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APPENDIX B

 HYPOCENTER-VELOCITY-STATION CORRECTION 

INVERSION

The mathematical description of the joint hypocenter-velocity-station correction inversion given

below is generalized for three-dimensional velocity models.  For inversions performed with

one-dimensional velocity models, the formulation is the same but the velocities are only allowed

to vary in the vertical direction.

The Forward Problem
The P-wave and S-wave velocity structures are represented by a 3-D, rectangular grid of nodes,

with linear interpolation of the velocities between nodes.  The velocity V at any point (X,Y,Z) is

computed from the velocities at the eight nodes surrounding it:

                          ,(B-1)

where (xi, yi, zi) are the coordinates of the ith node, and vi is it’s velocity.  The parameters dx, dy,

and dz are the distances in the x, y, and z directions between the velocity nodes surrounding the

point (X,Y, Z).  

The ray bending method of Um and Thurber (1987), as modified by Block (1991), is used to

compute ray paths and travel times.  This method starts with a straight ray path defined by two

endpoints and one midpoint (i.e., the ray path is broken into two equal segments).  The midpoint

of the ray path is iteratively perturbed until the travel time is minimized.  Each of the two

segments is then divided in half.  Each of the points along the ray path (excluding the endpoints)

are then iteratively perturbed until the travel time is minimized.  The process of dividing ray path

segments and iteratively perturbing the ray path points is repeated until convergence of the

computed travel time is achieved.
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The Inverse Problem
The nonlinear hypocenter-velocity-station correction inversion is performed by iteratively solving

the constrained, linearized problem.  The separation-of-parameters technique is used to separate

the velocity-station correction inversion from the hypocenter relocation.  The inverse problem is

formulated mathematically as a least squares inversion, but residual weighting is used to

approximate an L1-norm optimization.  

Let tobs= an observed arrival time; tcalc = the corresponding calculated arrival time based on the

current model, and r = the residual = tobs - tcalc.  The goal is to change the model parameters so

that the change in calculated arrival time, tcalc, is equal to the residual r.  Expanding tcalc in

terms of changes in the model parameters and keeping only the first-order terms gives

                               ,                          (B-2)      

where t0, x, y, and z are the hypocenter parameters, vj is the jth P-wave or S-wave velocity node,

and sc is the P-wave or S-wave station correction.  The partial derivatives are computed

analytically.  The partial derivatives with respect to the hypocenter parameters are given by:

                      ,  , and ,(B-3)

where dx/ds, dy/ds, and dz/ds are the direction cosines of the ray path at the hypocenter, and v(x, y,

z) is the velocity at the hypocenter.  The partial derivatives with respect to the velocity nodes are

computed by summing the contributions from all ray path segments.  Given a ray path of n

segments, each of length , the partial derivative of the travel time with respect to the velocity at

the jth node is given by: 

                                       , (B-4)

where  is the velocity at the center of the lth ray path segment.  For each ray path

segment,  is only nonzero for the eight velocity nodes surrounding it and is

found by differentiating Equation B-1:

                            .(B-5)
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Both sides of Equation B-2 are divided by  to obtain an approximate L1-norm optimization

(Scales et. al., 1988).  The equation is also weighted according to the quality of the arrival time

pick.  In addition, a residual cut-off is employed to discard extreme outliers.  

All of the arrival times for the ith event yield a set of equations that can be put into matrix form:

                                                    .                                               (B-6)

Hi contains the weighted hypocenter partial derivatives, Mi contains the weighted velocity and

station correction partial derivatives, and ri contains the weighted residuals.  The vectors  and

 contain the hypocenter perturbations for the ith event and velocity and station correction

perturbations, respectively.  If there are more than 4 arrival times, there exists a matrix  such

that  (Pavlis and Booker, 1980, Roecker, 1982).  The matrix  is computed by QR

factorization of  (Block, 1991).  Multiplying both sides of Equation B-6 by  yields

                                                           ,                                                   (B-7)

where  and .  The arrival times for each microearthquake are processed in

this way, and the results from each event are added as additional rows to one matrix equation:

                                                           .                                             (B-8)

To prevent extreme fluctuations of the velocity structures at poorly resolved nodes, velocity

regularization is included in the velocity-station correction inversion.  The regularization is

implemented by minimizing either the first-order or second-order spatial velocity derivatives.

(For three-dimensional velocity models, first-order derivatives are typically used.  For

one-dimensional models, second-order derivatives are often used so that there is no penalty for a

linear increase of velocity with depth.)  Similar methods have been used by others (Lees, 1989;

Sambridge, 1990; Phillips and Fehler, 1991).  The numerical velocity derivative for each

consecutive pair of velocity nodes is set to zero.  For a first-order derivative, this is represented

by:
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where  and  are the velocities of 2 consecutive nodes in one coordinate direction, and d  is

the distance between the nodes.  Equations for all consecutive nodes in the x, y, and z directions

are constructed.  Rearranging the terms, the equations may be expressed as a matrix equation

involving the model solution vector :

                                                             .                                                     (B-10)

The vector c contains the numerical velocity derivatives based on the current model, and K

contains numerical derivative operators.

P-wave velocities from an acoustic borehole log or other type of geophysical survey may be used

to constrain the velocity-station correction inversion.  Each velocity data point V at coordinates

(X, Y, Z) from the geophysical survey adds constraints to the 8 velocity nodes surrounding it:

                              ,               (B-11)

where (xi, yi, zi) are coordinates of the ith node and vi is its P-wave velocity value.  The equations

for all velocity data points are combined and given in matrix form by:     

                                                              .                                                     (B-12)

The matrix D contains the node interpolation coefficients, and the vector g contains the velocity

residuals, i.e., the velocities from the geophysical survey minus the corresponding calculated

velocities based on the current model.

The equations for the earthquake arrival time data (Equation B-8), velocity regularization

(Equation B-10), and geophysical survey velocities (Equation B-12) are combined into one matrix

equation:

                                              .(B-13)

The equations for the two constraints (velocity regularization and geophysical survey velocities)

are given weighting factors,  and , that are adjusted to control the relative importance of
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satisfying the earthquake arrival time data and the constraints.  Equation B-13 is solved using a

least-squares conjugate gradient algorithm.

The hypocenters are relocated with an iterative, approximate L1-norm (residual-weighted least

squares) inversion.  An undamped inversion is tried first.  If the event location does not converge

within 20 iterations, damping is added and the event quality factor is changed.  Most events used

in the hypocenter-velocity inversion are constrained well enough for the undamped relocation

algorithm to converge.  A progressive relocation approach is used, as in Roecker (1982).  The

horizontal hypocenter coordinates are recomputed first, then all four hypocenter coordinates are

allowed to vary.  In addition to starting the relocation with the current hypocenter elevation, the

relocation may also be performed with additional specified starting elevations.  The result that

yields the smallest root-mean-square (rms) arrival time residual is chosen.  This procedure helps

prevent the hypocenter from converging to a local elevation minimum.  
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