Auburn Dam) there was virtually no
change in the rock mass modulus — no increase from grouting




Foundation Rock Mass Modulus (cont.)

* Too small of a foundation modulus can over-dampen the system
for dynamic calculations (i.e. low value is not conservative)
Calibration to shake tests useful.

* Typically, stiffer foundation modulus values are more conservative
relative to structural response and loading as shown in table below

 But, should perform sensitivity studies to see what the difference is
with respect to foundation load and stress distribution

Modulus Case Factor of Safety

Block D Block E Block F
Left Abutment Channel Area Right Abutment
Case 1 (Soft) 2.8 2.1 3.2

Case 2 (Stiff) 2.1 1.9 2.3




Multi-Block Systems
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Multi-Block Foundation Systems

Fy PASSIVE BLOCK

| LR Np DP
SN RrE
i
P
b

ACTIVE BLOCK

Figure El. Forces Acting on Two Block System. Forces in Black Boxes
Represent Summation of Forces Resolved into the Shown Directions

» Unless passive block is very thin, the
rock material is weak or there is an
adversely oriented discontinuity,
shearing through passive rock mass is
unlikely

* There must also be shearing along a
near vertical feature between blocks

* Results are highly sensitive to assumed
interblock force angle theta —
approaches friction angle at limit of
equilibrium




Distinct Element Analysis

» For multiblock analysis, N\
distinct element or /o~
discontinuous deformation #r/ N
analysis (DDA) evaluations
are more appropriate —
account for interblock P"“ e i:\\
forces and their orientations I




Sliding Factor of Safety
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Figure 28. Factor of Safety as a Function of Time for Dynamic Analysis of Foundation Block

“Newmark” displacements when factor of
safety drops below 1.0. Large
displacements would be unreahstlcally
conservative o

Results from probabilistic
factor of safety calculations




Nonlinear Coupled Analysis

* Typically only completed if an uncoupled analysis indicates large
displacements and high risks are estimated

* Time consuming and expensive
* Requires thorough exercising and testing to validate the model is

behaving properly and the results are reasonable
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Takeaway Points

* Foundation deficiencies are the leading cause of concrete dam
failures

 Careful evaluation of the 3-D geology and discontinuity geometry
Is needed to evaluate potential block formation and failure modes

* Analyses need to consider foundation modulus and dam loads,
water uplift pressures, and scale-dependent shear strength, along
with their variability and uncertainty

* Probabilistic and traditional deterministic stability analyses are
needed in most cases

* The exercise that follows is key to understanding how to estimate
these risks. An event tree will be developed, which can be used to
evaluate potential corrective actions for high risk situations
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