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A-1 PROBABILITY AND STATISTICS 
A-1.1 Key Concepts 

During a risk analysis, various numbers called probabilities are estimated and 
used to describe our degree of belief in the likelihood of events in order to 
characterize the risks associated with those events.  Probability is a measure of the 
likelihood that an event will occur.  The mathematical theory of probability tells 
us how to apply the numbers in a logical and consistent manner.  Facilitators and 
analysts are responsible for defining what is being estimated and ensuring that the 
probability estimates represent what the events they are intended to describe. 

Do probabilities model a process that is random, or do they describe the state of 
knowledge? In the case of a flood frequency curve, the answer is both.  The 
chance of exceeding the elevation resulting from a flood with a 100-year 
recurrence interval this year is typically modeled as a random process described 
by the frequency curve.  The likelihood that the elevation resulting from a flood 
with a 100-year recurrence interval will be within a particular range is typically 
modeled as a degree of belief described by the uncertainty about the frequency 
curve.  This separation of the probabilities based on the source and nature of 
the uncertainty exists only in the risk model and not in the real world.  The 
occurrence of floods is not necessarily random.  We choose to model them as a 
random process because we don’t have (and perhaps can’t obtain) sufficient 
knowledge to predict long-term weather patterns at specific locations.  Modeling 
flood occurrences as a random process might provide a more convenient or 
improved understanding of risk compared with attempting to model the 
knowledge uncertainty in weather patterns.  Separation of uncertainty in a risk 
analysis is an important modeling decision.  Probabilities associated with 
randomness are statements about frequency of occurrence in time or space.  
Probabilities associated with knowledge uncertainty are statements about our 
degrees of belief regarding a particular claim. 

Probabilities can be estimated using a variety of techniques.  Statistical estimates 
can be made based on past observations using empirical data.  Analytical models 
based on physical processes and reasoning from first principles can be applied.  
Expert opinions can be elicited to obtain probabilities in cases where data or 
models are incomplete.  In practice, the risk analyst should combine all methods 
when feasible to support robust probability estimates.  Judgment should always be 
applied as an overlay to these methods to express our degree of belief in the 
adequacy of the data, methods, parameters, and models. 
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Chapter A-1 Probability and Statistics 

A-1.2 Deductive and Inductive Logic 

Critical thinking is the application of reason to evaluate the extent to which a 
claim is believed to be true.  It requires a “disciplined process of actively and 
skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating 
information gathered from, or generated by, observation, experience, reflection, 
reasoning, or communication, as a guide to belief and action.” (Scriven and Paul 
1987).  All levels of decision making are impacted by critical thinking.  To make 
better decisions, we must assess our beliefs and the beliefs of others.  Questioning 
the beliefs and rationale of others is an essential element of the critical thinking 
process and should not be viewed as a personal criticism.  The wise analyst and 
decision maker is one who knows how to identify and minimize errors and biases 
in critical thinking to support more credible decisions. 

Logical arguments derive from the process of evaluating whether or not a claim is 
believed to be true.  These arguments can be characterized as either deductive or 
inductive.  Deductive arguments arrive at conclusions that are guaranteed to be 
true given certain premises.  Inductive arguments support conclusions that are 
likely or probable based on the supporting evidence.  In practice, actual truth is a 
challenging matter to assess.  How do you know for certain that other countries in 
the world exist? Have you visited them? Is the map correct? Is the geography 
teacher correct? 

Deductive arguments are valid when the conclusions necessarily follow, if the 
premises are assumed to be true.  A valid deduction does not require the premises 
to be true.  This is a potential source of disagreement among rational people 
because the truth of a deduction is independent of its validity.  Given a premise 
that all dams reduce flood risk and that John Rapids is a dam, it necessarily 
follows that John Rapids Dam must reduce flood risk.  This is a valid deduction 
even though we know the premise that all dams reduce flood risk is not true.  
Many navigation and hydropower dams are not designed to reduce flood risk.  A 
deduction is sound if and only if the deduction is valid and all of its premises are 
true.  In the previous example, the argument that John Rapids Dam reduces flood 
risk is not sound because the premise is false.  However, both invalid deductions 
and valid deductions with unsound arguments can still have true conclusions.  
John Rapids Dam might reduce flood risk even though the argument is unsound.  
The conclusion of a deductive argument should not be automatically assumed to 
be untrue because of flaws in its validity or soundness. 

Inductive arguments provide a framework to address issues of truth by supporting 
certain conclusions that are more reasonable to believe than others, but are not 
certain to be correct.  If sand boils were observed near the levee toe during the last 
flood, then it is likely that sand boils will be observed during the next flood.  We 
can’t know this for certain, but our conclusion is rationally supported by the 
available evidence (and first principles of soil mechanics).  The conclusion of an 
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Chapter A-1 Probability and Statistics 

inductive argument becomes more likely to be true as more supporting evidence 
is obtained.  As a simple example, consider a box containing 100 piezometers.  
Without looking inside the box, we begin to pull piezometers out.  The first few 
piezometers we pull out are broken.  At what point would you conclude that 
most of the remaining piezometers are also broken? Our confidence that this 
conclusion is true will increase as we remove and test more piezometers.  We 
might consider other evidence to bolster our conclusion, such as observing 
damage to the box or witnessing the delivery person dropping the box.  The more 
evidence we obtain, the stronger we believe in our conclusion.  In practice, the 
amount of evidence will be limited, and we must rely on the judgment and 
experience of experts. 

Because induction is not an exact science and evidence is often limited, errors in 
reasoning can occur and it is possible to reach wrong conclusions.  Recognizing 
and mitigating issues that introduce reasoning errors (e.g. overestimating the 
strength of evidence, overconfidence in expert judgment, group think, misplacing 
burden of proof, and many others) can strengthen inductive arguments.  The 
validity of inductive conclusions must be evaluated against alternative 
conclusions to determine how strong they are.  Decision makers often use 
objective standards to compare alternatives and assess whether a particular 
course of action is preferred over another. 

In practice, both deductive and inductive arguments are necessary for a credible 
systematic approach to risk analysis.  Deduction can provide absolute proof for 
a conclusion, but the premises can rarely be tested and verified to be true.  
Induction is driven by the available evidence, but proof of a theory cannot be 
obtained.  Risk analysis requires a careful synthesis of these two logical 
approaches. 

A-1.3 Set Theory 

Many of the characteristics of a risk analysis problem can be described and 
modeled using sets.  Set theory is a branch of mathematics that deals with the 
properties and relationships of collections of elements or events.  Risk analysis 
relies on set theory to provide a logical framework for the analysis of events and 
the relationships between or among a collection of events. 

A set is a well-defined collection of unique elements or events.  The sample space 
for a set includes all possible outcomes of a random trial or experiment.  For 
example, a random trial or experiment might be a levee exposed to a flood 
loading.  The sample space for this trial might be represented by a set containing 
two possible events {levee breaches, levee does not breach}.  The complement of 
event A includes all the events that are not A.  The complement of A can be 
denoted as A’, AC, or Ā.  For the levee example, the complement of {levee 
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Chapter A-1 Probability and Statistics 

breaches} would be {levee does not breach}.  Events are mutually exclusive when 
they cannot occur during the same random trial or experiment.  The events {levee 
breaches} and {levee does not breach} are mutually exclusive because both 
cannot occur.  Events are collectively exhaustive when at least one of the events 
must occur during a random trial or experiment.  The collectively exhaustive 
events for levee performance would be {levee breaches, levee does not breach}. 

The union of two (or more) events, denoted by A ∪ B, is the set that includes all 
outcomes that are either A or B or both.  Given two potential failure modes 
(PFM), the union, expressed as PFM1 ∪ PFM2, would be the set {PFM1, PFM2, 
PFM1 and PFM2}.  The intersection of two (or more) events, denoted by A ∩ B 
or AB, is the set of all outcomes that include both A and B.  For the two PFM 
examples, the intersection, expressed as PFM1PFM2, would be the set {PFM1 
and PFM2}.  When the events are mutually exclusive, the intersection is an empty 
or null set containing no elements, {}. 

Consider the following example: A flood-overtopping PFM developed by a risk 
analysis team for an embankment dam forming a pumped storage reservoir 
consists of three events: A, a flood occurs; B, the reservoir elevation exceeds the 
available freeboard; and C, a breach occurs.  For failure to occur by this PFM, all 
three of these events must occur.  Failure of the dam for this PFM can be 
described as the intersection of the three events (ABC).  A second flood 
overtopping PFM developed by the risk analysis team could result in overtopping 
and breach due to misoperation of the pumps without the occurrence of a flood.  
The PFMs of flood overtopping (PFM1) and misoperation (PFM2) are themselves 
events, whose occurrence or nonoccurrence can be used to describe the state of 
the system.  Assuming no other PFMs are plausible, the normal state of the 
system could be described by the intersection event PFM1’ ∩ PFM2’ (neither 
failure mode occurs).  Recall that PFM1’ is the complement meaning that the 
failure mode does not occur.  The intersection events PFM1 ∩ PFM2’ (meaning 
only PFM1 occurs), PFM1’ ∩ PFM2 (meaning only PFM2 occurs), and PFM1 ∩ 
PFM2 (meaning both PFMs occur) represent three possible failure states for the 
dam. 

A-1.4 Venn Diagrams 

The basic concepts of set theory can be illustrated using Venn diagrams.  A 
sample space is typically represented by a rectangle.  Events and their 
relationships are normally depicted on the Venn diagram by overlapping circles or 
other closed shapes within the sample space. The Venn diagrams on figure A-1-1 
summarize some basic set theory concepts and operations.  Venn diagrams can be 
developed for a risk analysis to obtain a better depiction and understanding of the 
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Chapter A-1 Probability and Statistics 

Figure A-1-1.—Set theory concepts and operations. 

relationship between events to support constructing event trees, estimating 
probabilities, or combining and portraying risks.  For example, the relationships 
between or among multiple PFMs can be illustrated using Venn diagrams and 
described using set theory. 

A-1.5 Combinatorics 
Combinatorics is a branch of mathematics that includes the study of the 
enumeration, combination, and permutation of set elements.  Risk analysis can 
utilize combinatorics to identify relevant outcomes from a set of possible events. 

A-1.5.1 Permutation with Repetition 
If each event outcome can be realized more than once and the order of the events 
does not matter, then the number of permutations is nk where n is the number of 
event outcomes available to choose from and k is the number of events that occur.  
In a river system with two dams and one levee, there are eight permutations for 
performance of the system.  The number of outcomes for each facility is n = 2 
{breach, no breach} and the number of facilities is k = 3 {dam1, dam2, levee}. 
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Chapter A-1 Probability and Statistics 

The same eight permutations can be also obtained using the binomial coefficient 
equation below.  The equation can be solved in Microsoft Excel using the 
formula = COMBIN(i,j).  Pascal’s triangle can also be used as a graphical 
solution of the binomial coefficient. 

Equation A-1-1 

where i! is the factorial of i, 1x2x3…xi.  Given the three PFMs (j = 3), there is 1 
combination of zero (i = 0) failures, 3 combinations of one (i = 1) failure, 3 
combinations of two (i = 2) failures, and 1 combination of three (i = 3) failures.  
The eight permutations for this example are summarized in table A-1-1.  Once the 
possible events are enumerated, the analyst can evaluate and decide which of 
these scenarios might be important and relevant for a risk analysis.  

A similar evaluation can be made for an individual dam or levee to enumerate 
combinations when there is more than one PFM.  The number of outcomes for an 
individual dam or levee is still n = 2 {breach, no breach}.  The number of events 
(k) is equal to the number of PFMs.  An individual levee with three PFMs would 
have eight combinations. 

Table A-1-1—Example of Permutation with Repetition 

Permutation 
Performance for 

Dam 1 
Performance for 

Dam 2 
Performance for 

Levee 
1 No breach No breach No breach 
2 Breach No Breach No Breach 
3 No breach Breach No breach 
4 No breach No breach Breach 
5 Breach Breach No Breach 
6 Breach No Breach Breach 
7 No breach Breach Breach 
8 Breach Breach Breach 

A-1.5.2 Permutation Without Repetition 
If each event outcome can be realized only once and the order of the events does 

𝑖𝑖! matter, then the number of permutations within a subset of m events is 
(𝑖𝑖−𝑚𝑚)! 

where i is the total number of events.  For example, permutation number five 
from the previous example in table A-1-1 could have six additional permutations 
(i = m = 3) if the order of the events is important.  Perhaps the consequences are 
different depending on which dam breach occurs first and whether the levee 
overtops before or after a dam breaches.  The six additional permutations are 
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Chapter A-1 Probability and Statistics 

listed in table A-1-2.  Once the possible events are enumerated, the risk analyst 
can evaluate and decide which of these scenarios might be important and relevant 
for a risk analysis.  Perhaps the order in which the breaches occur affects 
consequences, but the order of non-breach events does not.  This might lead to a 
conclusion that permutations 5-1 and 5-3 are relevant for the risk analysis and the 
rest can be screened out. 

Table A-1-2.—Permutation Without Repetition Example 

Permutation First Event Second Event Third Event 
5-1 Dam 1 Dam 2 Levee’ 

5-2 Dam 1 Levee’* Dam 2 

5-3 Dam 2 Dam 1 Levee’ 

5-4 Dam 2 Levee’ Dam 1 

5-5 Levee’ Dam 1 Dam 2 

5-6 Levee’ Dam 2 Dam 1 
* Levee’ means the levee does not breach. 

A-1.6 Probability 

A-1.6.1 Axioms 
Probability theory is founded on three axioms that have been attributed to Andrei 
Kolmogorov.  The first axiom states that the probability of an event (A) is a 
non-negative real number.  The second axiom states that the probability of an 
event that is certain to occur is equal to one.  The third axiom (sometimes referred 
to as the addition rule) states that the union of two or more mutually exclusive 
events is equal to the sum of the probabilities for each event.  The axioms are 
summarized by the three equations below. 

First Axiom: P(A) ≥ 0 
Second Axiom: P(S) = 1 
Third Axiom: P(A U B) = P(A) + P(B) 

The third axiom can be expressed as a multiplication rule instead of the addition 
rule.  In practice, it makes no difference because all the remaining probability 
formulas can be derived from either set of axioms.  The multiplication rule can be 
expressed using the equation below. 

Multiplication Rule:   P(A ∩ B) = P(A) P(B|A) Equation A-1-2 
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Chapter A-1 Probability and Statistics 

In the above equation, P(B|A) is the conditional probability of event B given 
that event A occurs.  In a risk analysis, this might correspond to the probability 
that a levee will breach given that a flood with a 50-year recurrence interval 
occurs, expressed as P(Breach | 50year flood).  Note that the annualized failure 
probability (AFP) is calculated using the multiplication rule as the intersection 
probability of the events that comprise a PFM. 

A-1.6.2 Interpretation 
Frequency and degree-of-belief describe two broad interpretations of probability.  
In practice, probability estimates used in risk analysis are based on degree-of-
belief.  Frequency based probabilities can be used to inform these degree-of-belief 
probability estimates.  Both interpretations of probability are useful in risk 
analysis and both follow the same probability calculus. 

Frequency probabilities are based on a stable frequency for the occurrence of 
an event over a long sequence of trials.  Frequency probabilities can also be 
estimated based on the physical properties of a system.  The frequency of rolling 
a 2 using a 6-sided die should be 1/6.  This can be estimated directly by rolling the 
die many times or indirectly by concluding the die is fair based on its physical 
properties. Similarly, observations can be used to estimate probabilities for a dam 
or levee risk analysis.  If damage to clay tile drains has been observed at 50 out of 
100 dams inspected, then a risk analyst might estimate the probability of clay tile 
drain damage at the dam under consideration to be about 50% as long as the 
conditions at the dam being evaluated are reasonably consistent with the 
conditions at the inspected dams.  Without a physical basis like the fair die 
example, a sufficient number of observations is required to obtain a reasonably 
accurate probability estimate. 

Degree-of-belief probabilities are based on a rational weighting of evidence that 
can be manifested by a willingness to take a particular action, to bet at particular 
odds, or to consider particular odds as fair.  Personal experience, expert judgment, 
and other manifestations of deductive and inductive reasoning can be used as a 
basis for estimating degree-of-belief probabilities.  For example, a degree-of-
belief interpretation might arrive at the same probability of 1/6 for rolling a 
2 based on the available evidence (assumption that the die is fair, visual 
observation of the die characteristics, measurement of the die properties, or 
experience with similar looking die).  Similarly, an expert might combine their 
general knowledge of the internal erosion mechanism (physics of the process, 
more likely and less likely factors, knowledge of past incidents) with the specific 
characteristics of an embankment dam (construction practices used, soil 
properties, location of the phreatic surface) to estimate the probability of internal 
erosion initiation under a particular loading. 
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Chapter A-1 Probability and Statistics 

A-1.6.3 Uncertainty 
Two general types of uncertainty can be described as aleatory (natural variability 
or randomness) and epistemic (knowledge uncertainty).  Aleatory uncertainty 
characterizes processes that are assumed to be random in time or space.  The 
occurrence of floods might be assumed to be random in time and the spacing of 
joints in a bedrock foundation might be assumed to be random in space.  In 
practice, aleatory uncertainty is treated as irreducible.  In other words, there is 
no practical way to reduce the uncertainty through the acquisition of more 
knowledge.  Epistemic uncertainty characterizes our lack of knowledge regarding 
the state of nature.  A possible foundation flaw either exists or does not exist, but 
we don’t have sufficient knowledge to determine for certain whether the flaw 
exists.  Epistemic uncertainty considers the uncertainty in both models and model 
parameters.  Uncertainty in modeling includes our ability to identify a proper 
model, the ability of the model to represent reality, and our understanding of how 
the model may be changing over time.  Uncertainty in model parameters includes 
our ability to identify the appropriate representative parameters and consistently 
estimate values for the parameters through observation or measurement.  In 
practice, epistemic uncertainty is treated as reducible.  In other words, more 
knowledge can be obtained to reduce the magnitude of the uncertainty.  
Additional exploration could reduce uncertainty in the possible presence of a 
foundation flaw.  These uncertainty concepts are applicable not only to risk 
analysis models and risk estimates but also to decision making processes. 

A-1.6.4 Expressing Probability 
Probability estimates can be expressed as a percent (10% chance), as a fraction 
(1/10 chance), as a decimal (0.1 probability), or as odds (1:9).  Each of these four 
values has the same probability and the same meaning.  Probabilities that apply to 
an annual time period can be expressed as an annual exceedance probability 
(AEP).  This is common for the characterization of flood and seismic hazards.  
Probabilities can also be defined as a function of time to describe temporal 
processes such as climate change or degradation (e.g. corrosion). 

A-1.6.5 Random Variables 
A random (or stochastic) variable is used to represent an uncertain quantity whose 
value can take on a number of possible values.  The uncertainty associated with 
the random variable could be the result of natural variability or a lack of 
knowledge.  Despite the name, random variables do not necessarily have to 
describe a random process.  For example, the magnitude of a spring flood might 
be modeled as a random process that varies from year to year, whereas a fault in 
the dam foundation might be modeled as a lack of knowledge.  We do not know 
whether or not it exists.  Both scenarios can be described using random variables.  
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Chapter A-1 Probability and Statistics 

The flood might be described by a range of peak discharge values and the 
presence of the fault might be described by two scenarios, either “yes, it exists” or 
“no, it does not exist.” 

A-1.6.6 Combining Probabilities (Union of Two or more 
Events) 

The probability for the union of two (or more) events is a common calculation in 
risk analysis.  It is used to sum probabilities and risks across multiple hazards, 
event tree branches, and PFMs. 

A general equation for calculating the probability of the union of two events is 
shown below.  The summation of the three terms contained within the {} brackets 
represent the probabilities for the occurrence of event A only, the occurrence of 
event B only, and the occurrence of events A and B.  The equation can be 
expanded for three or more events.  The number of terms needed in the equation 
is equal to 2n-1, where n is the number of events.  The calculation becomes more 
cumbersome and complex as the number of events increases. 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = {𝑃𝑃(𝐴𝐴) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)} + {𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)} + {𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)} Equation A-1-3 

For only two events, a simplified form of the same equation is more commonly 
found in the literature. 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵) Equation A-1-4 

Two (or more) events are mutually exclusive when both events cannot occur in 
the same experiment or trial.  The equation below for the probability of the union 
of two mutually exclusive events is the same as the third probability axiom. 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) Equation A-1-5 

This equation can also be obtained from the general union equation by 
recognizing that P(𝐴𝐴 ∩ 𝐵𝐵) = 0 for mutually exclusive events.  If the events A 
and B cannot both occur, then the probability of the event AB must equal zero. 

Three ways the union calculation is applied in a risk analysis are as follows.  First, 
event tree branches are, by definition, mutually exclusive events.  This allows one 
to simply sum probabilities and risks across branches to obtain a total risk 
estimate for all loadings and PFMs included in the tree.  Second, floods and 
earthquakes are typically modeled as mutually exclusive events in a risk analysis.  
This allows estimating the risks separately for each hazard and then summing 
them to obtain a total risk estimate.  This simplifying assumption is not strictly 
true and may not be appropriate or valid in every situation, but it is typically 
reasonable to assume that the probability of a major earthquake occurring 
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Chapter A-1 Probability and Statistics 

coincident with a major flood is negligible.  Third, PFMs resulting from a 
particular loading are often modeled as mutually exclusive events in a risk 
analysis.  This provides a basis for estimating risks for individual PFMs in 
separate event trees and then summing the estimates to obtain a total risk estimate.  
Strictly speaking, hazards and PFMs are not mutually exclusive.  This is 
merely a simplifying assumption that can be made when the joint probability 
[i.e. P(A)P(B)] and associated consequences of the intersection event is relatively 
small [i.e. P(A)P(B) << 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵)] such that the intersection event can be 
omitted from the risk analysis.  When events cannot be reasonably modeled as 
mutually exclusive, the general union equation can be used. 

A-1.6.7 Combining Probabilities (Intersection of Two or more 
Events) 

The probability for the intersection of two (or more) events is a common 
calculation in risk analysis.  It represents the probability that both events occur 
and is used to multiply probabilities to obtain the probability for the outcome of a 
sequence or collection of events.  This is the basis for multiplying probabilities 
along event tree pathways and for multiplying probabilities for the sequence of 
events associated with a PFM.  For example, a breach can occur only if all of the 
underlying events that define the PFM occur.  The probability of breach can be 
calculated as the product of the probabilities for the underlying events that define 
the PFM. 

A general equation for calculating the probability of the intersection of two 
events is shown below.  This is the third probability axiom expressed as the 
multiplication rule.  The two terms represent the probability that event A occurs 
multiplied by the probability that event B occurs given that event A occurs.  The 
equation can be expanded for three or more events.  The number of terms needed 
in the equation is generally equal to the number of events. 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴) Equation A-1-6 

Two (or more) events are statistically dependent if the occurrence of one event 
affects the occurrence probability of the other event(s).  Therefore, the second 
term in the general equation is P(B|A).  This is the probability that B occurs given 
that A occurs.  In a typical event tree, this might be the probability that internal 
erosion initiates given a particular flood loading occurs.  The intersection 
probability for the flood loading and initiation would be the probability of the 
flood load multiplied by the probability of initiation given (i.e. conditional on) the 
flood load.  The probability of initiation depends on the magnitude of the flood 
load. 

Two (or more) events are statistically independent when the occurrence of one 
event does not affect the probability for the other event(s).  When events are 
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Chapter A-1 Probability and Statistics 

independent, P(B|A) = P(B).  Event A does not influence the probability of 
event B occurring.  PFMs are typically estimated assuming they are statistically 
independent.  This is an assumption that simplifies the estimation of risk.  Strictly 
speaking, this may not always be a valid simplifying assumption.  For example, a 
spillway erosion PFM l might reduce the likelihood of an overtopping failure 
mode.  If spillway erosion occurs, the outflow might increase making overtopping 
less likely. 

A-1.6.8 Combining Probabilities (DeMorgan’s Rule) 
A common formula used to calculate a total probability is derived from 
DeMorgan’s rule.  Examples include calculating the total probability of failure 
given multiple PFMs or calculating the probability of flooding over a 30-year 
mortgage period.  For two events A and B, DeMorgan’s rule states that the 
complement of the union of the two events is equal to the intersection of their 
complements.  This can be expressed by the equation below. 

(𝐴𝐴 ∪ 𝐵𝐵)′ = 𝐴𝐴′ ∩ 𝐵𝐵′ Equation A-1-7 

The Venn diagrams shown on figure A-1-2 provide a conceptual derivation of 
DeMorgan’s rule. 

S 

B A 

S 

A U  B 

Union 
S 

B)’ 

Complement of Union 

S 

S 

Complement 

S 

⋂ B’ 

Intersection of Complements 

Figure A-1-2.—DeMorgan’s rule. 

In practice, DeMorgan’s rule can be applied to simplify some risk analysis 
calculations.  For example, the total probability of failure for a system with n 
PFMs can be calculated using the equation shown below.  This can simplify the 
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Chapter A-1 Probability and Statistics 

calculation of total risk when the number of PFMs is greater than two.  Recall that 
the union equation becomes cumbersome when there are more than two events (in 
this case more than two PFMs).  A conceptual derivation of the total probability 
equation using DeMorgan’s rule is shown on figure A-1-3. 

𝑛𝑛 

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆) = 1 − 𝑃𝑃(𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆) = 1 − �[1 − 𝑃𝑃(𝑃𝑃𝐹𝐹𝑃𝑃𝑖𝑖)] Equation A-1-8 
𝑖𝑖=1 

S 

A U  B 

Union 

P(A ⋃ B) 

= 
S 

B)’ 

Complement of Union 

1 – P(A ⋃ B)’ 

= 
S 

⋂ B’ 

Intersection of Complements 

1 – P(A’ ⋂ B’) 

= 

1 – [1-P(A)] * [1-P(B)] 

S 
Intersection of Complements 

Figure A-1-3.—Application of DeMorgan’s rule. 

A-1.6.9 Combining Probabilities (Uni-Modal Bounds) 
The unimodal bounds theorem (Ang and Tang 1984) states that for ‘n’ 
positively correlated events (E1, E2, E3, …, En) with corresponding probabilities 
[P(E1), P(E2), P(E3), …, P(En)], the total probability for the union of the events 
[P(E) = P(E1 ⋃ E2 ⋃ E3 …⋃ En)] lies between the upper and lower bounds given 
by the following equation. 

n 

max [P(E1), P(E2), P(E3), … , P(En)] ≤ P(E) ≤ 1 − �[1 − P(Ei)] 
Equation A-1-9 

i=1 

The upper bound on the right side of the equation is based on a calculation of the 
total probability of system failure using DeMorgan’s rule.  The lower bound on 
the left side of the equation is based on the individual event with the largest 
probability.  Events that are correlated will yield a total probability closer to the 
lower bound.  Events that are uncorrelated will yield a total probability that is 
closer to the upper bound.  In practice, the degree of correlation can be difficult to 
estimate.  It is common for risk analysts to assume the upper bound value.  This 
assumption may not be appropriate in all situations. 

A-1.6.10 Combining Probabilities (Central Limit Theorem) 
When statistically independent random variables are summed, the distribution of 
the sum will trend toward a normal distribution even if the distributions of the 
variables being summed are not normal.  When statistically independent random 
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Chapter A-1 Probability and Statistics 

variable are multiplied, the distribution of the product will trend toward a 
log-normal distribution even if the distributions of the variables being multiplied 
are not normal.  Therefore, the distribution of C-D (capacity minus demand) in a 
reliability analysis will typically trend toward a normal distribution.  The annual 
probability of failure for a PFM will also typically trend toward a normal 
distribution because the end branches of an event tree are summed to obtain the 
total.  The distribution for factor a safety (C/D) will typically trend toward a log-
normal distribution because capacity is divided by demand.  The end branches of 
an event tree will also typically trend toward a log-normal distribution because 
probabilities along an event tree pathway are multiplied. 

A-1.7 Statistics 

A-1.7.1 Probability Distributions 
The event described by a particular value (or range of values) of a random 
variable must be expressed with an associated probability.  Probability 
distributions can be used to describe the probabilities associated with the possible 
values of a random variable.  For example, we can estimate a probability 
distribution for the annual maximum ground acceleration at a dam site, the 
permeability of a sand layer in a levee foundation, the system response for a PFM, 
or the effectiveness of an evacuation warning.  Virtually all parameters considered 
and applied in a risk analysis have some degree of uncertainty and are therefore 
candidates to consider modeling them as random variables. 

Random variables can be discrete or continuous.  Discrete random variable can 
have a finite number of possible values (e.g. number of monoliths that breach).  
Continuous random variables can have an infinite number of possible values 
(e.g. peak ground acceleration at a levee).  For discrete random variables, a 
probability of occurrence can be estimated and assigned to each of the possible 
outcomes.  The number of spillway gates that fail to open on demand could be 
modeled as a discrete random variable.  A probability mass function (PMF) is 
commonly used to describe the probability distribution for a discrete random 
variable.  A possible probability mass function for the spillway gates is shown on 
figure A-1-4.  The probability that exactly one gate does not open can be obtained 
directly from the probability mass function as about 0.35.  The probability that 
zero or one gate does not operate can be obtained by summing the probability 
mass for zero and one gate which would be about 0.53 + 0.35 = 0.88.  The 
probabilities for all of the gate scenarios must sum to 1.0 to satisfy the probability 
axioms. 

A cumulative distribution function (CDF) is another way to describe the same 
probability distribution for the spillway gates.  The cumulative distribution 
describes the probability that the random variable is less than or equal to a 
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Figure A-1-4.—Probability mass function for a discrete 
random variable. 

particular value.  The CDF for the spillway gates is shown on figure A-1-5. 
The probability that exactly one gate does not open can be obtained from the 
cumulative distribution function.  The probability of 0.88 for one gate or less 
includes the events {0 gate, 1 gate}.  The probability of 0.53 for zero gates 
includes the event {0 gate}.  The difference between these two probabilities is 
the event for exactly one spillway gate {1} which has a probability of about 
0.88-0.53 = 0.35.  This is the same value that was estimated previously from 
the probability mass function.  The probability that zero or one gate does not 
operate, which is equivalent to less than or equal to one gate on the cumulative 
distribution, can be obtained directly as about 0.88.  The probability of six or 
less gates must equal one to satisfy the probability axioms. 
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Figure A-1-5.—CDF for a discrete random variable. 
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Chapter A-1 Probability and Statistics 

Continuous random variables can take on an infinite number of possible values.  
For example, the thickness of a sand layer in a levee foundation might take on any 
value greater than or equal to zero.  A probability density function (PDF) can be 
used to describe the probability distribution for continuous random variables.  
A possible PDF for sand layer thickness is shown on figure A-1-6. 
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Figure A-1-6.—PDF for continuous random variable. 

The probability that the thickness will fall between two particular values can be 
obtained from the PDF as the integral (or area) between the two values.  This is 
shown graphically on figure A-1-7 and expressed mathematically with the 
following equation. 

𝑏𝑏 

𝑃𝑃(𝐹𝐹 < 𝑋𝑋 ≤ 𝑏𝑏) = � 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 
Equation A-1-10 

𝑎𝑎 

In the example, the probability that the sand layer thickness is between 75 and 
85 feet is equal to 0.68.  The probability for any specific value (say a thickness 
of exactly 80 feet) is equal to zero for any continuous random variable.  The 
units on the vertical axis are a density (not a probability).  Therefore, continuous 
random variables, such as those typically used to characterize flood or seismic 
hazard, must be evaluated in a risk analysis using partitions (also commonly 
referred to as load ranges or load intervals).  The total area under a PDF must 
equal one to satisfy the probability axioms. 
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Figure A-1-7.—PDF for a continuous random variable. 

Continuous random variables can also be described by a cumulative distribution 
function.  The cumulative distribution describes the probability that the random 
variable is less than or equal to a particular value.  This is the integral of the 
PDF over all values less than or equal to the value of interest.  The integral can be 
expressed mathematically with the following equation. 

𝑏𝑏 

𝑃𝑃(−∞ < 𝑋𝑋 ≤ 𝑏𝑏) = � 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 
Equation A-1-11 

−∞ 

A possible CDF describing the system response for a PFM at a dam is shown on 
figure A-1-8.  The probability that the dam will breach when subjected to a peak 
water load of 1500 feet is equal to the probability that the capacity (or strength) of 
the dam is less than or equal to the demand (or load).  In this example, the 
probability of failure is 0.16.  The cumulative probability function must have an 
upper bound of one to satisfy the probability axioms. 

A survivor function (also called a complementary CDF or exceedance curve) can 
be used to describe the probability that a particular value for the random variable 
will be greater than a particular value. 
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Figure A-1-8.—CDF for a continuous random variable. 

For this reason, survivor functions are sometimes referred to as exceedance 
functions.  Flood and seismic hazards are typically defined this way.  The 
survivor function can be expressed mathematically as an integral of the PDF with 
the following equation. 

𝑏𝑏 

𝑃𝑃(−∞ < 𝑋𝑋 ≤ 𝑏𝑏) = � 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 Equation A-1-12 
−∞ 

Greater than is the customary sign convention for survivor functions in the United 
States with one important exception.  The f-N chart, which is a survivor function 
for life loss, is defined as the annual probability of life loss greater than, or 
equal to, a particular life loss value. 

The survivor function can also be derived from the CDF using the following 
equation by recognizing that the survivor function is the complement of the 
cumulative distribution function.  For this reason, survivor functions are 
sometimes referred to as complementary cumulative distribution functions. 

𝑃𝑃(𝐹𝐹 < 𝑋𝑋 ≤ ∞) 
= 1 Equation A-1-13 
− 𝑃𝑃(−∞ < 𝑋𝑋 ≤ 𝐹𝐹) 
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Chapter A-1 Probability and Statistics 

A possible survivor function for the seismic hazard at a dam is shown in 
figure A-1-9. In this example, the probability that the maximum ground 
acceleration in a given year will be greater than 0.2g is equal to 4.6E-3 (about 
1 in 220).  Recall that the probability of an acceleration exactly equal to 0.2g is 
zero.  The probability of an acceleration between 0.1g and 0.2g in a given year 
can be calculated from the survivor function using a loading partition.  In this 
example, the probability for a maximum acceleration between 0.1g and 0.2g 
would be calculated as the difference between the AEP for 0.1g and the AEP 
for 0.2g.  (2.3E-2 – 4.6E-3 = 0.018).  Strictly speaking, an AEP describes the 
probability of one or more events occurring in a given year.  However, the 
probability of more than one event occurring is typically negligible for AEPs less 
than about 0.1 (greater than a 10-year event).  Alternative techniques such as 
partial duration series are available when the AEP is greater than 0.1 and the 
possible occurrence of more than one event in a given year is important for 
characterizing the risk. 
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Figure A-1-9.—Survivor function for a continuous random
variable. 

A-1.7.2 Moments 
A moment is a quantitative measure of shape used in both statistics and 
mechanics.  Moments can be estimated from observations, measurements, or 
expert opinion.  The first moment is the mean (or centroid) which measures the 
central tendency of data or a distribution.  The second moment is the variance (or 
rotational inertia) which measures the amount of spread about the mean.  The 
third moment is the skewness which measures the asymmetry about the mean.  
Equations for estimating these moments are provided in table A-1-3. 

A-1-19 
July 2019 



     
 
 

 
 

 
  

   

  
 

 
  
 

 
 

 
 

   
  

 
 

 

 
   

 
 

 

 
  

 
 

  
   

    
   

 
  

 
 

 

  

  

Chapter A-1 Probability and Statistics 

Table A-1-3.—Moment Equations 

Moment Meaning 
Discrete Random 

Variable 
Continuous Random 

Variable 
Mean 
(First) 

Center of Mass 𝑛𝑛 

�̅�𝑥 = � 𝑥𝑥𝑖𝑖𝑝𝑝(𝑥𝑥𝑖𝑖) 
1 

∞ 

�̅�𝑥 = � 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 
−∞ 

Variance 
(Second) 

Central 
tendency 

𝑛𝑛 

𝜎𝜎2 = �(𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑝𝑝(𝑥𝑥𝑖𝑖) 
1 

∞ 

𝜎𝜎2 = � (𝑥𝑥 − �̅�𝑥)2𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 
−∞ 

Skew 
(Third) 

Symmetry 𝑛𝑛∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥1 )3𝑝𝑝(𝑥𝑥𝑖𝑖) 
𝛾𝛾 = 

𝜎𝜎3 

∞ ∫ (𝑥𝑥 − �̅�𝑥)3𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 −∞ 𝛾𝛾 = 
𝜎𝜎3 

Other common statistical measures include the median, mode, and geometric 
mean.  The median is the 50th percentile of a distribution which means that there 
is equal probability of a value greater than or less than the median.  The mode is 
the most probable value which means that the mode has the largest probability 
mass (discrete) or probability density (continuous).  A graphic depiction of the 
mean, median, and mode is shown on figure A-1-10. 
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Figure A -1-10.—Mean,  median,  and mode.  
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Chapter A-1 Probability and Statistics 

Additional parameters can be obtained from the set of basic parameters.  The 
standard deviation is equal to the square root of the variance.  The coefficient of 
variation is equal to the standard deviation divided by the mean. 

The geometric mean is defined as the nth root of the product of n data values as 
shown in the equation below.  It is typically used to calculate an average value in 
log space because the geometric mean is equal to the exponential of the arithmetic 
mean of the logarithms. 

𝑛𝑛 𝑛𝑛
1 

𝑛𝑛 ln 𝑥𝑥
� 𝑖𝑖=1 

𝑛𝑛 𝐺𝐺 = �� 𝑥𝑥𝑖𝑖� = 𝑆𝑆
�

∑ 

Equation A-1-14 
𝑖𝑖=1 

For example, the mean estimate for a semi quantitative risk assessment (SQRA) 
probability estimate between 1E-4 and 1E-5 should be calculated as a geometric 
mean using the equation below.  The geometric mean is also commonly used to 
calculate the average elevation or acceleration for a load partition because flood 
and seismic hazard curves typically have a logarithmic form. 

𝐺𝐺 = (10−4 ∗ 10−5)
1
2 = 3𝑥𝑥10−5 Equation A-1-15 

A-1.7.3 Analytical Distributions 
A multitude of probability distribution are available to describe random variables.  
Some of the more common types which might be useful in a risk analysis include 
uniform, triangular, normal, log-normal, program or project evaluation and review 
technique (PERT), and Weibull.  Other distributions are available and may be 
more appropriate for a particular application.  When selecting an analytical 
distribution, the following list of questions can be used as a guide. 

• What distribution provides the best fit? 
• What distribution should be expected? 
• What distributions have fit well in similar situations? 
• What do the experts think? 
• Does it matter? 

The uniform distribution (or rectangular distribution) is a continuous two 
parameter distribution that can be used to describe a range of values that are 
equally probable.  The distribution is defined by a lower bound (a) and an upper 

1 bound (c).  The PDF has a constant value of 
𝑐𝑐−𝑎𝑎 

for any value between a and c.  
The CDF has a value of 𝑥𝑥−𝑎𝑎 

𝑐𝑐−𝑎𝑎 
for any value x that is between a and c.  A uniform 

distribution is shown on figure A-1-11. 
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Chapter A-1 Probability and Statistics 

f(x) F(x) 

a c a c 
Figure A-1-11.—Uniform distribution. 

The triangular distribution is a continuous three parameter distribution defined by 
a lower bound (a), a most likely (mode) value (b), and an upper bound (c).  The 

2(𝑥𝑥−𝑎𝑎) 2(𝑐𝑐−𝑥𝑥) PDF has a value of 
(𝑐𝑐−𝑎𝑎)(𝑏𝑏−𝑎𝑎) 

for a ≤ x ≤ b and a value of 
(𝑐𝑐−𝑎𝑎)(𝑐𝑐−𝑏𝑏) 

for b ≤ x ≤ c.  
(𝑥𝑥−𝑎𝑎)2 

The cumulative distribution has a value of 
(𝑐𝑐−𝑎𝑎)(𝑏𝑏−𝑎𝑎) 

for a ≤ x ≤ b and a value of 
(𝑐𝑐−𝑥𝑥)2 

1 − 
(𝑐𝑐−𝑎𝑎)(𝑐𝑐−𝑏𝑏) 

for b ≤ x ≤ c.  A triangular distribution is shown on figure A-1-12. 

b 
Figure A-1-12.—Triangular distribution. 

The normal distribution is a two-parameter continuous distribution defined by a 
mean or expected value (μ) and a variance (σ2) or standard deviation (σ).  The 
random variable can take on any value between -∞ and +∞.  Physical quantities 
that result from a summation of many independent processes have distributions 
that are approximately normal.  The PDF for the normal distribution is given by 
the equation below.  The probability density can be calculated with Microsoft 
Excel using the formula =NORM.DIST(x,μ,σ,FALSE). 

a b 

f(x) 

c a c 

F(x) 
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Chapter A-1 Probability and Statistics 

Equation A-1-16 

The CDF for the normal distribution is given by the equation below.  The 
cumulative distribution can be calculated with Microsoft Excel using the 
formula = NORM.DIST(x,μ,σ,TRUE).  A normal distribution is shown on 
figure A-1-13. 

𝑥𝑥−𝜇𝜇 
1 𝜎𝜎 −1 

𝐹𝐹(𝑥𝑥) = � 𝑆𝑆2𝑣𝑣2 𝑑𝑑 Equation A-1-17 
√2𝜋𝜋 −∞ 

μ 

σ 

f(x) F(x) 

μ 

Figure A-1-13.—Normal distribution. 

The log-normal distribution is a two-parameter continuous distribution for a 
random variable whose logarithm has a normal distribution.  The parameters μ 
and σ are the mean and standard deviation for ln(x).  The relationships between 
these parameters and the mean (m) and standard deviation (s) of x is given by the 
equations below. 

𝑆𝑆 ⎛ ⎞ 𝜇𝜇 = 𝐹𝐹𝑙𝑙 
�1 + 𝑠𝑠2 

⎝ 𝑚𝑚2⎠ 
Equation A-1-18 

𝑆𝑆2 

𝜎𝜎 = �𝐹𝐹𝑙𝑙 �1 + 
𝑆𝑆2� Equation A-1-19 

The random variable can take on any value between 0 and +∞.  Physical quantities 
that result from a product of many independent processes typically have distributions 
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Chapter A-1 Probability and Statistics 

that are approximately log-normal.  The PDF for the log-normal distribution is given 
by the equation below.  The probability density can be calculated with Microsoft 
Excel using the formula = LOGNORM.DIST(x,μ,σ,FALSE). 

1 
𝑆𝑆−(ln 𝑥𝑥−𝜇𝜇)2 

𝑓𝑓(𝑥𝑥) = 2𝜎𝜎2 Equation A-1-20 
𝑥𝑥√2𝜋𝜋𝜎𝜎2 

The CDF for the log-normal distribution is given by the equation below.  The 
cumulative distribution can be calculated with Microsoft Excel using the 
formula = LOGNORM.DIST(x,μ,σ,TRUE).  A log normal distribution is shown 
on figure A-1-14. 

ln 𝑥𝑥−𝜇𝜇 
1 𝜎𝜎 −1 

𝐹𝐹(𝑥𝑥) = � 𝑆𝑆2𝑣𝑣2 𝑑𝑑𝑑𝑑 Equation A-1-21 
√2𝜋𝜋 −∞ 

f(x) F(x) 

Figure A-1-14.—Log-normal distribution. 

The PERT distribution was developed specifically for use in expert elicitation.  It 
is a continuous three parameter distribution defined by a lower bound (a), an 
upper bound (c), and a most likely (mode) value (b).  The PERT distribution has a 
smoother shape than the triangular distribution and a different mean.  It is derived 
from the four-parameter beta distribution with a mean defined by the following 
equation. 

𝐹𝐹 + 4𝑏𝑏 + 𝑐𝑐 
𝜇𝜇 = Equation A-1-22 6 

The PDF for the PERT distribution is given by the equation below. 

(𝑥𝑥 − 𝐹𝐹)𝛼𝛼−1(𝑐𝑐 − 𝑥𝑥)𝛽𝛽−1 

𝑓𝑓(𝑥𝑥) = Equation A-1-23 𝐵𝐵(𝛼𝛼, 𝛽𝛽)(𝑐𝑐 − 𝐹𝐹)𝛼𝛼+𝛽𝛽−1 
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Chapter A-1 Probability and Statistics 

Parameters for the above equation can be calculated using the equations below.  
The gamma function (Г) can be calculated with Microsoft Excel using the 
formula = Gamma(). 

4𝑏𝑏 + 𝑐𝑐 − 5𝐹𝐹 
𝛼𝛼 = Equation A-1-24 

𝑐𝑐 − 𝐹𝐹 

5𝑐𝑐 − 𝐹𝐹 − 4𝑏𝑏 
𝛽𝛽 = Equation A-1-25 

𝑐𝑐 − 𝐹𝐹 

Γ(𝛼𝛼)Γ(𝛽𝛽) 
𝐵𝐵(𝛼𝛼, 𝛽𝛽) = Equation A-1-26 

Γ(𝛼𝛼 + 𝛽𝛽) 

The CDF for the PERT distribution is given by the equation below. 

𝐹𝐹(𝑥𝑥) = 𝐼𝐼𝑥𝑥(𝛼𝛼, 𝛽𝛽) Equation A-1-27 

The incomplete beta function (I) can be calculated with Microsoft Excel using 
the formula = BETA.DIST(x,α,β,1,a,c).  A PERT distribution is shown on 
figure A-1-15. 

f(x) 

a c b 

F(x) 

a b c 

Figure A-1-15.—PERT distribution. 

Bathtub curves are commonly used in reliability engineering to describe a change 
in failure rate of electrical or mechanical components over time.  The first part of 
the curve typically has a decreasing failure rate and is sometimes referred to as the 
early failure period.  The second part of the curve typically has a constant failure 
rate and is sometimes referred to as the random failure period.  The third part of the 
curve typically has an increasing failure rate and is sometimes referred to as the 
wear out period.  A bathtub curve can be constructed from the Weibull distribution 
which is defined by a shape (β) and a scale(η) parameter.  The PDF for the Weibull 
distribution is given by the equation below. 
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Chapter A-1 Probability and Statistics 

𝛽𝛽−1 𝛽𝛽 𝛽𝛽 
𝑆𝑆−�𝜂𝜂

𝑥𝑥�𝑓𝑓(𝑥𝑥) = 
𝜂𝜂 

�
𝑥𝑥
𝜂𝜂� Equation A-1-28 

The CDF for the Weibull distribution is given by the equation below. 

𝛽𝛽 

𝐹𝐹(𝑥𝑥) = 1 − 𝑆𝑆−�𝜂𝜂
𝑥𝑥� Equation A-1-29 

The failure rate can be calculated using the following equation.  The failure rate 
decreases with time when β < 1.  The failure rate is constant when β = 1.  The 
failure rate increases with time when β > 1. 

𝛽𝛽−1 𝛽𝛽 
𝜆𝜆(𝑇𝑇) = 

𝜂𝜂 
�

𝑇𝑇
𝜂𝜂� Equation A-1-30 

The mean time to failure can be calculated using the following equation. 

𝜇𝜇𝑇𝑇 = 𝜂𝜂Γ �
1 

Equation A-1-31 𝛽𝛽 
+ 1� 

A bathtub curve derived from a Weibull distribution is shown on figure A-1-16. 

λ(T) 

T 

Figure A -1-16.—Failure r ate (bathtub curve).  
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Chapter A-1 Probability and Statistics 

A-1.7.4 Confidence Limits and Intervals 
The uncertainty associated with an estimated or sampled value of a random 
variable can be described using confidence limits and confidence intervals.  The 
confidence interval [a, b] for a specified degree of confidence (C%) can be 
calculated based on the equation below. 

𝑏𝑏 

𝐶𝐶% = �� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 � ∗ 100 Equation A-1-32 
𝑎𝑎 

A confidence limit can be obtained by replacing a in the equation above with the 
lower bound of the distribution.  Confidence limits less than 50% are referred to 
as lower confidence limits.  Confidence limits greater than 50% are referred to as 
upper confidence limits.  Confidence limits and intervals are typically reported 
based on equal tail probabilities.  For example, a confidence interval of 90% 
would typically be calculated based on an upper confidence limit of 95% and a 
lower confidence limit of 5%. 

For example, assume the friction angle for the soils at a particular site are 
sampled.  Based on the sample data, the friction angle is believed to fit a normal 
distribution with a mean of 32° and a standard deviation of 1°.  The probability 
(or confidence) that the friction angle is between 30 and 33° can be estimated as 
about 82%. This value is represented by the shaded area under the probability 
distribution on figure A-1-17. 

82% 

0.00 
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Figure A-1-17.—Confidence interval. 

There are some philosophical differences between a confidence interval (a 
frequentist concept) and a credible interval (a Bayesian concept).  A frequentist 
confidence interval would mean that 82% of the confidence intervals computed 
from repeated samples would contain the true value of the Phi angle.  The true 
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Chapter A-1 Probability and Statistics 

value is assumed to be a fixed, but unknown, value.  A Bayesian credible interval 
would mean that there is an 82% probability that the parameter of interest (Phi 
angle) has a value between 30° and 33°.  The true value is assumed to be a 
random variable.  These differences are beyond the scope of this introductory 
manual and are typically inconsequential in practice. 

A summary of confidence intervals associated with a normally distributed random 
variable is provided in table A-1-4.  These confidence intervals are defined as a 
function of the mean and standard deviation. 

Table A-1-4.—Confidence Intervals for a Normal Distribution 

Confidence Interval Meaning 
68% x̄ -σ ≤ x < x̄ +σ Plus or minus 1 standard 

deviation from the mean 

95% x̄ -2σ ≤ x < x̄ +2σ Plus or minus 2 standard 
deviations from the mean 

99.7% x̄ -3σ ≤ x < x̄ +3σ Plus or minus 3 standard 
deviations from the mean 

A-1.7.5 Correlation 
Correlation is the degree to which two or more variables are related to each other.  
For example, standard penetration test (SPT) blow counts might be correlated 
with the shear strength of soils.  Higher blow counts might be an indicator of 
higher shear strengths.  Correlation can be used to indirectly estimate parameters 
in a risk analysis.  The concept can also be used to provide internal consistency 
between parameters within a risk model.  For example, the effectiveness of a 
flood warning might be correlated with the time of day.  Correlation alone does 
not imply or provide evidence of causation.  A causal connection may exist only 
when there is a plausible cause and effect explanation. 

A commonly used metric for the linear correlation between two variables is 
the Pearson product-moment correlation coefficient.  Given a series of n 
measurements for X and Y, the sample correlation coefficient can be calculated 
using the following equation. 

𝑛𝑛∑𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑆𝑆𝑖𝑖 − 𝑆𝑆�) 
= 𝐹𝐹𝑥𝑥𝑥𝑥 𝑛𝑛 Equation A-1-33 �∑𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)2(𝑆𝑆𝑖𝑖 − 𝑆𝑆�)2 

This correlation coefficient can have a value between -1 and +1.  Values closer 
to -1 and +1 suggest a stronger linear relationship.  Values closer to zero suggest a 
weaker linear relationship.  When using these types of metrics, a dose of caution 
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Chapter A-1 Probability and Statistics 

is needed. Figure A-1-18 shows scatter plots for Anscombe’s quartet.  These are 
a set of four different sets of data pairs, with each set having the same values of 
mean, variance, correlation coefficient, and regression line, but very different 
appearance.  They demonstrate that simple metrics may not always provide a 
sufficient basis for interpreting the data. 
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Figure A-1-18.—Correlation example. 

A-1.8 Bayesian Inference 

Bayesian inference relies on Bayes' theorem to express the way in which a degree 
of belief probability should rationally change to account for new evidence.  
According to Ang and Tang (1975), the Bayesian method provides a useful 
approach when dealing with limited available information and when reliance on 
subjective judgments is necessary.  It can be used to inform subjective judgments 
so that the available evidence is not given too much weight or too little weight 
when estimating probabilities. 

The method begins with an estimate of the prior probability of an event based on 
available information.  The significance of new information or evidence can then 
be considered by using Bayes' theorem to obtain an updated or posterior estimate 
of the event probability (Hartford and Baecher 2004).  To illustrate the concept, it 
is convenient to start with the general form of Bayes theorem using the equation 
below, where P(x|O) is the posterior probability of an event x given an 
observation O, P(x) is the prior probability of the event x without the observation, 
P(O|x) is the conditional probability of the observation O given the event x, and 
P(O) is the probability of the observation. 
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Chapter A-1 Probability and Statistics 

𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑂𝑂|𝑥𝑥) 
𝑃𝑃(𝑥𝑥|𝑂𝑂) = Equation A-1-34 𝑃𝑃(𝑂𝑂) 

For example, let’s assume a risk analyst estimates the initial probability for the 
presence of a permeable layer in a levee foundation to be P(x) = 0.2, based on 
general knowledge of the regional geology; this is the prior probability.  It was 
further judged that if a permeable layer did exist, its extent of the layer would be 
on the order of 200 feet.  To improve the probability estimate, an exploration 
program is undertaken, with borings at 500-foot spacing along the levee 
alignment.  No permeable layers are detected by the exploration program; this is 
the observation, O.  Assuming a 200-foot-long permeable layer does exist in a 
500-foot reach, the length without the permeable layer would be 300 feet, so the 
probability of not finding it with a particular boring is P(O|x) = 300/500 = 0.6.  
This is the probability of the observation, O (no permeable layer detected), given 
that a permeable layer does exist (x).  The total probability of not observing a 
permeable layer includes two possible events: the layer exists, and it was not 
observed, or the layer does not exist.  The probability that the layer does not exist 
is the complement of the prior probability estimate, 1-P(x) = 0.8, and with no 
layer present, the probability of O (no layer detected) is 1.0.  The total probability 
of not observing a permeable layer is therefore 

𝑃𝑃P(O) = 0.2 ∗ 0.6 + 0.8 ∗ 1 = 0.92 Equation A-1-35 

Using Bayes’ theorem, the updated or posterior probability of a permeable layer 
in the foundation following the exploration program can be calculated as shown 
below. 

0.2 ∗ 0.6 
𝑃𝑃(𝑥𝑥|𝑂𝑂) = = 0.13 Equation A-1-36 

0.92 

In this case, the observation O was consistent with the low prior probability, so it 
resulted in a fairly modest decrease. 

A-1.9 Monte Carlo Analysis 

Monte Carlo methods cover a broad range of computational algorithms that rely 
on repeated sampling to obtain numerical results.  In risk analysis, Monte Carlo 
analysis is typically used to evaluate uncertainties when analytical solutions are 
difficult or do not exist.  Common applications include stochastic modeling for 
hazards, reliability or limit state analysis for PFMs, stochastic modeling for 
consequences, and combining uncertainties for event trees analysis.  For example, 
a simple model for estimating the average annual life loss (AALL) might be 
represented by the equation below. 
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When the model inputs are  deterministic,  a single value estimate for AALL is  
obtained as the product of the model inputs.  When the model inputs are uncertain 
or random, the estimate of AALL is also uncertain or random.  Monte Carlo 
analysis can  be used to estimate the probability  distribution of AALL.  
 
The basic steps for any Monte Carlo analysis  are listed below.  These steps are 
applicable for use with any type of model.  Specific applications for Monte Carlo  
analysis in dam and levee risk analysis are presented throughout the manual.  

 
 

 
  

 
    

 
 

  

  
 

  
 

   
 

  
 

   
 

    
 

    
 
 

  
 

    
  

 

  
 

  

   

Chapter A-1 Probability and Statistics 

• Build a model (e.g. event tree calculation for AALL, limit state 
analysis for factor of safety, flood model for peak stage, etc.) 

• Assign probability distributions to the model inputs (e.g. uncertainty in 
branch probabilities, uncertainty in material properties, uncertainty in 
flood frequency) 

• Define correlations among model inputs 

• Sample the model inputs based on their distributions and correlations 

• Run the model 

• Record the model output 

• Repeat for many samples of the model inputs 

• Evaluate the probability distribution for the model outputs 
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