Inundation Modeling, Breach Parameters, and Consequences (Introduction)

Best Practices in Dam and Levee Safety Risk Analysis
Part C – Consequence Estimating

Last modified June 2017, presented July 2019

Key Concepts

- Risk management involves consequence management
- Scalable approach based on goals of analysis
 - · Initial characterization vs. prioritization vs. risk reduction
- Life risk is paramount
 - Understanding human factors is critical
- Build the case
 - How many people are exposed?
 - Warning and evacuation considerations
 - Flood characteristics?
 - Breach parameters
 - Inundation modeling
- Embrace uncertainty

Definitions

- Consequence
 - Direct vs. Indirect
- Life Loss
 - Population at risk
 - Exposed/threatened population
 - Fatality rate
- Economic
- Environmental
- Cultural

- How many people are exposed to the flooding?
 - Initial distribution of people
 - Redistribution through evacuation
- How severe is the flooding?
- Are the people in a structure that can withstand the flooding?
- Will some of the people subjected to flooding die?

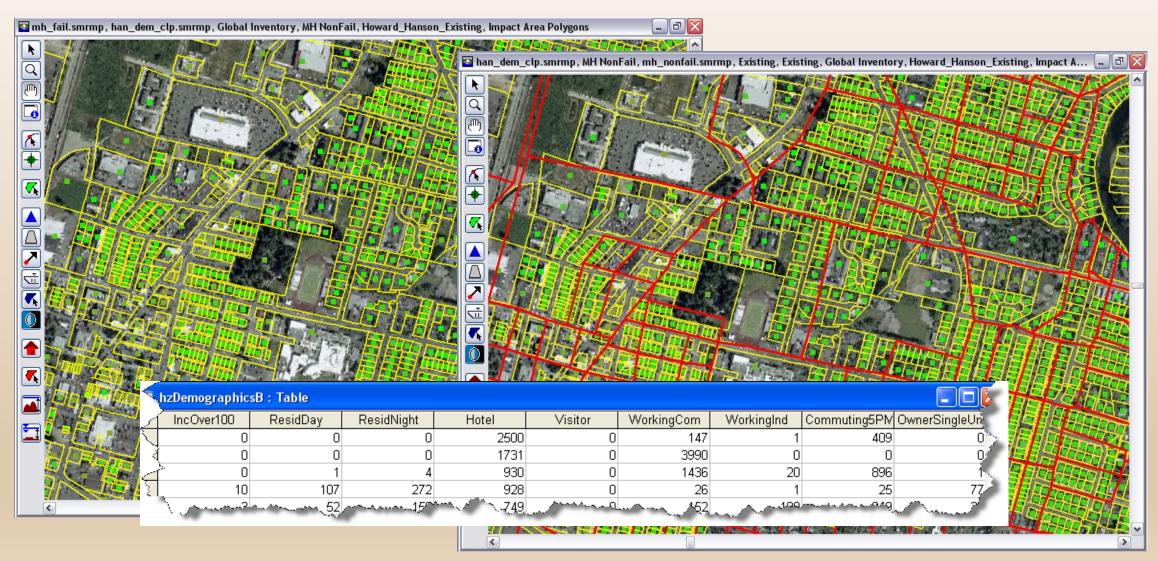
Empirical vs. Simulation Models

Empirical:

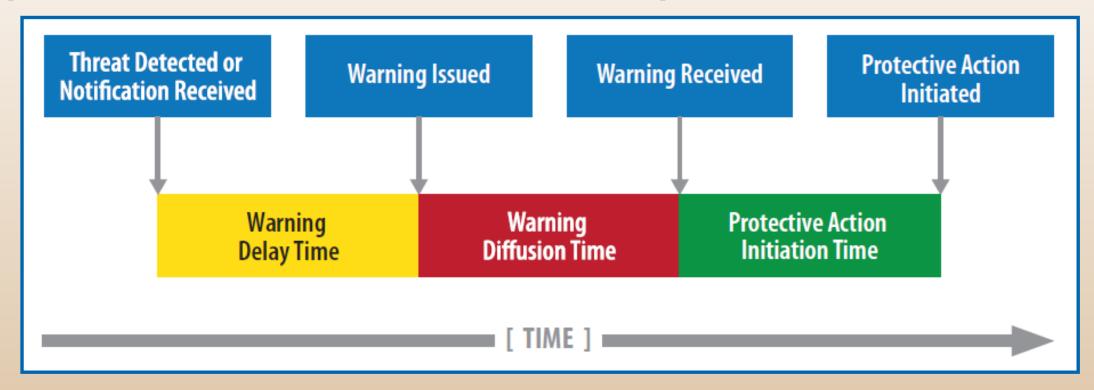
- Groups of PAR evaluated in aggregate
- Fatality rates ranges reflect evacuation rate assumptions – evacuation is not explicitly modeled
- Relevant parameters are warning time and the intensity of flooding

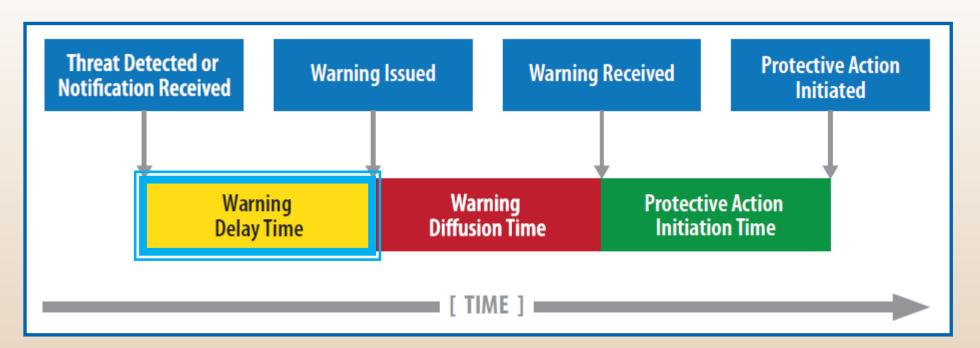
Simulation:

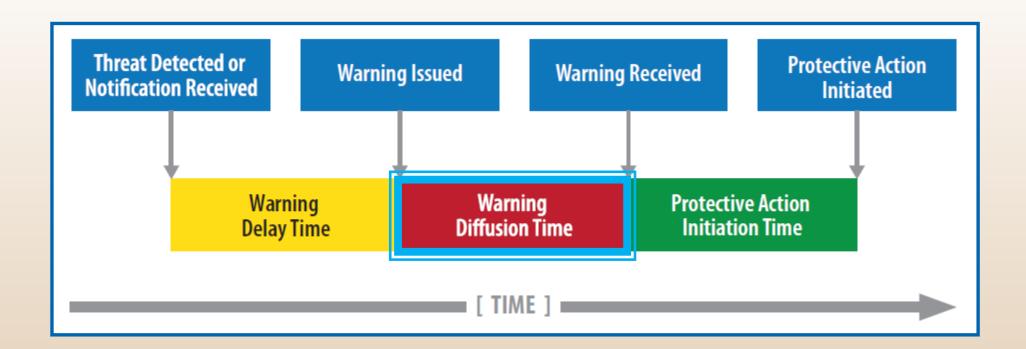
- Tracks movement of people and movement of water – evacuation is explicitly modeled
- Each individual or defined group is evaluated separately
- Fatality rates can be applied to PAR which exceed critical flood parameter thresholds



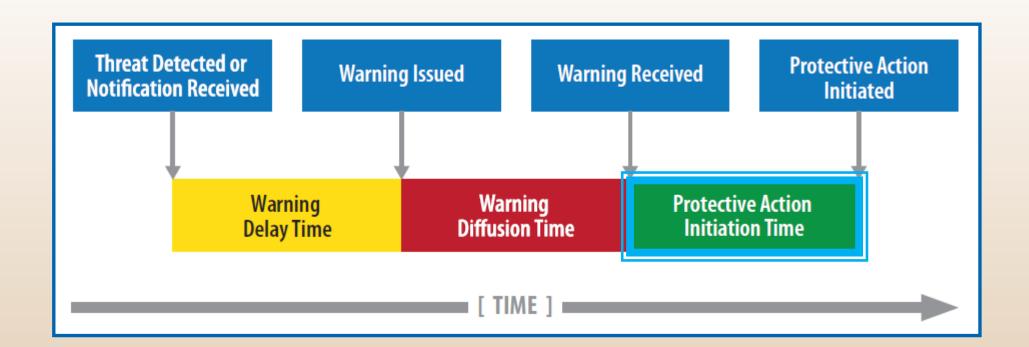
Initial Distribution of People




Redistribution of People (Evacuation Effectiveness)



- Standard Warning Plan and Standard Operating Procedures are Written Down
- Warning Thresholds Are in Place
- SOP Drills Are Conducted
- Responsibilities are Identified and Clearly Define Authority To Issue Warnings



- Number and mix of warning channels
- Frequency of distribution
- Ability to wake people up
- Modern technologies

Message content and style

Message Content

 The single most important thing that an emergency manager can do to motivate effective public protective action is to provide the best emergency messages possible.

SOURCE: say who the message

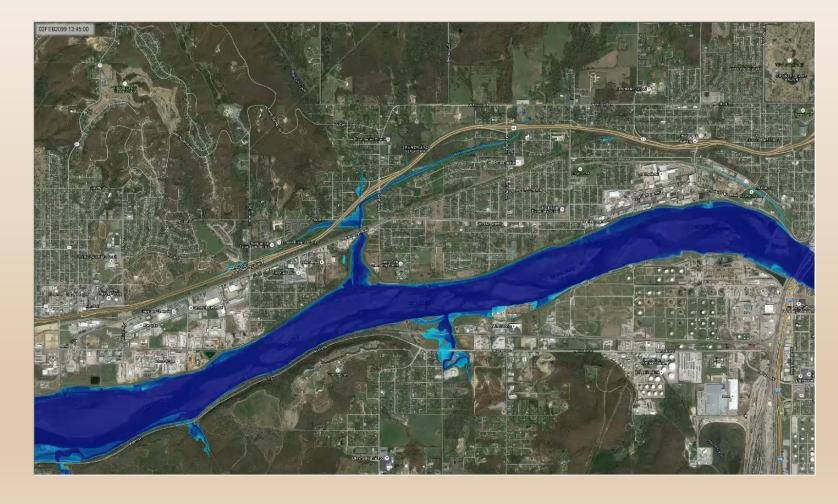
THREAT: describe the flooding

LOCATION: state the impact area

GUIDANCE/TIME: tell people

EXPIRATION TIME: tell people when the alert/warning expires and/or new information will be received

- How many people are exposed to the flooding?
 - Initial distribution of people
 - Redistribution through evacuation
- How severe is the flooding?
- Are the people in a structure that can withstand the flooding?
- Will some of the people subjected to flooding die?



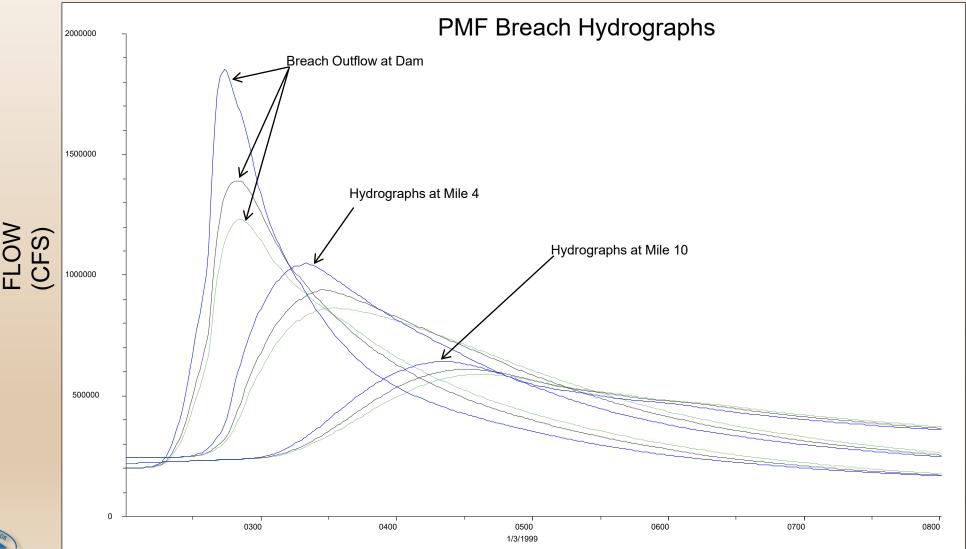
Flood Severity

- Depth
- Velocity
- Depth * Velocity
- Arrival time
- Extents

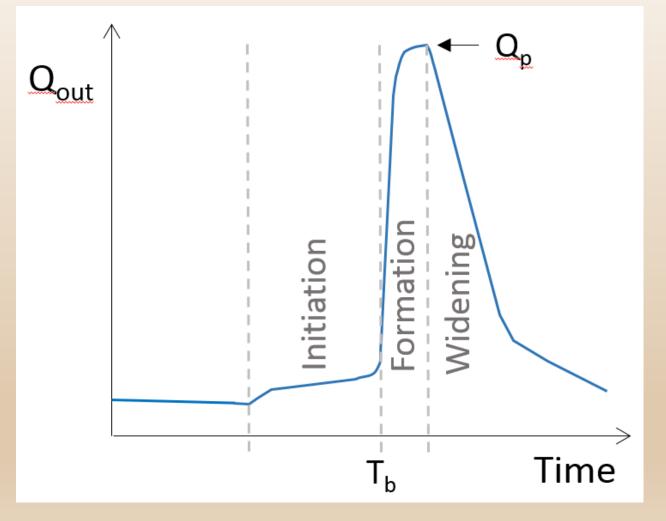
Key Concepts For Inundation Modeling

- Scenario
 - Pool or stage elevation and hydrology
 - Breach or Non-breach
 - Failure mode
- Breach parameters
- Terrain
 - 1d vs. 2d
- Initial conditions
- Incremental/coincident flows

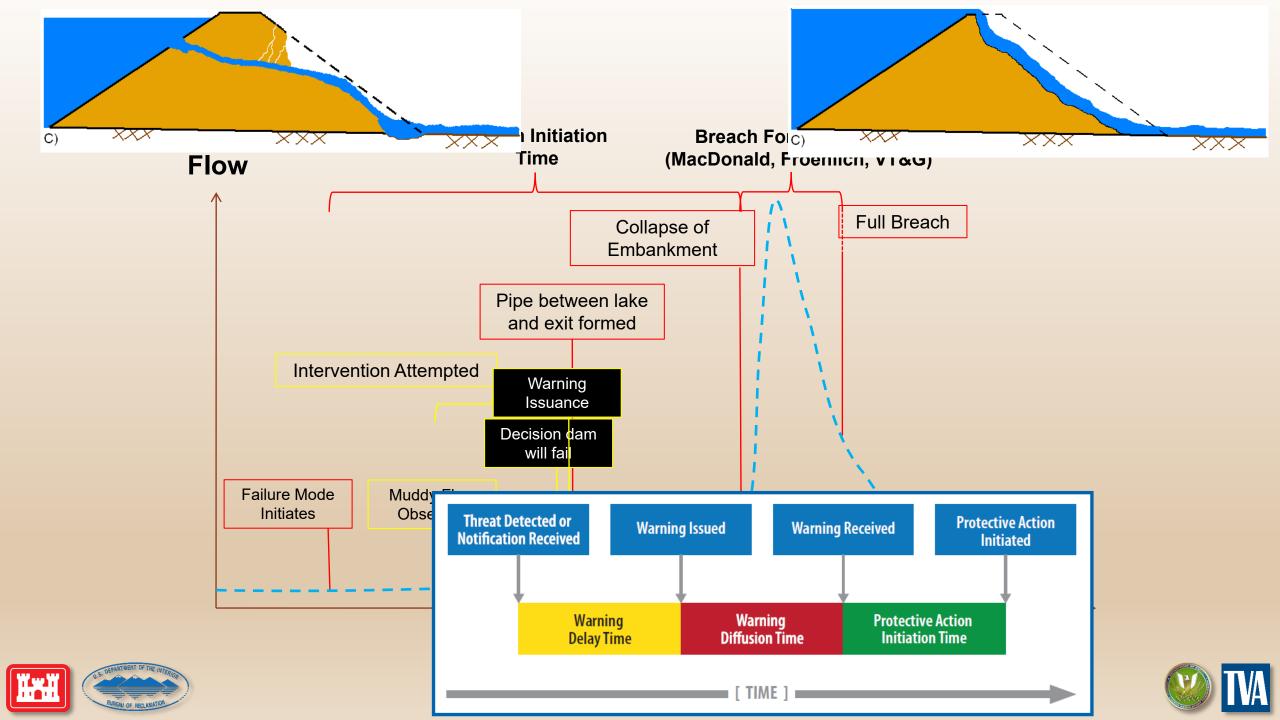
Key Concepts for Understanding and Selecting Breach Parameters


- Breach parameters can impact the following flood characteristics
 - Depth
 - Velocity
 - Arrival time (and therefore warning time)
 - Consequences
 - Life loss, direct damage, repair costs, etc
- Sensitivity analysis should be performed prior to detailed breach parameter analysis
 - Adopt scalable approach based on outcome
- Tradition empirical equations are based on dam breach cases

Does it Matter? Depends on downstream terrain, location of PAR and other factors...



Breach Parameters Definitions


- Breach initiation
 - Typically not included in hydraulic model
- Time of breach (T_b)
- Breach formation
- Breach widening

Options for Estimating Breach

Parameters

- User defined
 - Historic data, empirical equations, site specific assumptions, etc
- Simplified physical breaching
 - Velocity vs. erosion rate
- Coupled embankment erosion and hydraulic model

Reference	Number of Case Studies	Relations Proposed (S.I. units, meters, m³/s, hours)		
Johnson and Illes (1976)	Case Studies	$0.5h_d \le B \le 3h_d$ for earthfill dams		
Singh and Snorrason (1982,	20	$2h_d \le B \le 5h_d$		
1984)	20	$0.15 \text{ m} \le d_{ovtop} \le 0.61 \text{ m}$		
,		$0.25 \text{ hr} \le about p \le 0.01 \text{ hr}$ $0.25 \text{ hr} \le t_f \le 1.0 \text{ hr}$		
MacDonald	42	Earthfill dams:		
and Langridge-Monopolis	12	$V_{er} = 0.0261(V_{out}*h_w)^{0.769}$ [best-fit]		
(1984)		$t_f = 0.0179(V_{er})^{0.364}$ [upper envelope]		
, ,		Non-earthfill dams:		
		$\overline{V_{er}} = 0.00348(V_{out} h_w)^{0.852}$ [best fit]		
FERC (1987)		B is normally 2-4 times ha		
		B can range from 1-5 times h_d		
		Z = 0.25 to 1.0 [engineered, compacted dams]		
		Z = 1 to 2 [non-engineered, slag or refuse dams]		
		$t_f = 0.1-1$ hours [engineered, compacted earth dam]		
		t _f = 0.1-0.5 hours [non-engineered, poorly		
Froehlich (1987)	43	compacted]		
Proemici (1907)	43	$\overline{B}^* = 0.47 K_o (S^*)^{0.25}$		
		$K_o = 1.4$ overtopping; 1.0 otherwise		
		$Z = 0.75K_c (h_w^*)^{1.57} (\overline{W}^*)^{0.73}$		
		K_c = 0.6 with corewall; 1.0 without a corewall		
		$t_f^* = 79(S^*)^{0.47}$		
Reclamation (1988)		$B = (3)h_w$		
		$t_f = (0.011)B$		
Singh and Scarlatos (1988)	52	Breach geometry and time of failure tendencies		
		B_{top}/B_{bottom} averages 1.29		
Von Thun and Gillette (1990)	57	B, Z, t _f guidance (see discussion)		
Dewey and Gillette (1993)	57	Breach initiation model; B, Z, t _f guidance		
Froehlich (1995b)	63	$\overline{B} = 0.1803 K_o V_w^{0.32} h_b^{0.19}$		
		$t_f = 0.00254 V_w^{0.53} h_b^{(-0.90)}$		
		K_0 = 1.4 for overtopping; 1.0 otherwise		

Numeric Modeling Options for Estimating Breach

Parameters

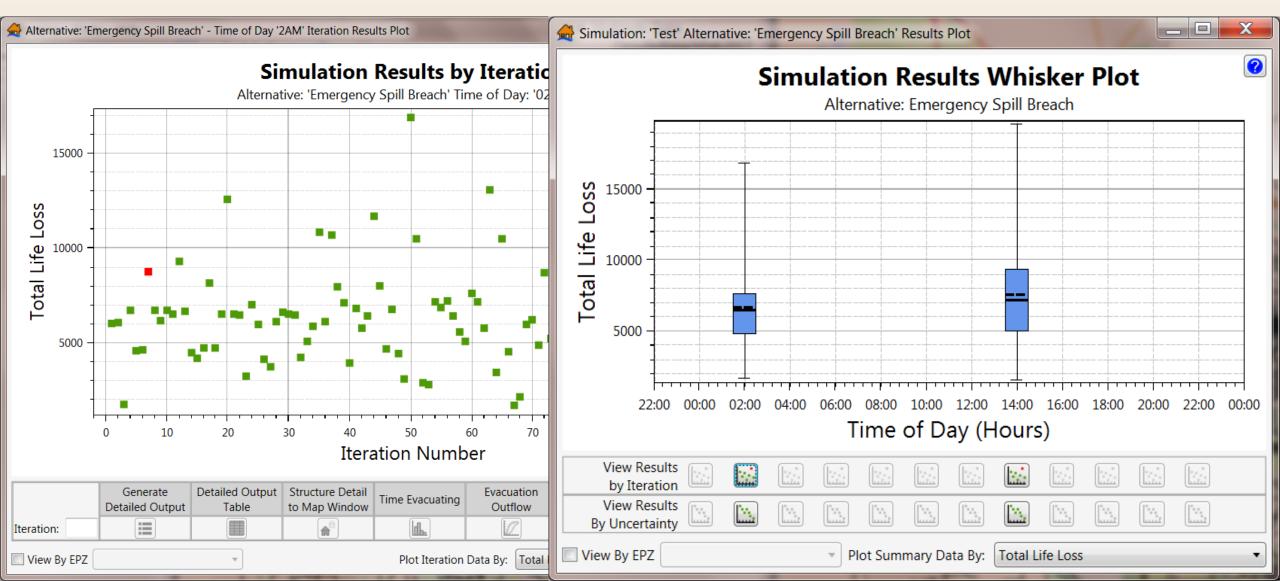
- User defined
 - Historic data, empirical equations, site specific assumptions, etc
- Simplified physical breaching
 - Velocity vs. erosion rate
- Coupled embankment erosion and hydraulic model

Process	WinDAM B/C	DL Breach	HR BREACH	NWS BREACH
River Hydraulics	No	N	N	N
Breach Flow	Yes	Y	Υ	Υ
Internal Hydraulic Routing	N	N	Y	N
Tailwater Submergence	Υ	Υ	Υ	Υ
Piping Initiated	Y	Y	Y	Υ
Overtopping Initiated	Y	Y	Y	Υ
River Erosion and Stability Failure Initiated	N	N	N	N
Headcut	Y	Υ	Y	N
Breach Widening	Y	Y	Y	Υ
Breach Deepening	Y	Y	Y	Υ
Foundation Scouring	N	Y	N	N
Mass Wasting	Y	Y	Y	Υ
Surface Erosion by Sediment Transport	N	Y	Y	Y
Sediment Volume	N	Y	Y	Υ
Surface Protection Removal	Y	N	Y	Y
Composite Material Zones	N	Y	Y	Υ

- How many people are exposed to the flooding?
 - Initial distribution of people
 - Redistribution through evacuation
- How severe is the flooding?
- Are the people in a structure that can withstand the flooding?
- Will some of the people subjected to flooding die?

Building type	Partial	Total damage	
	damage		
Wood-framed			
unanchored	v*d ≥ 2 m²/s	v*d ≥ 3 m²/s	
anchored	v*d ≥ 3 m²/s	v*d ≥ 7 m²/s	
Masonry,	v ≥ 2 m/s &	v ≥ 2 m/s &	
concrete & brick	v*d ≥ 3 m²/s	v*d ≥ 7 m²/s	

- How many people are exposed to the flooding?
 - Initial distribution of people
 - Redistribution through evacuation
- How severe is the flooding?
- Are the people in a structure that can withstand the flooding?
- Will some of the people subjected to flooding die?



Ranges of fatality rates and life loss estimates are required for the empirical approach

Embrace Uncertainty

