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INTRODUCTION

The boundary element method for solving boundary value
problems in engineering sciences is gaining acceptance by
the practicing engineers because of simplicity, effectivenass,
and accuracy offered by the method as compared with
other numerical methods. This popularity and acceptance
of the boundary element method is evidenced by the
publication of several books and research papers on the sub-
ject [1, 2, 3,4,5,6, 7, 8]t . Listings of several computer
programs to solve simple engineering problems illustrate the
simplicity of computer implementation of the baundary
element method [2, 3]. Availability of computer programs
for solving relatively more complex problems is limited.

The boundary element method is especially well adapted
in applications in which the Laplace equation needs to be
solved in an irregular region but results are needed primarily
on the boundary. One class of problems which is deseribed
by the Laplace equation is the phenomenon of steady flow
in isotropic (same permeability in ali directions} and
homegeneous (same permeability at all points) soil. This
problem is mathematically described by:

U2y = 0 (1)
where

¥ is the Laplace operator

In three dimensions,

o= 3%, 32, 32

2 2
g2=98° _ 32
axt | oy?

u is the potential head.

The governing differential equation for steady fiow in an
anistropic, homogeneous soil is:

32y d2u 32y
k +k + k =90
X ax? Vay2 3.2 (2)
in three dimensians, and
L +|\,. 22y _ o . (3)
X alz y ayz ’

in two dimensions

1 Numbers in brackets refer to the biblicgraphy,

Bibliographical referencas are representative, but not a complete list,
_of the works on the subject,

where

ky, ky, and k are the soil permeabilities in ortho-
gonal directions x, v, and z.

A few practical examples of flow in porous media are:

« Steady-confined seepage through the foundation
zones of an impervicus dam,

« Steady-unconfined seepage through a pervious earth
dam on an impervious foundation, and

* The combined case of seepage through a pervious earth
dam an a pervious foundation. :

The potential and the gradient on interface boundary,
the potential or the gradient on exterior boundary, and the
potential on specified set of interior points are generally
desired,

The objeétives of this report are to;

2 Present a simple and effective extension of the avail-
able boundary element method for solving the Lap-
lace’s equation { v = 0) in a bounded region to study
seepage problems in zoned anisotropic soil deposits,

O Present a computer program listing in FORTRAN 1V
and a set of user’s instructions,

O lilustrate the use of the computer program and
aceuracy of numerical results with sample problems.

CONCLUSIONS

1. An effective extension of existing procedures was
devised to use the boundary element method for the
solution of seepage problems in a piecewise homogen-
eous (zoned) anisotropic medium. An iterative proce-
dure was developed to locate the phreatic path through
the body of an embankment dam subjected to a reservair
head on the upstream face and to a tailwater head on the
downstream face.

2. A computer procedure was modified to solve planar
seepage problems under confined and {or) uncon-
fined steady-state flow conditions through a zoned
anisotropic medium, The method uses constant boundary
elements,

3. The computer procedure included here not only
reproduces the results of known analytic solutions but it
also gives results which compare favorably with the
measured response,

4. Use of the boundary element method provides an
effective and efficient numerical procedure for perform-
ing seepage studies in zoned anisotropic mediums. The



greater savings lie in data preparation for the boundary
element analyses as compared with the conventional
finite element analyses. The savings in total computa-
tional cost can also be appreciable.

5. The boundary element method also avoids a number
of difficulties—that plague the finite element method—
in relation to adjustment of mesh size and shape during
iteration for unconfined flow problems.

THEORY

Introduction

In the boundary element method, use is made of approxi-
mating functions that satisfy the governing equations in the
domain but not the boundary conditions. The approxi-
mating functions can be the fundamental solution to the
governing egquation or other simple functions that satisfy
the governing equation. These functions have some unknown
caefficients which then are determined by enfarcing the
boundary conditions at a number of points on the boundary.,

The boundary element method—through its formulation
strategy —reduces the dimensionality of the problem by one,
Thus, a two-dimensional problem, in effect, is treated as
if it were one dimensional; that is, two-dimensional problems
are solved by integration over a line. All problem data
required for a complete solution pertain to the boundary
of the numerical model. The results at any point(s) within
the domain can be obtained by identifying its location.

As an example, consider a typical two-dimensional, free-
surface problem of flow through an earth dam as shown on
figure 1. Neglecting the capillary and surface tension, the
flow domain D has the following types of boundaries [B] :
- A prescribed head boundary, B,
+ A prescribed gradient boundary, 8,

» A freesurface, Fy -

» A seepage face, F,

This boundary value problem can be described by the
following set of equations:

2 (.. du V- '
T? (kl ax, ) 0 on D . (4)
u=zh on B, (5)‘
kii—aa—:’j—* n;j =-b on_Bz {8)

u?Z 7}

on F,
Y 1V I
k'l axJ nj = Q (a)
T § on F, 9)

where
u is the piezometric ar the potential head?
k,:,- is the permeability tensor

Z is the elevation of the free surface above the
horizontal datum from which head is measured.

Diffarential equatian (4} can be transformed into an inte-
gral equation by means of the fundatmental Green's func-

_tions and Green's second formula [9]. A brief description

of the procedure is included here and is based on references
[5,10, 11, 12].

Bagic Formulation

An expression of continuity in a volume is the divergence
theorem. It states that the volume integral of the divergence
of a vector field, taken throughout a bounded domain. D,
equals the surface integral of the normal component of the
vector field taken aver the boundary of 0. The mathemati-
cal description of the divergence theorem is [10, 11, 12]:

fleg-ydr = [ v-n ds (10)
D 9]
in which
v is the vector aperator - S i+ 2
~~ dx ~ dy ~ dz ~
¥ is' ety differentiable vector

D isthedomain ofintegration, a volume in three
«dimensions, an area in two dimensions

dr  is the element of volume
Q is the boundary of D
n is the unit autward vector normal to £ on §2

dS - is the element of surfacearea

2 The energy per unit force has the diménsion of length. Thus,
the terms making up the total energy are characterized as heads. The

. total head is the summation of a velocity head, a pressure head, and

an elevation head. The velocity head in soils is negligible. Because
the pressure head and elevation head represent potential energy,
their sum is called the potential head. .




First, v is defined as UE V, where U and V are any two
functions, twice differentiable in D.

Thus

{11)

and equation (10) becomes:

=furvuv-gds {12)

_f(vu-zv +Uvevydr
D Q

Secondly, v is defined as V YU, so that

V-v=2 TV -VU+VIe {13}

v
and eguation (10) becomes:

f(g_'v-’glu+vv2u)dr=f
D o

Substracting equation {14} from equation {12) yields:

VVU-n dS {14)

f (Uv2v —v92U)dr
D .

=[ UV -VIU)-pnds (15)

1)
Equations (12) and (14) are known as the first form of

Green's identity. Equation {15) is known as the second
form of Green's identity {11].

Using the following notation for the normal component
of a gradient with respect to the boundary:

aV

vV =
~ S an (16)

- U
’YIU'lEl = an (17)

the Green’s second identity, equation {15), becomes:

[ tuvzv - vv%):n—:f(uﬂ - vy g5 (18)
D an an

I¥ U and V are both chosen such that they satisfy the Lap-
lace equation,V’U =V2 V = 0, then equation {18) becomes:

f(ui"-—vﬂ)ds=o (ay

an an )

The- present application makes direct use of equation (19)
in which U is chosen as a variable potential head v, and V is
chosen as a fundamental solution (also called free-space
Green function [10]}, which satisfies the Laplace equation
in an infinite space except at the source point P, then:
vev = B(P) in D (20)
where 8(P) is a Dirac delta function representing a unit
source at point P and equal to zero everywhere else, The
fundamental solution V has different forms for two-
dimensional and three-dimensional problems. For a two-
dimensional problem:3
V=lin (d) {21}
where d denotes the distance from an arbitrary but singular

paint £ {where d = D) to another point Q on the boundary
of the two-dimensional domain.

In appiying equation (19), itis essential to exclude the paint
P by a small circle of radius € as shown on figure 2, Equation
{19) can then be expressed as two terms integrated along
the outer boundary $ and the pole circle. Thus, equation
(19) becomes:

8 - au
f[uan(lndl Indan] ags

S
(22)
Limit 3 _ Au_ -
N [u ar‘(In d) Indan]d'.i€ 0
SG

in ‘which § is the boundary contour of D, and S is a small
circle of radius € around P (fig. 2), The portions of the
integral along the two lines connecting the circle to S will
cancel and, thus, they do not appear in equation (22).

3 n {@) end —In {1/d) are the twe basic farms of the funda-
mental solution of Laplace’s equation in an infinite space, However,
‘these twa forms are equivelent as per the rules of logarithms,



On the circle Sg, the outward normal from D points inward
toward P, thus: ’

{hr(u.dlz-L i%=={r(va-£)==§ (23)
and the integral around the circle becomes:
o 2T
i [u(%-l-ln eg—‘;] €d§ =-27 u(P) (24)

80

The potential at any point P is defined in terms of the
boundary integral:

27 u(P)=f [u(Q) 3 (ind)-In da—u(m] 45 (25)
an an
5

If u and.du/@n are known every where on the boundary §,
the solution for & at any interior point can be found by a
line integration indicated in equation (26). In general, v
and du/dn ara not known on S, In a well-posed problem,
either v or Du/dn or a relation between them is known at all
points on the boundary. The integral equation can be used
to find du/9n or u on the boundary.

To complete the boundary data, the point F can be moved
to the boundary as shown in figure 3. It is still excluded
from D by a circular arc, The same considerations hold as
before except that the integration indicated in eqguation
(24) takes place over an angle which is less than 2 7. For the
case (fig. 3a), in which P is on a smooth part of the boundary:

7ru(P)=f[—“—%Q-)- -%%-—Ind-g-:-{m] ds  (26)

and [fig. 3b) in the general case:

autpr » [ [0 28
)

3u(0Q}
In In d In ] ds (2ﬂ

in which @ is the angle between the boundary segments at”.
Equation {27) can be discretized and solved numerically to
obtain the “missing data” on the boundary. A subsequent
use of equation {25) gives the potential u at any specified
interior peint,

This development assumes that the flow is through a
homogeneous and isatropic sail medium and described
by Laplace equation, If the soil is anisotropic or nenhomo-
geneous, the describing equations must be transformed
or zoned. These cases are considered separately.

Anisatropic Soil

The Laplace equation for a two-dimensional flow through
anisotropic soil with permeabilities X, and ky in the ortho-
gonal directions x and ¥ is:

a2y
¥ a,z

+ % =0 (28)

alu
kx 332

Equation (28] can be written [13] for a transformed

. . [
section With xp = /k_y xand yp=y as:
x

a2y + atu

=0 (29)
2 2
axT ayT

Nonhomogeneous Soil

A nonhomogeneaus soil medium can often be divided into
a series of subregions or zones each having homogeneous

" soil; that is, soil properties in each zone are the same from

point-to-point—horizontally or vertically—but may differ
in different zones. By treating each zone separately, it
becomes possible to study seepage through a single homo-
geneous, anisotropic material. The boundary element
method can be applied to each zone of a nonhomogeneous
soil medium. The individual zones can be coupled by
adding the appropriate compatibility and equilibrium
equations an the interfaces between zones to the algebraic
squations created for the uncoupled zones. These boundary
conditions shown on figure 4 at the interface for flow
conditions are:

O Compatibility: T (30}
1 2
wherg
u is the potential at node I cansidering

' it belongs to zone 1,

uy is the potential at node I considering
it belongs to zone 2,

o Equilibrium: qI|= -4, {31}

where

q. Iis the rate of seepage flow out of zone 1 at
' node1

9 is the rate of seepage flow out of zone 2
2 atnode I

The rate of seepage flow by the Darcy's law is g = kidg
where k is the soil permeability in the direction of flow,
/ is the hydraulic gradient in the direction of flow, and
Ag is the cross-sectional area through which flow occurs.




The geometric transformation used between aguation (28)
and equation (29) gives an effective isotropic permeability
of (k, ky) 172 tor each zone in the transformed space.
Applying Darcy's law for flow rate across the interface
element between two zones (fig. 4}, equation (31).becomes:

[ kx, Ky, %‘HI - ‘[«/ “xg kyz%?\—]h (32)
I

where 7 is the direction of seepage flow assumed normal
to the interface.

Application of equations (30) and (32) to the interface
boundary elements gives the necessary equations to coupla
the heretofore uncoupled zones in the transformed space,

Solution Procedure

By using Green’s second identity, the differential equation
(4)—assuming k;; constant—has been transformed into the
boundary integral equation (27} which involves only the
variables on the boundary, Equation (27) can be solved
numerically by discretizing the boundary into a finite
number of straight line segments or elements as shown on
figure 5. The points where the unknown values are considered
or “‘nodes" are taken to be in the middle of each segment
{(fig. Ba), or at the intersection between two elements
{fig. 6b). The boundary could be discretized by the use
of curved elements {fig. bc).

The procedure described in this paper uses constant ele-
ments. With this procedure, the values of v and du/@n are
assumed to be constant on each element and equal to
the value at the midnode of the element. Letting u} e

and {au/Bnl € denote the values of the variables v and
du/dn on the boundary elements and locating the arbitrary
point P at each of the A/ nodal points, a set’of simultaneous
equations can be formed from equation {27} as fallows:

{o} = [ {4 - o] {3}

where [H] and [G] are two matrices obtained through
integration of equation (27). Equation (33) may be rewritten

[f3{e} = [e]{e)

where @ represents du/on:

(33)

(34)

Equation (34} relates the value of v at midpoint / (called
node 7/} of each boundary element with the values of ¥ and
g at all the nodes on the boundary, including /. There is
one equation for each boundary elament. If there are
N; values of v and N, values of g prescribed on an exterior
boundary (M = N, + N,), a set of N unknowns exists in
equation (34). Rearranging the equations in such a way

that all the unknowns are on the left-hand side, equation
{34} can be written as:

[2]{x} - {¢}

where {Xl contains all the unknowns u« and g for the
boundary elements.

{35)

The above development is for flow through a homogeneous
region with isotropic permeability.

For a nonhomogenecus material body, zones of piecewisa
homogeneity are identified—each 2one is geometrically
scaled to obtain an equivalent isotropic zone and the
above procedure applied to each transformed zone. This
produces sets of linear algebraic equations, one sat per zona,
which are submatrices of [H] and [G] in equation (34},
These sets of equations are coupled by imposing constraint
eguations {30) and (32} for the interface boundary elements
{fig. 4). If these constraint equations are appended at the
end of matrices [H] and [G], the number of equations
becomes N +2m where m is the number of interface
boundary elements. Alternatively, the interface constraint
equations could be enforced by judiciously positioning the
entries in [H] and [G] matrices for the interface boundary
slements [14] . This way, the order of [G] and [H] matrices
equals iV,

M
For a multizone material body, N = X N/ where M is
i=1

the number of zones, Nj is the number of boundary elements
in the zone/J.

The above developments imply that the boundary was
specified a priori and remains fixed, However, with a
phreatic line (the free-water surface) in an embankment,
the location of the free-water surface is not known, Therefore,
this case must be considered separately.

Phreatic Liné Location

The location of the phreatic line of seepage through an
embankment dam is determined in the following steps
[15, 16]):

1. Assume a path for the phreatic line. This path is used
as a boundary for discretization of the problem into
boundary elements. The embankment cross section
above the assumed phreatic line is of no consaquence
and therefore is not included in the problem definition.

2. The boundary condition along the phreatic line is
specified to be du/on = 0.

3. Calculate the potentia! head for the boundary elements
" including the elements representing the phreatic line,



4. Because the pressure head -along the phreatic line is
zero, the calculated potential head in step 3 in effect,
provides the calculated estimate for the location of
phreatic line element by element,

5. Using this revised estimate for the phreatic line
location, calculations for the step 3 are repeated, When
the difference between phreatic line locations in two
consecutive calculations is within a specified tolerance,
the solution is assumed to have converged. '

The preceding step-by-step procedure is effective in adjust-
ing the path for the phreatic line within the embankment
section, The entry point on the phreatic line on the up-
“stream face of the dam is defined by the headwater elevation
and is assumed fixed in the iterative procedure. All other
points on the phreatic line including the exit point on the
‘downstream Tace of the dam are adjusted at the end of each
iteration cycle.

The boundary conditions along the downstream face of
the dam, above the tailwater elevation, are in terms of the
total potential (being equal to the elevation head} and
nonzero gradient; that is du/dn # 0. The procedure in step
3 provides calculated potentials or gradients for all of the
exterior boundary elements, If the gradient(s} for the
boundary elements on the downstream face of the dam
impty flow into the dam rather than out of the dam, these
boundary elements on the downstream face of the dam
should be considered part of the phreatic line definition.

COMPUTER IMPLEMENTATION

Program Description

The computer program in appendix 1 named BIE2DCP
{Boundary Integral Equation, 2—Dimensions, Constant
Potential) was developed in FORTRAN [V for the CDC
CYBER 170-730 computational system. The program
impiements the ideas presented in the Theory section to
perform seepage studies in two-dimensional zoned aniso-
tropic mediums. In its present form, the program can be
used to analyze seepage problems for up to 10 zones, The
total number of boundary elements cannot exceed 200. If
more elements are needed, it is only necessary to change
the size of the array in the DIMENSION statement of the
main program, All subroutines are designed to be dimen-
sionally compatible with the main program, The program is
self-complete; however, it uses some af the online functions
available on the computational system.

The numbering of the boundary elements for each zone,
and connectivity between zones through the interface
boundary elements follow a fixed convention as shown
on figure 6. For the exterior boundary of the numerical
model, either the potential or its derivative normal to the
boundary {but not both) are prescribed, At least one value
of gradient du/dn or one value of potential ¥ must be

-columns 5, 10, 15, .

given along with the rest of the boundary conditions
data for the set of equations (35) to have a unique solu-
tion [16]. For the interface boundary elements, neither
the potential nor its gradient is defined, The constraint
equations (30) and (32} for the interface elements are
enforced automatically by the computer program to
gnsure completeness of the numerical model. These con-
straint equations are implemented in the computer pro-
gram by judiciously positianing the entries in [H] and
[G] matrices for the interface boundary elements, Thus,
the order of [G] and [A] matrices in equation (34} equals
the total number of boundary elements used to discretize
piecewise homogeneous zones of an anisotropic material
body. ’ '

Interzonal Connectivity

Each zone in a multizone body is given a numerical 1D
(identity}) number. The |ID numbers begin with 1, and are
incremented by 1 for the complete preblem. The relation-
ship of each zone with all other zones in a multizone
body is identified by specifying the ID number of other
zones and giving the serial numbers of the interface bound-
ary elements (fig. 6). This procedure allows for account-
ability of general planar distributions of materials and the
resulting interfaces between material zones.

It is necessary to divide a material depaosit into zones when
the material is nonhomogeneous. It is desirable to divide
a material deposit into zones when the aspect ratio of the
body is large—that is, long but thin seams of material
generally .encountered in foundation zones of dams-to
avoid numerical inaccuracies, in general, the ratio of the
longest to shortest dimension should not exceed ten.

Input Requiramants

General Considerations—All control and input data, with
the exception of the identification card, must be in either
integer or floating point numerical format. Each card is
divided into 16 fields of & columns each which end with
. . BO. Integers must be right justified
in their fields and all fields may contain no more characters
than the number of columns in each field, Right justified
means that all numbers must end at rightmost character
position (i.e., in columns 5, 10, 15, ", etc,}) in the

“field. All real numbers must carry an explicit decimal

point and may appear anywhere in their fields. A blank
field implies zero for its variable, real or integer. Thus,
leading zeros may be suppressed,

In the following, an expression starting with /, J, K, L, M,
or N and containing any alphanumeric characters indicates
an integer field. All others are real fields.

For canvenience in checking a problem, all input data are
printed in a convenient format with appropriate identifica-
tions so the information used by the program can be verified.
This is especially usefui when the results are apparently or




obviousty in error; the input can be scanned quickly to see
if faulty input data must be corrected,

The input data must follow a specified format as shown in
table 1. There are 13 different types of input cards to the
program, The card type number is created for the con-
venience of the user in coding data for a problem. It is
not made a part of the data and must not appear in the
data file to be used by the computer program. A descrip-
tion of the variable names used for the input definition
follows, The input for an array of variables may require
more than one card depending on the size of the array,

Description of Card Types — The input data may be in
either the inch-pound or S| system, ~

1. * Job identification name. This card is necessary for
all problems, one card per problem.

2. N: Number of boundary elements (equal to the

number of nodes in this case of constant elements),

NRGNS: Number of regions. One region can have
only one set of permeability values in the plane of
the problem.

3. Fer / = 1 to NRGNS, the following information:

NL {/}: Number of internal paoints in region /, where
the potential u need to be calculated,
4, For J = 1 to NL {/}, the follawing information:

CX {/J): The x caordinate for internal pomt Jin
region / where the value of v is required.

CY (/,J}: The y coordinate for internal point J in
region / where the value of u is required. .

5. For /=110 N, the following information:

X{f}): The x coordinate of the extreme point of
boundary element /,

Y{/): The y coordinate of the extreme point of
boundary element /.

6. For /= 1toWN, the following information:

KODE(/): Code for the boundary conditions at the
element nodes.

KODE{/) = 0 implies that potential u for the ele-
ment podel is known and specified in the data set,

KODE(/) = 1 implies that the derivative of the po-
tential du/dn for the element node /. is known and
specified in the data set, .

KODE{/) = 2 implies that the element nade / is on
an interface and neither the potential nor the deri-
vative of the potential is known, )

F1(!}: Prescribed value of the boundary condition for

element node/ corresponding to the value of KODE {/),
For. KODE (/) = 2, FI{/} must be left blank or
specified a value of 0.0,

7. For / = 1 to NRGNS, the following information:

PERMX (/}: Permeability in the x direction for region /.
PERMY (/}: Permeability in the y direction for region /.

8. ISTART{/): Starting node number for the bound:
ary elements for region /.

IEND{/): Ending node number for the boundary
elements for region /.

9. NINTF{/,/}): Number of boundaﬁ elements on
interface between regions / and J,

10. ID{/,/,K): Node number of interface boundary
element K between regions / and J. ‘
11. NPHREL: Number of boundary elements used to
define the phreatic line.

ITRMAX: Maximum number of iterations permitted
to seek the phreatic line to a desired accuracy,

ACC: Accuracy desired for the location of the
phreatic line. |f the difference between the calculated

" elevation of phreatic line in two consecutive iteration
cycles is less than ACC, the desired convergence is
assumed to have been achieved.

HWE: Headwater elevation,
TWE: Tailwater elevation.

12. IDPHR (/- Node numbers of boundary elements
on the phreatic line.

13. IDPPHR: Node number of the boundary element
past the exit of the phreatic line.

The card types No. 1 through 13 must he stacked in the
above order,

The boundary element numbering convention and the
coupting of the interface boundary elements are shown in
figure 6. With this numbering scheme, the inward normal to
a boundary element is positive. Thus, a positive gradient
implies flow into the region and a negative gradient implies
flow out of the region. The numbering for the phreatic
line elements must be continuous,



Computer Qutput

All output has complete headings and should be self-
explanatory. An itemized synopsis of the computer output
follows:

1. A listing of the input data in a reformated structure.
All blank input items will be output as 0.0.

2. The total potential and gradient {gradient or poten-
tial is input for all extericr boundary elements as in a
mixed boundary value problem) and pressure head for
all boundary nodes including the interface elements.

3. The total potential and pressure head for the speci-
fied interior points,

4. The location of the phreatic line far steady unconfined
flow problems.

, Program Messages

The computer program BIE2DCP is designed to generate
one information message during execution. Additional
messages—if any—shall be those caused by the computa-
tional system; therafore, a reference should be made to the
computational system manuals,

The program generated message is:
“Error Indicators from The Equation Solver ="' |ER1, IER2

This message is generated to indicate the condition of the
system of simultaneous linear algebraic equations. The error
IER1 is generated in subroutine FACTR; IER2 is generated
in subroutine RSLMC [17].

IER1 = 0 implies there was no error in the factorization
of the matrix [A], equation {35), into a product of a
lower triangular matrix and an upper triangular matrix.

IER1 = 3 implies there was error in factorization of the
matrix [A], equation (35), into a product of a lower
triangular matrix and an upper triangular matrix.

IER2 = 0 implies each component of the computed solu-

tion vector {X , equation (35), meets the precision of
1X 1076,

IER2 = 1 implies only the norm of the computed solu-
tion vector X; , equation (35), meets the precision of
1X10°¢,

IER2 = 2 implies the precision in the norm of the com-
puted solution vector {XI , aquation (38), is lower than
1% 1075,

IER2 = 3 implies the computed solution_vector fX‘ ,
equation {35}, has no meaning at all.

IER2 = 4 implies a diagonal term of the upper triangular
factor is zero,

IER1 =0 and IER2=0, 1, or 2 should be interpreted to
mean that the set of algebraic equations is well condi-
tioned and its computed sclution is stable.

IER1 = 3 and IER2 = 3 or 4 should be interpreted to
mean that the computed results are not good.

User Action: Check input data,

This message will not cause a termination of the
program execution, These checks were built into the
program during its development, and are being left in
the program as they serve useful checks on the pro-
gram and the problem definition, ‘

SAMPLE PROBLEMS

Two types of sample problems are presented, In one, the
sample _ problems have known analytical or numerical
solutions or both, In the other, the sample problem simu-
lates a laboratory model in which the pressures were
measured. The objectives are to demonstrate:

{1) the accuracy of the boundary elemant method with
known solutions which use other techniques, and

{2) the usefulness of the boundary eilement method in
predicting the response of physical madel studies,

Example problems are described below,

Problems
Solutions

With Known Analytical and/or Numerical

Examples 1 ahd 2.—These problems have known analytical
solutions [1]). Both problems could be considered as heat
flow in a plate.

Problem 1, on figure 7, has & single medium with homo-
geneous and isotropic thermal conductivity. The axact
solution to this problem is dufdn = 0.6 and v = (6 - x)/2.
The agreement is excellent between the numerical solutian
from the computer program and the analytical solution
{fig. 7). i

Probiem 2, on figure 8, has two zones with homogeneous
and isotropic thermal conductivity for each zone, The
exact solution to this problem is a linear distribution from
v =5 tou=1in the left half zone and fromu=1tou=0
in the right half zone, The results of analysis of this problem
using the computer program and the analytical solution
show excellent agreement (fig. 8).

Examples 3 and 4.—These problems have known graphical
solutions [13]. Both problems could be considered as
confined flow through foundation zones.




Problem 3, on figure 9, has a sheet pile wall driven into a
silty soil having a permeability of 107 ft/min (0.3 X 10°¢
m/min). The sheet pile wall runs for a considerable length
in a direction perpendicular ta the page as shown on figure 9,
The flow underneath the sheet pile wall is two-dimensional.
Line b e represents an impervious cutoff wall {sheet pile).
The water pressure distribution on the sheet pile wall is of
interest, This problem provides a comparison of resuits
obtained by the use of the boundary element computer
program and the graphical solution. The agreement between
the two methods is good (fig. 9).

Problem 4, on figure 10, represents a concrete spiliway
resting on an isotropic soil [13]. Lines AB and GH re-
prasent impervious cutoff walls (sheet piles). The piezom-
atric head along the base of the spillway and around the
sheet piles are of interest. This problem provides a com-
parison of results obtained by the use of the boundary
element computer program and the known graphical solu-
_tion, Again, the agreement between the methods is excellent
(fig. 10),

Table 2 shows the input data file listing for this problem.
The information in this table has been annotated to relate it
to the input variable listing of table 1. The inclusion of
details of the input data file for this problem rather than for
same other sample problems included in this report is
coincidental.

Example 5.—This problem, on figure 11, is an illustration
of the use of the ‘boundary element method for steady
unconfined flow through a homogeneous and isotropic
embankment dam resting on an impervious foundation,
The location of the phreatic line is of interest. This pro-
blem is taken from reference [1] where a numerical solu-
tion is given. The discretization of the problem for the
boundary element procedure and the appropriate boundary
conditions are shown in figure 11. The iterative procedure
used in the computer program BIE2DCP to locate the
phreatic line is quite effective in achieving its abjective (fig.
11). The comparison of the results obtained by the two
numerical procedures is excellent,

Example 6.—This problem, on figure 12, is an illustration
of the use of the boundary element method for a com-
bination of confined and unconfined flow through an
embankment dam and its foundation materials, The em-
bankment soil and the foundation soils are assumed to
be piecewise homogeneous with different permeabilities
in two orthogonal directions. This sample problem is a
simplified version of Bureau of Reclamation’s Foss Dam
seepage analysis studies. The results of the analysis obtained
through the use of the BIE2DCP computer program are
shown on figure 12. The results of this problem are not
compared with Foss Dam studies because the simplified
configuration was not recomputed using the finite element
analysis.

Problem With Measured Rasponse

Example 7.—The objective of this example, on figure 13,
is to compare the results of the numerical model based
en the boundary element method with those of a physi-
cal model, The laboratary model consists of a subsurface
agricultural drain surrounded by an isotropic sand medium
[18]. Briefly, the drain was constructed of a 4-inch-diameter
{100-mm) corrugated plastic tubing surrounded by a
4-inch-thick gravel drain envelope, A symmetrically placed
annulus of sand base material having an 86.4-inch diameter
{2195 mm) was installed around the envelocpe. Unrestricted
flow into the sand base was schieved by providing a coarse
gravel pack at the periphery of the sand base. The tank
containing the drain, envelope, sand base, and gravel pack
was 9 feet long, 8 feet high, and 2.5 feet deep (2743 by
2438 by 762 mm). One side was constructed from an
acrylic plastic face so that flow lines could be observed and
to facilitate pressure measurements, Pressures were measured
with one transducer systematically connected to all of the
piezometric measurement points. All tests were made at a -
flow depth of 1 inch {26 mm) in the drain tubing,

The gravel envelope surrounding the drain pipe is about
18 times more permeable than the sand, and flow of water
from gravel pocket to drain pipe is caused essentially by a
stationary steady-state pool in the gravel envelope, There is
a geometric and prescribed boundary conditions symmetry
in the physical model about the vertical centerline. Thus, it
is only necessary to numerically mode! one-half of the
physical madel and to treat the gravel envelope as a free-
flow boundary, see figure 13. Results of the numerical
model; in terms of water elevation at several interior points
compared with those observed in the laboratory test
for identical conditions of applied potentials for steady-
state conditions, are shown on figure 14, Water elevations
in these results are referenced from the steady-state pool
elevation of 0.0 in the gravel envelope which is arbitrarily
assigned an elevation of 0.0, The nomenclature for referring
to the interior point; is C, - Rg: where C, = the circum-
ferential path located at radius 7 and Ry = the radial line
located at an angle 8 with respect to vertical. Specifically,
radii r has values of 6.48, 8.16, 10.32, 12.96, 16.44, 20.76,
26.18, 33.0, and 41.64 inches (165, 207, 262, 329, 418,
527, 665, 838, 1058 mm), and angles 6 have values of
15, 30, 45, 60, 75, 90, and 105 degrees measured counter-
clockwise from the vertical. -

The original gravel envelope diameter in the model was
12.72 inches (323 mm). However, during pretesting opera-
tions at high heads, sand material entered the grave! envelope,
Therefare, the interface between the sand and the gravel
envelope could not be located precisely. The results of
the numerical model compared favorably with laboratory
measurements when an effective gravel envelope diameter
of 12.8 inches (126 mm) was assumed.



FUTURE DEVELOPMENTS

This report presents results of a study that demonstrate the
practical application of the boundary element method to
steady seepage problems through zoned anisotropic soils,
A need exists 1o extend the method for the analysis of the
following flow problems:

* Three-dimensional

(1l

(2]

{3l

(4]

(5]

(6]

The inctusion of internal sources or sinks within the
two-dimensianal flow problem

Two-dimensional transient flow problems in_soils

steady flow problems in soils

Three-dimensional- transient flow problems in soils
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Table 1.—Input data field format for the computer program BIE2DCP

l‘-’ 8o
hifars
— .
Column No, b 10 15 zp 30 90 0
01| ¥ 72 Columns ol identitying informalion
o2 N NRGNS
For I=110 HRGNS
03 NL(D}
For JxttoNL({1)
04 CxX{I. v cY(1,y9)
Repeal cord Iypl‘ 04 lor Jal te NLIT)
Repeat card type ©3 for I=| to NRGNS
ForIslteN
05 - x(1} (1)
Repeat cord lype 05 for IaitoN
For I=ito N
06 IKODE(D FI(I) .
Repeot ¢ord type 06 lor Izl to N
For Is| Io NAGNS
o7 PERMX (L} PERMY(I)
04 ISTART(I} IENDID
Far J= )10 NRGNS
09 NINTF(I,J) for y=1I
10| {ID({I,4,K), Kzl, NINTF (I, J}) in fields of {O columns each.
Repeot card types 09 and 10 for J=1 to NRGNS :
Repeat cord types 07,08, 09 and 10 for I=1{ to NRGNS
i NPHREL ITRMAX ACC HWE TWE
12! (IDPHR (1), I=1, NPHREL) in fields of 10 columnsg each.
13 ICPPHR

* 5,10, 15, 20, etc. indicate the ending column of a ficld on the data card.
* A1 fnput is elther in 5- or 10-column fietd format.
* The 1nput for an array of variables may require more than one card, depending upon tha size of the array.

* A1l real rumbers should carry an explicit decimal point and may appsar anywhers in thelr fields. Al) integers

must be right justified in their own fields.

M1 user created data must be in explicit real or integer format,

except for the identification card which has an alphanumeric format,

Unused portion of cards should be left blank.

The card type number 15 created for convenience of reference in this report.

A blank field implies zero value for its variabla, real or integar.

It 15 not to be fncluded In the data set.

Lh




Table 2.—Annotated Input data file for the sample problem No. 4

SAMPLE PROBLEM - PRESSURE DISTRIBUTION UNDER THO PILED CONCRETE SPILLWAY

a2 3
9
8.0 4.0
35.0 14.0
58.0 14.0
8.0 4.0
35.0 3.0
58.0 4.0
8.0 54.0
35.0 54.0
58.0 54.0
11
78.0 1%.0
98.0 t+.0
118.0 I%+.0
138.0 14.0 Location of interior paints
8e.0 34.0 where potentials ere desired.
108.0 34.0 d Jand 4
128.0 3.0 card types dand 4.
78.0 54.0
88.0 54.0
118.0 54%.0
138.0 54.0 !
g
158.0 4.0
183.0 14.0
208.0 14.0
158.0 34.0
183.0 34.0
£08.0 4.0
158.0 54.0
183.0 54.0
208.0 54.0 R—
D.aq 0.0 - ]
8.0 0.0
18.0 0.0
28.0 0.0
38.0 nD.o
+8.0 0.0
58.0 0.0
66.0 0.0
66.0 14.0
66.0 24.0
66.0 34.0
66.0 43.0
66.0 51.5
66.0 60.0
BEE.0 B4.0
58.0 G4.0
48.0 64%.0
38.0 B4.0
268.0 64.0
Ig. g g: . g Location of end points of
0.0 5% .0 boundary elemesnts.
0.0 5%.0 card type 5.
0.0. 44,0
0.0 34.0
0.0 24.0
0.0 4.0
66.0 0.0
78.0 0.0
£8.0 0.0
c8.0 0.0
108.0 0.0
118.0 0.0
128.0 0.0
138.0 0.0
151.0 0.0
151.0 4.0
151.0 24.0
i51.0 34.0

12




1
1
1

bt bt bk bt s 2 DO OO OOO = NN = = =

50.92
50.92
50.92
138.
128.
148.
108.

98.

8e.

78.
66.08
66.08
66.08

66.0

66.0

66.0
151.0
158.0
168.0
178.0
188.0
188.0
20a.0
217.0
217.0
217.0
217.0
217.0
217.0
217.0
208.0
198.0
188.0
178.0
168.0
158.0
151.0
151.0
151..0
151.0
151.0
151.0
151.0

[um o R e e e R )

Table 2.—Annotated input data file for the sample probim No. 4 — Continued

S4.0
S4.0
S4.0
S4.0
S4.0
S4.0
S4.0

13

Boundary conditions for
ex terior and interface
boundary elements,
card type 6.



1

—— e e e = = = U UMY Y = = b= = s e

RAMUBUN — = OO OO — et st ot s vt = (R MO N = o = =

68.
68,
68.
68.
68.
68.
68.

Table 2.—Annotated input data file for the sample problem No. 4 — Continued

coooaooo,

53
38

a0

5e
38

78
S4.0

14

Zone identification and
interzonsl connectivity
card types 7, 8, and 8.

58.0



Table 3.—Computer output for the sample problem No. 4

IEESEEEE SRR R R R R SRR R R SRR EREREEESE RSl R SRR SRR RS EEREERERER SRR EREEREEEERREEREEREREREEEREEEEEEREEE R RN R EE S  E e E e Y

* SAMPLE PROBLEM - PRESSURE DISTRIBUTION UNDER TWO PILED CONCRETE SPILLW

DATA

NUMBER OF BOUNDARY ELEMENTS= 82
NUMBER OF REGIONS = 3

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

13

POINT X v

1 0. 0.

2 .BD00000E+0] 0.

3 . 1800000E+02 0.

y .2800000E+02 0.

5 .3800000E+02 C.

6 .4800000E +02 0.

7 .5800000F +02 0.

8 .B600000E+02 0.

9 .E600000E+02 . 14D0C00E+02
10 .5600000E +02 .2400000F +02
11 .5600000F+02 .3400000E+02
12 .B6000C0E+02 .4300000E+02
13 .66000C0E+02 .515000CE+C2
14 .6600000E +02 .6000000E+02
15 -6600000F +02 .6400000F +02
16 .5800000E+02 .B400000E+02
17 .4800000E+0R .6400000E+02
18 .3800000E+02 .6400000F+02
19 . 28000008 +02 .6400000E+02
20 . 1B0000DE+DR .6400000E+02
21 .800D0000E+01 .640000DE+02
22 0. .6400000F+02
23 Q. .5400000E+02
24 0. .4400000E+02
25 0. .3400000E+02
26 0. .2400000E+0?2
27 0. . 1400000E+02
28 .6600000E+02 0.

29 ©.7800000E+02 Q.
20 .8800000E+02 Q.
31 .9800000F+02 G.
32 .1080000E+03 C.
332 .1180000E+D3 Q.
2y .1280000E+03 0.
35 .1380000E+03 0.
36 - .1510000E+03 0.
27 .1510000E+03 . 1400000E+02
28 .1510000E+03 .24D000CE+02
39 .1510000E+03 .3400000E+02
40 . 1509200E+03 .430000CE+02



at

.1508200E+03 .5150000E+02
.1509200E+03 .600D000E +02
. 1380000E+03 .6000000E+02
. 1280000E+03 .6000000E+02
.1180000E+03 .6000000E+02
.1080000E+03 .G000000E+02
.9800000E+02" .6000000F +02
.B800000E+02 .6000000E+02
.7800000E+02 .6000000E+02
.BEOBOUOE+0R .6000000E+02
.660B000E+02 .5150000E+02
.6608000E+02 .4300000E+02
.6600000E+02 .3400000E+02
.6B00000E+02 .2400000E+02
.6600000E+02 . 1400000F +02
.1510000E+03 0.

.1580000F+03 0.

.16B000DE+03 0.

.1780000E+03 0.

.1880000E+03 0.

.1980000E+03 0.

.2080000E+03 Q.

.2170000E+03 0.

.2170000E+03 .1400000E+02
.2170000E+03 .2400000F +02
.2170000E+03 .3400000E+02
.2170000E+03 .4400000E+02
.2170000E+03 .5400000E+02
.2170000E+03 .6400000E+02
.2080000E+03 .6%00000E+02
.1980000E+03 .B400000E+02
.18B0000E+03 .B400000E+02
. 1780000E+03 .B400000E+02
. 1680000E+03 .B400000E+02
. 1580000E+03 .B400000E+02
.1510000E+03 .B400000E+02
.1510000E+03 .6000000E+02
.1510000E+03 .5150000E+02
.1510000E+03 .4300000E+02
.1510000E+03 .3400000E+02
.1510000E+03 .2400000E+02
.1510000E+03 . 1400000E+02

BOUNDARY CONDITIONS

NODE
1

~SOd

1

[N PN
COoOO0o0o0O0O0O0

Tabte 3.—Computer output for the sample problem No. 4 — Continued

CODE PRESCRIBED VALUE
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s e e IO U Y e s s s e s i vt et s o TP U U U e e e et e e e e e e e e = O OO OO OO — — — UMMM
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Table 3;—Computer output for the sample problem No. 4 — Continued

.84%06000E+02
.8400000E+02
.9400000E+02
.8400000E+02
.8400000E+02
.8400000E+02
.S400000E+02



gl

62
B3
B4
69
66
57
68
69
70
71
7e
73
ks
15
76
T
78
78
80
81
82

MM — = =000 00— —

REGION NO. STARTING ELEM NO.

1 1
2 28
3 56

(sl e an ¥ o | e wr]

o000 ocoac

Table 3.—Computer output for the sample problem No. 4 — Continued

.68C0000E+02
.6800000E+02
.B800000E+Q2
.6800000E+02
.6800000E+02
.6B00000E+02
.6800000E+02

ZONE NO. INTERFACED ZONE NO.

,._
rn

HWE TWE

94.00 g8.00

TOTAL NUMBER OF EQUATIGONS

= 8e

55
36
ge

ENDING ELEM NO.

=¥
55
82

PERM- "X~ PERM-"Y"

. 1000E+00 . 1000E+CO

. 1000E+00 . 100CE+0D

. 1000E+00 .1000E+00 -

INTERFACE ELEMENT NCS.

oS4 53
37 38
81 g0

ERROR INDICATORS FROM THE EQUATION SOLVER = 0

G*I*i*iif‘fi**&*l*l*****liii**i*****************lli**l{****i***i*******ii****liil*****l*****l*

52
38

79

0

FREXFREAL SRR FRFATXRFERE R NN
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RESULTS

BOUNDARY NODES

NODE

RN—oWVO-dJONRFWN—

—_————
W

0O-JoOd+

n
wh—o

nnry
o, F

X

.+000000E~+01?
. 1300000E+02
.2300000E+02
.330000DE+02

.4300000E+0C2

.5300000E+02
.6200000E+02
.6600000E+02

.6600000E+02
.6600000E+02
.6600000E+02
.6600000E+02

.6600000E+02
.6600000E+02
.6200000E+02
.5300000E+02
.430000DE+02
.3300000E+02
.2300000E+02
. 1300000E+02
.4000000DE+0O1

Lo oo o e 3 o e }

.7200000E+02
.8300000E+02
.9300000E+02
.1020000E+03
.1130000E+03
.1230000E+03
.1330000E+03
. 1445000E+03
.1510000E+03
.1510000E+03
.1510000E+03
.1509600E+03
.1509200E+03
.1509200E+03
. 1444 B00E+03
.1330000E+03
.1230000£+03

-1130000E+03

.1030000£+03
.9300000E+02
.8300000E+02

Table 3.—Computer output for the sample problem No. 4 — Continued

o Nl om o R Y o )

.7000000E+01
. 1800000E+02
.2900000E+02
. 3850000E+02
.4725000E+02

-.5575000E+02

OO000OOoO0O0OO

.5200000E+02
.6400000E+02
.6400000E+02
.6400000E+02
.6400000E+02
.6400000E+02
.6400000E+02
.6400000E+02
.5900000E+02
.4900000E+02
.3900000E+02
.2900000E+02
.1900000E+02
.7000000E+0!

.7000000E+01
.1900000E+02
.2900000E +02
.3850000E+02
.4725000E+02
.5575000E+02
.6000000E+02
.6000000E+02
.6000000E+02
.6000000E+02
.6000000E+02
.6000000E+02
.6000000E+02

POTENTITAL
.9088B55E +02

.8073832E+02 -

.9040193E+02
.B986830E£+02
.BO12B51E+02
.B881757B6E+02
.B715897E+02
.B86714BBE+02
.BBY1162E+02
.B719851E+02
.B8759198E+02
.9056792£+02
.9246832E+02
.9366061E+02
.9400000E+02
.9400000E+02
.8400000E+02
.84+00000E+02
.8400000E+0O2
.8400000E+02
.9400000E+0Q2
.9363921E+02
.9287888E+02
.9219748E+02
.9163254E+02
.8121452E+02
.8093563E+02
.859E6615E+02
.844B8887E+02
.8312198E+02
.8175196E+02
.803B281E+02
.7901297E+02
.7TI64547E+02
.760886BE+02
.7528175E+02
.7508808E+02
.7478936E+02
. 7440668E+02
. 7642458E+02
.7712550E+02
.7732592E+02
.7820563E+02
.7928098E+02
.8045818E+02
.8165982E+02
.8283130E+02
.8388977E+02

PFOTENTIAL

[ B e I e T I R S A o N o N o e s N o W 0

.1291348E+00
. 1360755E+00
. 1604466E+00
.3436234E+00

.1B866031E+00
.1608211E+00
-1310757£+00
.1073537E+00
.9097605E-01
.7988426E-~01

©.B339566E-01

T oo oOOoOoooOoao
S v e e e e e e e e e e .

s N o e o e I e o e o |

.1293815E+00
. 1358808E+00
.160341BE+00
.3435008E+00

DERIVATIVE

PIEZOMETRIC RISE

. 9088655E+02
.9073832E+02
.2040193E+02
.8986830E +02
.8912651E+02
.B817576E+02
.8715997E+02
. 797 1488E+02
.6791162E+02
.5813951E+02
.4909198E+02
.4331792E+02
.3671932E+02
.31660B61E+02
.3000000F+02
.3000000E+02
.3000000E+02
.3000000E+02
.3000000E+02
.3000000E+02
.3000000E+02
.3463921E+02
.4387888E+02
.5319748E+02
.6263254E +02
. 722 1452E+02
.8393563E+02
.8596615E +02
.B448BB7E +02
.8312199E+02
.8175196E+02
.8038281E+02
.7901297E+02
. 776454 7E+02
. 7609868E +02
.6829175E+02
.5608B809E+02
.4579936E +02
.3530669F+02
.2917458E+02
.2137550E+02
. 1732592E+02
. 1820563€+02
. 1928099E+02
.2045818E+02
.2165982E+02
.2283130E+02
.23B8977E+02

NODE

DO F WM —

10
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Table 3.—Computer output for the sample problem No. 4 — Continued

49 .7204000E+02 .6000000E+02 .B4BS6B7E+D2 0. .246S687E+02
50 .6608000E+02 .5575000E+02 .8487832E+02 0. .2912832E+02
51 .6608000E+02 .4725000E+02 .8557%13E+02 0. .3B32413E+02
52 .6604000E+02 . 3850000E+02 .87581898E+02 L3436234E+00 .48091398BE+02
53 .6600000E+02 .2900000E+02 .8719851E+02 . 160446BE+00 .5B819851E+02
54 .6600000E+02 .1900000E+02 .8691162E+02 . 1360755E+00 .6781162E+02
55 .6600000E+02 .7000000E+01 .867148BE+02 .1291348E+00D .7971488E+02
56 . 1545000E+03 0. .7%48039BE+02 0. .7T490398E+0¢
57 .1630000E+03 0. . 7393254E+02 0. .7393254E+02
58 .1730000E+03 0. .7286071£+02 0. .7286071E+02
58 .1830000E+03 0. .7219740E+02 0. .7219740E+02
60 .1930000E+03 0. .7164319E+02 0. .71B4319E+02
61 .2030000E+03 0. .7128763E+02 0. .7128763E+02
62 .2125000E+03 0. .7111810E+02 0. .7111910E+02
63 .2170000E+03 .7000000E+01 .7106525E+02 0. .B406525E+02
64 .2170000E+03 .1900000E+02 .7078B14E+02 0. .B178614E+02
65 .2170000E+03 .2800000E+02 .7036814E+02 0. LL4136814E+02
B6 .2170000E+03 .3800000E+02 .6980326E +02 0. .3080326E+02
687 .2170000E+03 .4500000E+02 .6912e11E+02 0. .2012211E+82
68 .2170000E+03 .5800000E+02 .6836281E+02 0. .3362814E+31
69 .2125000E+03 .6400000E+02 .6B00000E+02 -.8243230E~01 .4000000E+01
70 .2030000E+03 .6400000E+02 .6800000E+02 —.8083B44E-01 .4000000E+01
71 . 1830000E+03 .6400000E+02 .6800000E+02 —-.9234625E-01 .4000000E+Q1
72 .1830000E+03 .B400000E+02 .6800000E+02 -.1093966E+00 .4000000E+01
73 .1730000E+03 .6400000E+02 .6800000E+02 -.1338401E+00 .4000000E+D1
™ .1630000E+03 .6400000E+02 .6800000E+02 —.1638532E+00 .4000000E+01
75 . 1545000E+03 .6400000E+02 .6800000E+02 -.1879669E+00 .4000000E+9]
76 .1510000E+03 .6200000E+02 .683378B0E+02 C. .B337796E+01
71 .1510000£+03 .5575000E+02 .6853007E+02 0. . 1378007E+02
78 .1510000E+03 .4725000£+02 LT143137E+02 0. .2418137E+02
79 .1510000E+03 .3850000E+02 .TH440669E+02 . 3439008E+00 . 3590668E+02
80 .1510000E+03 .2900000E+0Q2 . 7479936E+02 .1603418E+00 .4579936E+02
81 .1510000E+03 .1800000E+02 .7508809E+02 . 1358809E+00 .5608803E+02
8e .1510000E+D3 .7000000E+01 .7529175E+02 . 1293815E+00 .5828175E+02
INTERNAL POINTS
X Y POTENTIAL PIEZOMETRIC RISE
REGION NO = 1

.8000000E+01 .1400000E+02 .8101018E+02 .7701018E+02

.3500000E+02 .1400000E+02 .B9944u4BE+02 .7584448E+02

.5800000E+02 .1400000E+02 .B8780835E+02 .73B0835E+02

.8000000E+01 .3400000E+02 .8185572E+02 .5785572E+02

.3500000CE+D2 .3400000E+02 .81002ec2E+02 .53700222E+02

.5800000E+02 .3400000E+02 .B8885028E+02 .5485028E+0¢2

.800000CE+D1 .5400000E+02 .B322642E+02 . 3922642 +02

.3500000E+02 .5400000E+02 .9289316E+02 .3889315E+02

.5800000E+02 .5400000E+02 .8222898E+02 .3822898E+02

49
50
51
52
53
S4%
55
56
57
58
59
g0
B1

B3
B4
B85
B6
687
68
69
70
71
e
13
s
75
76
T
18
79
80
81
82



1z

REGION

REGION

NO = 2

.7800000E+02
.980J000CE+02
.1180000E+03
.1380000E+03
.8800000E+02
.1080000E+03
.1280000E+03
.7800060E+02
.9800000E+02
. 1180000E+03
. 1380000E+03

NO = 3

. 15B0000E+03
.1830000E+C3
.2080000E+03
.158J000£+03
.1830000E+03
.2080000E+03
.1580000E+03
.1830000E+03
.2080000E+03

Table 3.—Computer output for the sample problem No. 4 — Continued

.1400000E+C2
.1400000E+02
.1400000£+02
.1400000E+02
.3400000E+02
.34+00000E+0D2
.34+00000E+De
.54000G0E+02
.5400000E+02
.5400000E+02
.5400000E+02

.1400000E+02
.1400000E+02
.1400000E+02
.3400000E+02
.3400000E+G2
.3400000E+02
.5400000E+02
.5400000E+02
.5400000E+02

.8519423E+02
.8243293E+02
.7970131E+402
L7684 071E+02
.B8372176E+02
.8106429E+02
.7B41302E+02
.B4u40132E+02
.8226228E+02
. 7985457E+02
. 7767868E+02

L. T4%31235E+02
.7198062E+02
.7100938E+02
. 7330633E+02
.7084328E+02
.7015872E+402
.6979725E+02
.690860E+02
.8877955E+02

AAAARAARRAREARES R RS E AR AR R R R Y Y Y R R R Y

711842 3E+C2 -
.BB43293E+02
.B570131E£+02
.B294071E+02
.4872176E+02
.4 706429E+02
44413028402
.3040132E+0e2
.28e6e28E+0e
.25B5457E+02
.2367969E+02

.B031235E+02
.5799062E +02
.5700539E+02
.3930633E+02
.3694328E+02
.3615672E+02
.1579725€+02
.1508601E+02
. 1477955€+02



| ~

B,

Figure 1.—General description of a typical free-surface seepage problem,
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X

The singular point P is separated from D
by the circle of radius €. The arrows
indicate the direction of integration.

Figure 2.—Two-dimeansional domain D surrounded by the boundéry curve S,

(a) (b)

* Figure 3.—Point P on the boundary, {a} at a smooth part of the boundary, {b) where the boundary contour forms an angle.
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oy
P

ZONE 1

KYI KYZ

I T ZONE 2
Kx, Kx,

In the trensformed space wi‘rh Xp = ‘l—:::

Yr=1Y, the bounddry conditions at the
interface are:

I. Compatibility conditions

Ur, = ur

| 2
UJI = qu
UL, = UL,

2. Equilibrium condition

i au | [ au |
Kx, ¥y, ani =~ Kx2 K an
- °L - I
r . —
du I—— au |
: Kx| KY' BFWJ = - sz KYZ ._r-‘.J
- - J2
[ au | [ TR
Kx' KY| 5{]_ = - sz KYZ ..aT]-.
L _LI — _sz

Figure 4 —Boundary conditions at interface between zoned anisotrapic regions.
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{a)

'

Extreme - nodes

(c)

Figure 5.—Differen t types of boundary elements. (a) constant
elements, {b} linear elements, and {c) quadratic elements.
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REGION

REGION

-

Element numbering

Interface
Interface
Interface

Interface

Interfoce
Interface

elements
elements
elements
elements
elements

elements

12

is counterclockwise,
for Region (1) with

for
for
for
for

for

Region o with
Region (2) with
Region e with
Reglon (3) with |
Region 9 with

Region

are
are
are
are
are

are

NORY

¢+26

4,5,6
none
13,12, 11
16,17
none
22,2l

Figure 8. Element numbering and ordering sequence of nodes for interface elements.
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Analytical Solution u=(6-X)rs2
Numerical Solution o

Potential

Along the X - axis of the plate

Figure 7.—Semple problem No. 1 — Compearison of boundary element solution with the known analytic solution.
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q=0
35f| 34 ) 33

- T 1 hd | | !
14 919 32
—t— - » - L L] [ ] ® ——
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— . . . -+ . L4 b T
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POTENTIAL

Figure 8,—Sample problem No. 2 — Comparison of boundary element solution with the known analytic solution,

-
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Pressure

ELEVATION (FEET)

Baundary head, hy Gradient
_Element No. feet
1 B5.84 0
2 B5.55 1]
3 BL.94 ]
4 83.99 1}
S 82.64 ]
6 80.83 ]
7 78.61 0,
8 72.50 -.253,
9 62.50 =20
10 52.50 -.629
11 47.97 0
12 4]1.26 o
13 33.85 ]
A Lama ood Whitman [13] }g ;ggg g?}
@ Bourtery et 16 30.00 ‘182
17 30.00 .152
18 30.00 .130
19 30.00 .13,
20 30.00 114
21 34.49 0
b 22 43.44 [i]
23 52150 a
24 61.73 0
25 71.19 0
26 80.90 0
¢ 27 76.38 0
28 T4.17 0
29 72.36 0
30 71.01 ]
Pl 31 70.08 i}
32 69.46 0
33 69.16 0
3 64,10 0.
. 35 53.82 li]
y 1000 s 000 % 3.2 a
rERSINE (LISSTY 37 32750 o
WATER PRESSURE ON WALL (LOMFT) 38 3156 o
39 10.51 i}
a0 5.00 -.114
81 5.00 -.118
42 5.00 -.130
© 4 5.00 -.153
44 5.00 -.182
45 5.00 -.21
oot 7 a6 5.00 <1250
¥ - 47 .14 s]
48 23.14 0
I 49 7.03 0
L 50 52.50 .620
51 62.50 271
— 52 72.50 .25
i g EL8Y
20 iy » 1] » [ N “ JP\ - N L . | 43 [} K1l , 40 £t 80
tL 1347 N 3t
o o W [T wa wh ¥q [Ers we wes wao wa )
12 240 A'u
1 BT e o w1 wa wre 184 wn w wo n [ e
= nfer : ar
N . . . . 3 . - £.30
1 w39 [ 5 XN son wr it Xt nw we Wit (Y]
i2 ] s ]
“o3 “'n ' w'es s (1) o ' wn T wor u'n 2
3 "y »
war e ' 588 w0 ot 7 [ frey va w [ ) i
1 [T ' u
N . N oo
m ? p Y o 4 g 5 a0 €& w 7 m ¥ m W s W g 9 qpg M gp B g B o

QISTANCE (FEET)

FLOW UNDER BMEET FILE WALL—- PRESSURE HEAD DiBTRIBLTION

Figure 9.—Sample problem Na. 3 — Pressure head distribution undar sheet pile well,
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DISTANCE (FEET)

Figure 10.—Sample problem No. 4 — Pressure head distribution under g concrete spillway .



LE

35 FT.

v

Initlal estimated phreotic line

Calculoted phreotic line

2880 1 E1AE] ) 33.03 1 3a.27 3514
P oz s T a7 s T e T 7 T e Yos 10
q9=0 '
PRESSURE HEADS IN THE EMBANKMENT
L i i 1 1 1 3 1 1 L 1 1
0 10 20 0 T 0 60 70 80 % 100

Figure 11.—Sample problem No. 5 — Pressure head distribution in an embaenkment dam,
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ELEVATION {FEET)

1625

8

1375

1550

. . . . . £8
. (~] 64 83 [ @
. . S, % ., B o4 o sz au
- =0
2 an 0700 . . as . . . d 5 an
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3 L[]
= TWE=I6150ft.
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DISTANCE (FEET)

Figure 12.—Sample problem No. 6 — Steady-state seepage through the dam and its foundation zones,



96"

Sand
K =0.00660 "/sec.

K=0.12 sec
T e~ o

Perforated pipe ——1 : ~_Grave! envelope -

Figure 13.—Sample prablem No, 7 — Laboratory model of a drain with gravel envelopa,
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Potential in Feet of Head
Location Above Dotum of Elevotion 3.939 Feet
\dentification -
Calculated Measured

Cl-R2* .04€58 .03

R1 .0465 .03

R§ .0a7 .038

RS .04883 .046

R6 .058517 .058

R? 11242 .178

RB L2375 .268
C2-R2 21625 CoLeer

R3 .2117 213

R4 2202 214

RE 2268 218

RE L2418 .238

®7 .2787 317

RS L3244 .A77
C3-R2 .3883 433

R3 .3903 .420

R4 . 3942 .409

A5 L4012 L414

RE 4141 414

R7 .4338 466

R8 4495 . 500
<4-82 5535 594

R3 5561 579

R4 5597 579

RS 5656 .578

RE L5743 591

R7 L5846 .609

RB .5952 .514
C5-R2 . 7268 k]

R3 .1291 .136

R4 7315 .128

A% L7352 .743

R6 L1397 751

R7 L7432 753

R8 L7432 . 745
C6-R2 8963 . 880

R .8978 .83

R4 8396 .892

RS 9014 897

R6 9024 913

r? L9013 .14

R8 .B947 902
C7-R2 - 1,063 not measured

Rl 1.0648 not measured

R4 1.0657 1.058

RS 1.0663 1.058

RE 1.0657 1.0M4

R7 1.0618 1.077

RS 1.0514 1.072
c8-R2 1.232 1.248

R3 1.2323 1.249

R4 1.2327 not measured

RS 1.2328 not measured

R6 1.2318 not measured

R7 1,2283 not’ measured

RB 1.218 not measured
C9-R2 1.399%4 1.409

R3 1.3995 1.410

R4 1.39%4 not measured

RS 1.3995 not measured

R6 1.3993 1.417

R7 1.3588 not measured

"8 1,3966 1.423

* (r-Rg 15 the intersection of circumferential pagh r
and radial 1ine @. Radial lines ara spaced at 15
intervals. Rl extends vertically downward from the
drain centerline. Clrcumferential paths are located
at radial distances of 0.54, 0.68, 0.86, 1.08, 1.37,
1.73, 2.18, 2.75, and 1. 47 feet and are identified
as Cl, C2, €3, . . . €9 respectively.

Line of symmetry———er

Woter £ 64.38"
10 &

|nitigl esfimate of
phreatic path
13

Figure 14.—Pressure head distribution for sample problem No, 7 {fig. 13).
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Figure 15.—Macroflow diagram.
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APPENDIX 1. — SOURCE LISTING OF THE
COMPUTER PROGRAM BIE2DCP

Introduction

The macroflow diagram for the boundary element compu-
ter program is shown on figure 16, The computer program
BIE2ZDCP consists of one main program and ‘nine sub-
routines, The main program defines the maximum dimen-
sions of the system of equations (or boundary nodes) to
200, maximum number of zones to 10, and maximum
number of interior points in any one zona to 50. It calls
seven of the following nine subroutines,

INPUT:

FMAT:

INTE:

Reads the program input.

Forms the two matrices H and G and re-
arranges them according to the boundary
conditions to form the matrix A of equation
{38).

Computes the values of the off-diagonal
elements of the H and G matrices by means
of numerical integration along the boundary
elements, ’

37

INLO:

_FACTR:

RSLMC:

REARR:

INTER:

QUTPT:

Computes the values of the diagonal ele-
ments of the G matrix,

Factors the matrix A into a product of a lower

triangular .matrix and an upper triangular
matrix. The lower triangular matrix has unit
diagonal which is not stored. -

Solves the system of linear equations AX =B
when the coefficient matrix A has been
factored into a product of two triangular
matrices by the subroutine FACTR,

Reorders the computed solution to cor-
respond to the boundary parameters of each
zone.

Computes the values of the potential at the
selected internal points,

Outputs the results,

Subroutines INTE and INLO are called by the subroutine
FMAT. Also, subroutine INTER calls the subroutine INTE.
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PROGRAM BIlE2OCP

Cfnllli*il{i*****iil*iiﬁ*l**«i*cs*1:*1*}4I-*l-l—liii-l-**i**ii*qi*l&*lill**l*{-B[EEDCP
C**i*i*l*l'l*i*i-l-I*lli*li*l{--}li*l*!l{i*lll*l*lll****i*-}li*i*lii*ll**{*{l*BIEEDCP
Crsssxswxus 2. D.POTENTIAL PROGRAM (CONSTANT ELEMENTS) B.E.M. **+*x+2xxBJE2DCP
Cessrxs44s% FOR A ZONED MEDIUM WITH PHREATIC LINE SEARCH rexxexe € xQIE2DCP

Ci*l*!._*I{*l*il**li*ll**l*li*-l—!*l**ﬂf}'i*ll*li*l**li*liili‘*i*iil{-l*il—l*ll*BIEEDCP
Ci'll'l—l*i*-ilfi***li*ll*}l*****l*i*l—lll*iii*li*l**}**l**l**l**ll**!**i****B{EEDCP

C BIE2DCP
C PROGRAM FOR SOLUTION OF TWO DIMENSIONAL POTENTIAL PROBLEMS BIE2DCP
C BY THE B.I.E. METHOD WITH CONSTANT ELEMENTS BI1E2DCP
C BIE2DCP
PROGRAM BIE2DCP (INPUT,QUTPUT,TAPES=INPUT, TAPEG=0UTPUT) BIE2DCP
COMMON N . BIE2DCP
COMMON /ADD1/ NRGNS,ISTART(10)},IEND(10) ,NINTF(10,10),ID(10,10,050)BI1E2DCP

1 LNEGNS ,NL (1D) ,EFFP(1D0) BIE2DCP
COMMON /ADD27 XM(200),YM(200) . BIE2DCP
COMMON /ADD3/ PERMX(10),PERMY(10),XT(200),YT(200),CXT(10,050), BIECDCP

1 ' CYT(10,050),XMT (2001 ,YMT(200) - BIEZ2DCP
COMMON /ADD4/ NPHREL, IDPHR(25),MALIK,ACC, ITRMAX BIE2DCP
COMMON /BIEL/ X(2001,Y(200) . BIE2DCP
COMMON /BIE2/ FI1(200),FIS(200) ,HWE,TWE" BIEZDCP
DIMENSION G(200,200),FIP(200) BIE2DCP
DIMENSION KODE (200),CX(10,050),CY(10,050),50L(10,050),Hi200,200) BIEZDCP
DIMENSION WA(200) ,FID(500) ,DF1(500) BIEZDCP
DIMENSION G2(200,200) ,PER(200),F(200) - BIE2DCP

- EQUIVALENCE (G2(1,1),H(1,1)),(WACD) ,FIDCE)) ‘ BIE2DCP

c BIE2DCP
C INITIALIZATION OF PROGRAM PARAMETERS BIE2DCP
C NxX= MAXIMUM DIMENSION OF THE SYSTEM OF EQUATIONS. BI1E2DCP
C NRGNGSX= MAXIMUM DIMENSION FOR THE NUMBER OF REGTONS. BIE2DCP
C NLX= MAXIMUM DIMENSION FOR THE NUMBER OF INTERIOR POINTS IN EACH REGIBIEZDCP
C - : BIEZDCP
NX=200 BIEZDCP
NRGNSX=10 BIE2DCP
NLX=050 BIE2DCP
ITER=0 BIEZ2DCP

I TRMAX=10 : BIEZDCP

DO B [=1,NX BIE2DCP
FIP(I)=0. BIE2DCP

& CONTINUE BIE2DCP

C BIEZ2DCP
C INPUT BIE2DCP
c . BIEZDCP
10 CALL INPUTI(CX,CY,KODE) BIE2DCP

C BIE2DCP
C FORM SYSTEM OF EQUATIONS BIEZDCP
C . BIE20CP
CALL FMAT(XT,YT,XMT,YMT,G,H,DFI,KODE ,NX,N) BIE2DCP

C BIE2DCP
C SOLUTION OF THE SYSTEM OF EQUATIONS BIE2DCP
C BIE=2DCP
DO 15 I=1,NEQNS BIEZDCP

DO 15 J=1,NEQNS BIE2DCP
G2(1,d4Y=06I11,J) ’ BIE2DCP

15 CONTINUE BlE2DCP

U
VOO FWUN—OODIOUFWMY —
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PROGRAM BI1E20CP

o0 OO0 OO0

OO0

CALL FACTR(G,PER,NEQNS,NX,IERI ,NX*NEQNS)
EPSI=1.E-06

CALL RSLMC(G2,G,DF1,F NEQNS,EPST, IER2,NX,HA,PER,NX*NEQNS)

DO 16 I=1,NEQNS
DFICI)=F (1)}

16 CONTINUE
WRITE (6,21) IER!,IER2

21 FORMAT (1HO, "ERROR INDICATORS FROM THE EQUATION SCLVER

115,5X,15)
REARRANGE THE SOLUTION VECTOR
CALL REARR(DFI,FI1D,KODE)
COMPUTE THE POTENTIAL VALUES FOR INTERNAL PQINTS
CALL INTER(DFI,KODE,CXT,CYT,XT,YT,S0L)
QUTPUT
CALL OUTPT(XM,YM,DFI,CX,CY,S0L)

*

L]

BIE2DCP
BIE2DCP
BIEZDCP
BIE2DCP
BIE2DCP
BIEZDCP
BIE2DCP
BIEZDCP
BIE2DCP
BIE2ZDCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIEZ2DCP
BIE2DCP
BIE2DCP

1 FORMAT (IHO'7UH*Il**ll*ll{ll*ll*l*-l-<l-Ii—Ii*Iil'Q‘ll-ﬁil’ﬁ*i{i*i**l_*ili{l*B]EEDCP

I*I'I:*i*liliililii'*{*//)

2 FORMAT (1HO,49HPHREATIC LINE ELEMENTS GEOMETRY IS BEING ADJUSTED,

15X, I13HITERATION NO.,I%4)

3 FORMAT (1HO,45HREADJUSTED PHREATIC LINE ELEMENT COORDINATES //)

4 FORMAT (1HO,22H X Y/ /)
5 FORMAT (1HO0,2F11.3)
MAL IK=0
IF (NPHREL.LE.Q) GO TO 200
DO 100 t=1,NPHREL -
J=IDPHR (1)
DIFF=ABS(FI(J)-FIP(J))}
IF (DIFF.LE.ACC) GO TO 100
MALITK=1
100 CONTINUE
ITER=1TER+]
IF (MALIK.LE.O0.OR.ITER.GT.ITRMAX) GO TO 200
MALIK=0 '
WRITE (6,1)
WRITE (6,2) ITER
WRITE (6,1}
WRITE (6,3)
WRITE (6,4)
SIGN=Y (IDPHR (1)) -Y (IDPHR (NPHREL )

IF SIGN.LT.0.; YUIDPHR(1)) NEEDS TO BE ADJUSTED

IF SIGN.GT.0.; Y(IDPHR{NPHREL)) NEEDS TO BE ADJUSTED

IF (SIGN.LT.0.) GO TO 160
D0 150 I=1,NPHREL
J=10PHRI(1)

K=Jd+1
DIFF=ABS(FI(J)-FIP1J))

BIE2DCP
BIE2DCP
BIE2DCP
BiE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIEZDCP
BIE2DCP
BlE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
B1E2DCP
BIE20OCP
BIE2DCP
B1E2DCP
BIE2DCP
BIEZ2DCP
BIE2DCP
BIE2DCP
BIEZ2DCP
BIE2DCP
BIE2DCP
BIEZDCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP

106
107
108



oy

PROGRAM BlEZDCP

YDIFF=Y(K)-(FI(J)+THE) .

110 : SLOPA=(Y(K)=Y(K+11 )/ (X(K)-X{K+1})
IF (DIFF.GT.ACC) MALIK=1
Y(K)=(0.5*(FItJ+F1(K)))+THE
IF (I.LT.NPHREL) GO TO 150

Y IKI=FT(J)+THE

115 X(KI=X(K)-(YDIFF/SLOPA)

FIS(K)=0.5%(Y (K} +Y(K+1)}-THE
150 CONTINUE

GO TO 175
160 DO 170 I=1,NPHREL

120 [T=NPHREL-1+1
J=IDPHR(I I
K=J-1
DIFF=ABS(FI(J)-FIP(J))
YDIFF=Y(J) - (FICJI+THE)

125 SLOPA=(Y(J)-Y(K})/ (X(K)=-X(J))
IF (DIFF.GT.ACC) MALIK=1
Y(J)={0.5* (FI(JI)+FI(K) ) 1+THE
IF {1.LT.NPHREL) GO TO 170
Y =FT{J)+THE .

130 X(J)=X(J)+(YDIFF/SLQPA)
FIS(KY=0.5%(Y(K)+Y(J))-THE

170 CONTINUE
175 DO 178 1=1,NPHREL
J=IDPHR(1)

135 K=J
IF (SIGN.GT.G.) K=J+1
WRITE (B,5) X(K),Y(K)

178 CONTINUE
DO 180 I=1,NEQNS

140 FIP(I)=FIC(D)
FI(1)=0.
DFI(I1=0.

180 CONTINUE
Du 196 I=1,N
145 FICD)=FIS(D)
190 CONTINUE
IF (MALIK.EQ.0) GO TO 200
GO T0 10
200 STOP
150 END

SUBROUTINE INPUT

1 SUBROUTINE INPUT(CX,CY,KQDE}
C
C THIS SUBROUTINE READS THE INPUT.DATA
C
5 C N= NUMBER OF BOUNDARY ELEMENTS
C L= NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED

B1E2DCP
BIE2DCP
BIE2OCP
B1E2DCP
BIE20CP
BIE2DCP
BLIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
B1E2DCP
BIE2DCP
BI1E2DCP
BIE2DCP
B1E2DCP
81E2DCP
BIE2DCP
BIEZDCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BI1E2DCP
BIE2DCP
BIE2DCP
B1E2DCP

- BIE2DCP

BIE2DCP
BIE2DCP
BIE2DCP
BIE2DCP
BI1E2DCP
BIE2DCP

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

109
110
11

112

113
4%
115
116
117
118
119
120
121
1eg
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
148
147
148
48
150

DAE WM —
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SUBROUTINE

10

20

25

30

25

40

45

50

55

60

INPUT

oSO0 [oXoXe]

OO0 ¢

QOO0

aoo00

COMMON N

COMMON /ADDI1/ NRGNS, ISTART(10),IEND(10) ,NINTFC10,10),ID(10,

1 JNEQNS NL(10) ,EFFP(10)
COMMON /ADDe/s XM(200),YM(Z200)

COMMCON /ADD3/ PERMX(10),PERMY(10),XT(200),YT(200),CXT(10,050),

1 CYT{(10,050),XMT(200),YMT(200)
CCMMON /ADD4/ NPHREL, IDPHR(25) ,MALIK,ACC, ITRMAX
COMMON /BIEL/ X(200),Y(200)
COMMON /BIE2/ F1(200),F15(2G0) ,HKE, TWE
CIMENSION CX(10,050),CY(10,050) ,KCDEC1},TITLEC(18)
IF (MALIK.EQ.1) GO TO 1400
WRITE(S,100)

100 FORMAT (" *,120C(**"))

READ NAME OF THE J0OB

READ(S,150) TITLE
150 FORMAT (18AY4)

WRITE(6,250) TITLE
250 FORMATI(25X, 18A4)

READ BASIC PARAMETERS
READ(5,200}N,NRGNS

200 FORMAT(213)
WRTITE(E,300)N,NRGNS

300 FORMAT(//" DATA'//2X, NUMBER OF BOUNDARY ELEMENTS=‘,13/2X, ‘NUMBER

10F REGIONS = ' ,13)
READ INTERNAL POINTS COORDINATES‘

DO 2 INDU=1,NRGNS
READ (5,200) NL(INDU)
L=NL ( INDU}
Do 1t I=1,L
1 READ(S5,400) CXCINDU, 1) ,CYCINDU, 1)
2 CONTINUE
400 FORMAT(2F10.4)

READ COORDINATES OF EXTREME POINTS OF THE BOUNDARY ELEMENTS

IN ARRAY X AND Y

WRITE(E,500)

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

500 FORMAT(//2X, COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEINPUT

IMENTS" , //4X, "POINT' 10X, 'X",18X,"Y")
0O 0 I=1,N
READ(5,600) X(1),Y(I)
600 FORMAT(2F10.4}
10 WRITE(6,700)1,X(1),Y ()
700 FORMAT(5X,13,2(5X,Et4.7))

READ BOUNDARY CONDITIONS
F1(I)= VALUE OF THE POTENTIAL IN THE NODE I 1F KODE=D,

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

INPUT

INPUT
INPUT



A7

SUBROUTINE INPUT

65

70

15

80

85

Q0

25

100

105

110

C
C
C
C

VALUE OF THE POTETIAL DERIVATIVE IF KODE=1, INPUT
KOOE (J)=2 IMPLIES THAT THE NODE 1S ON THE INTERFACE AND NETTHER INPUT
THE POTENTIAL NOR LTS DERIVATIVE IS XKNOWN. Fi(l) IN THIS CASE MUST BEINPUT
INPUT

WRITE(S,800) INPUT

800 FORMAT (//2X, 'BOUNDARY CONDITIONS'/ISX.'NODE',SX,'CODE'.5X.'PRESCRIINPUT
1BED VALUL") INPUT

Do 20 1=1i,N INPUT
READ(5,900}) KODE(1),Fitl) ; INPUT

900 FORMAT(15,F10.4%) INPUT
20 WRITE(S,950)1 ,KODECT) FILT] . INPUT
a50 FORMAT(SX,13,8%,11,8X ,E14.7] INPUT
NEGNS=N : INPUT

1000 FORMAT (8110) INPUT
1050 FORMAT (2F10.2) INPUT
DO 1100 1=1,NRGNS INPUT

READ (5,1050) PERMX(1),PERMY (D) INPUT

READ (5,1000) ISTART(1),1END(T) - INPUT

DO 1060 J=1,NRGNS ’ INPUT

IF (J.EQ.I) GO TO 1860 INPUT

READ (5,10003 NINTFCI,J) INPUT
NINT=NINTF(I,J} - . INPUT

IF (NINT.LE.O) GO TO 1060 INPUT

READ (5,1000) (1DC1,J,Ki ,K=1,NINT} INPUT

1060 CONTINUE INPUT
1100 CONTINUE INPUT
WRITE (6,1200) INPUT

1200 FORMAT (1HO,10HREGION NO.,3X, | THSTARTING ELEM NO..EX,15HENDING ELEINPUT

1M NO.,EX,BHPERM—*X“.5X.8HPERH—“Y“//J INPUT

DO 1250 1=1,NRGNS INPUT
WRITE (6,1300) I,ISTART(I).IENDEI!,PERMX(I).PERMY([) INPUT

1250 CONTINUE INPUT
1300 FORMAT (lHD,SX,IB.lBX,13,lGX.IZ,QX,EIO.H.3X.EID.H.9(I3.EX)) INPUT
1204 FORMAT (1HOQ,B4HZONE NO. INTERFACED ZONE NO. INTERFACE INPUT
1 ELEMENT NOS.//) INPUT
1305 FORMAT (1H0.I5,lEX.15,15X.1615/37X.1615) INPUT
1306 FORMAT (1HO,41HPHREATIC LINE ELEMENTS IDENTIFICATION NO.//) INPUT
1307 FORMAT (1HO,1515) INPUT
13208 FORMAT (2110,8F10.0) INPUT
1308 FORMAT (1HD,35HND. OF BOUNDARY EL. ON PHREATIC LINE MAX. TTERAINPUT
1TIONS ACCURACY /1) INPUT
1310 FORMAT (1HU,IDX,IE,36X,IE,IGX.F5.2,4E3X.FB.8)J INPUT
1311 FORMAT (1HO,28H HWE THE 7/ /) INPUT
1312 FORMAT (1HQ,05X,8(F8.2,5X)) INPUT
IF (NRGNS.LT.2) GO T0 12£80 INPUT
WRITE (6,1304} INPUT

DO 1270 1=1,NRGNS INPUT

DO 1260 J=1,NRGNS INPUT
NINT=NINTF (i,J) - ‘ INPUT

1IF (NINT.LE.Q) GO TO 1260 INPUT
WRITE (6,1305) 1,4,(I0C1,J,K) K=1,NINT) INPUT

1260 CONTINUE INPUT
1270 CONTINUE INPUT

1280 READ (5,1308) NPHREL , [ TRMAX, ACC ,HHE , THE INPUT

100

61 .

62
63
Bu
65
66
67
68
69
70
71
72
73
T4
75
16
77
78
79
80
81
82
83
BY4
85
86
87
a8
89
30
91
92
93
9y
95
86
97
98
ag

101
toe
103
104
105
106
107
108

———
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FNI—=O
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SUBRQUTINE INPUT

115 HRITE (5,1311) . INPUT 115
WRITE (6,1312) HWE, THE INPUT 116
IF (NPHREL.LE.Q) GO TO 1400 INPUT 117
READ (5,1000) C(IDPHR(I),I=1,NPHREL) INPUT 118
WRITE (6,1308) INPUT 119
120 WRITE (B6,1310) NPHREL,ITRMAX,ACC INPUT 120
WRITE (6,13086) : INPUT 12l
) WRITE (B,1307) C(IDPHR(IY,]1=1,NPHREL) INPUT 12e
1400 DO 1500 INDU=I ,NRGNS - INPUT 123
. L=NL ( INDU) INPUT 124
125 RATIOP=PERMY ( INDU) /PERMX { INDU) INPUT 125
RATIOX=SQRT(RATIOP) INPUT 126
RATIOY=1. INPUT 127
PXY=PERMX ( INDU} *PERMY ( INDU) INPUT 128
EFFPCINDUY=SQRT (PXY) INPUT 129
130 0O 1480 I=1,L INPUT 130
CXTUINDY, 1) =CX{INDU,I)*RATIOX INPUT 131
CYTUINDU, )=CY(INDU,1)*RATIOQY INPUT 132
1480 CONTINUE INPUT 133
’ : INPUT 134
135 C SINCE RATIOY=1., THE TAIL WATER ELEVATION IS NOT BEING INPUT 135
C TRANSFORMED INPUT 138
c INPUT 137
18=1START{ INDU} INPUT 138
IE=TEND( INDU? INPUT 139
140 BO 1480 I=1S,IE INPUT 140
XT(I)=XIT1*RATIOX INPUT 141
YTOI)=Y(1)*RATIOY INPUT 142
IF. (1.EQ.IE} GO TC 1485 INPUT 143
XMODy=(XC1Y+X(1+10) /2, ’ INPUT 144
145 YMOD)=(Y(II+Y{l+1))/28. INPUT 145
GO TO 1430 INPUT 146
1485 XM =(X{1)+X(IS))/2. INPUT 147
YMIT)I=(Y(L)+Y(IS))/2. INPUT 148
1480 CONTINUE INPUT 149
150 1500 CONTINUE ) INPUT 150
IF (MALIK.EQ.1) RETURN INPUT 151
DO 1550 I=1,N 7 INPUT 152
IF (KODE(I).EQ.Q) FI(I)=FI([)-TWE INPUT 153
FISIII=F1(1) INPUT 154
155 1550 CONTINUE INPUT 155
1660 FORMAT (1HO, 'TOTAL NUMBER OF EQUATIONS = L I5) INPUT 156
WRITE (6,1860) NEQNS INPUT 157
RETURN ‘ INPUT 158
END INPUT 159
SUBROUTINE FMAT
1 SUBROUTINE FMAT(X,Y,XM,YM,G.H,DF I ,KODE,NX,N} FMAT 1
C FMAT =4

€ THIS SUBROUTINE COMPUTES G AND H MATRICES AND FORM THE FMAT 3
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SISTEM A X = F e

C FMAT
C ~ FMAT
COMMON /ADD1/ NRGNS, ISTART(10)IEND(10) NINTF(10,10),1D(10,10,050)FMAT

1 NEQNS,NL110) ,EFFP(10) FMAT
COMMON /BIE2/ F1(200),FIS(200) ,HWE, THE FMAT
DIMENSION X(1),Y (L), XMC1),YMC1) G ONX,NX) HINX,NX) KODE(1) FMAT
DIMENSION DFI1C(1) FMAT

C FMAT
C COMPUTE THE MID-POINT COORDINATES ANOC STORE IN ARRAY XM AND YM FMAT
C FHMAT
DO 4 I=1,NEQNS FMAT

00 3 J=1,NEQGNS FMAT
G(I,J)=0. FMAT
H(I,J)=0. FMAT

3 CONTINUE FMAT

4 CONTINUE FMAT

DO 35 TNDU=1,NRGNS FMAT
1S=1START (INDU) FMAT
IE=1ENDC(INDU) FMAT

DO 10 I=1S,IE FMAT

IF (1.EQ.IE) GO TO 5 FMAT
XMIDI=(X(T)}+X([+1))/2. FMAT
YMID)=(Y(D)+Y(L[+1)) /2. FMAT

GO TO 10 FMAT

5 XMIT)I=(X(1)+X(IS))/2. FMAT
YMIDI=(YCEY+Y(IS)) /2, FMAT

10 CONTINUE FMAT

C FMAT
C COMPUTE G AND H MATRICES FMAT
C FMAT
DO 32 I1=I5,1E FMAT
JC=15-1 FMAT

DO 30 J=IS, Ik FMAT
JC=JC+1 FMAT
X1=X({J) FMAT
Y1=Y{(J) FMAT
X2=X(1S) FMAT
Ye=y(15S) FMAT

[F (J.LT.IE) X2=X(J+1) FMAT

[F (J.LT.IE) Ye=Y(J+1) FMAT
IF(I-J)20,25,20 FMAT

20 CALL INTE(XM(I),YM(I) ., X1,Y1l ,X2,Y2,HE,CGE) FMAT

GO TO 1000 FMAT

25 CALL INLO(X!1,Y1,X2,Y2,GE) - FMAT
HE=3.1415926 FMAT

C FMAT
C CONSTRUCT THE G AND H MATRICES ENFORCING THE INTERFACE FMAT
C CONSTRAINT CONDITIONS FMAT
C FMAT
1000 IF (INDU.EQ.1.0R.KODE(J).NE.2) GO TO 2000 FMAT
C FMAT
C LOCATE THE INTERFACE ON WHICH J LIES FMAT
c FMAT
DO 1200 IND=1,NRGN5 FMAT

. e et e
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SUBROUT INE FMAT

60

65

70

75

80

85

0

85

100

105

110

OoO0o0

(s lole]

“IF (IND.EQ.INDU) GO TO 1200
NINT=NINTF ( INDU, IND)
IFF (NINT.EQ.0) GO TO 1200
DO 1150. INDC=1,NINT ‘
I[F (J.EQ.IDCINDU,IND,INDC}) GO TO 1160
1150 CONTINUE
GO TO 1200
1160 JINT=ID{IND, INDU, INDC)
SIGN=-1.
IF (IND.GT.INDU) JINT=ID(INDU, IND, INDC)
IF (IND.GT.INDU) SIGN=+1.
HCL,JINT)=H(T,JINT)+HE
G(I,JINT)=G(I,JINT)I+(GE*EFFP(IND)/EFFP(INDU))*SIGN
GO TO 30
1200 CONTINUE
2000 H(1,JC)=HE
G(I,JC)=GE
30 CONTINUE
32 CONTINUE
35 CONTINUE

ARRANGE THE SYSTEM OF EQUATIONS READY TO BE SOLVED

DO 51 u=1,N
IF (KODE(J).EQ.2) GO TO 51
IF(KODE(J))51,51,40
40 DO 50 I=1,N
CH=GI(I,J}
G(I,l=-H{I,Nn
H(Il,J)=-CH
50 CONTINUE
51 CONTINUE
IF (NRGNS.LE.1) GO TO 500

ELIMINATE THE ZERO COLUMN VECTORS
JR=0 :
DO 3200 J=1,N
IC=0

DO 2000 I=1,N
‘ IF (G(1,J).EQ.0) IC=IC+1
3000 CONTINUE
IF (IC.EQ.N) GO T0 3200
JR=JR+1
DO 3100 I1=1,N
G(l,JrR)=G(I,d)
3100 CONTINUE
3200 CONTINUE
JC=JR
DO 100 I=1,NRGNS
DO 90 J=1,NRGNS
IF (1.GE.J) GO TO 90
NINT=NINTF (1 ,J)
IF (NINT.EQ.0) GO TO 90
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SUBROUTINE FMAT

115

120,

L185

130

oO0O0O0

DO 70 K=1,NINT
JINT=ID(I,J,K)
JC=JC+1
DO 65 L=1,N
G(L,JCY=-H(L,JINT)

65 CONTINUE

70+ CONT INUE

90 CONTINUE

100 CONTINUE

DF] ORIGINALLY CONTAINS THE INDEPENDENT COEFFICIENTS,
AFTER SOLUTION IT WILL CONTAIN THE VALUES OF THE SYSTEM UNKNOWNS

500 DO B0 I=1,N
DFI(1)=0.
DO 60 J=1,N
DFICI)=DF T (D) +H(TI , JI*F 1 (J}
B0 CONTINUE
RETURN
END

SUBROUTINE INTE

10

15

cD

5

OOOOQO0O0O00

SUBROUTINE INTE (DXP,DYP,DX1,DY1,DX2,DY2.H,06)

THIS SUBROUTINE COMPUTES THE VALUES OF THE H AND G MATRIX
OFF DIAGONAL ELEMENTS BY MEANS OF NUMERICAL INTEGRATION
ALONG THE BOUNDARY ELEMENTS

DIST=DISTANCE FROM THE POINT UNDER CONSIDERATION TO THE
BOUNDARY ELEMENTS

RA=DISTANCE FROM THE POINT UNDER CONSIDERATION TO THE
INTEGRATION POINTS IN THE BOUNDARY ELEMENTS

DIMENSION XCO(10),YCOC10),GI1(10),0MEC1D)
DOUBLE PRECISION X1,X2,Yl,Y2,XP,YP,HD,TA,XCC,YCO,G1,0ME
DOUBLE PRECISION AX,BX,AY,BY,DIST,GD,RA
DOUBLE PRECISION DABS,DSQRT,DLOG

X1=DX1

Y1=DY1

xXe=0xe

Ye=DYe

XP=DXP

YP=DYP

GI(1)=0.973806528517172D0

Gi(2)=-GIt1)

GI(3)=0.865063356688985D0

GI(4)=-GI(3)

G1(5)=0.679403568293024D0

Gl1(B)=-GI(5)

GI1(7)=0.433395394129247D0

FMAT
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FMAT
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SUBROUTINE INTE

SUBROUTINE

10

OO0

10

20
30

31
3e

40

INLO

Gl(B)=~-GI(7)
Gl1(9)=0.148874338981531D0
Gl =-G1(8)
CME(1)=0.066671344308688D0
OME(2)=0ME( 1)

OME (3)=0.1439451349150581D0

OME (4)=0ME( 3)

OME (5)=0.219086362515882D0

OME (B)=0ME (5)
OME(7)=0.26925671930939600

OME (8)=0ME(7)

OME(9)=0.295524224 71475300
OME(10)=0ME (3}

AX=(X2-X11/2.D0

BX=(X2+X1)/2.0D0

AY=(Y2-Y1}/2.D0

BY=(Y2+Y1)/2.0D0

[F(AX)10,20,10

TA=(Y2-Y1)/(X2-X1)
DIST=DABS{(TA*XP-YF+Y|-TA*X1)/DSQRT(TA**2+1.00))
GO TO 30

DIST=DABS(XP-X11
SIG=(X1-XP) ¥ (Y2-YP) - (X2-XPI*(Y[-YP)
1F(SIG131,32,32

DIST=-DIST"

GD=0.D0

HD=0.00

DO 40 I=1,10

XCOCI)=AX*GI(1)+BX

YCOCIY=AY*GI (1)+BY

RA=DSQRT ( (XP-XCO( 1)) *+2+ (YP~YCO () ) %*2)
GO=GD+DLOG(1.DO0/RAI*OME( 1) *DSQRT(AX**#2+AY*%2)
HD=HD-(DIST*OME( 1) *DSART (AX**2+AY**2) /RA* %)
H=HD

G=GD

RETURN

END

SUBROUTINE INLO(X1,Y1,X2,Y2,0)

THIS SUBROUTINE COMPUTES THE VALUES OF THE DIAGONAL
ELEMENTS OF THE G MATRIX

AX=(X2-X1i/e
AY=(Ya-Yll/2

SR=SQART (AX**2+AY*%2)
G=2*SR* (ALOG(1/5R)+1}
RETURN

END

INTE
INTE
INTE
INTE
INTE
INTE
INTE
INTE
INTE
INTE
INTE
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INTE
INTE
INTE
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INTE -

INTE
INTE
INTE
INTE
INTE
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INTE

INTE

INTE
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SUBROUTINE REARR
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THIS SUBROUTINE REARRANGES THE COMPUTED SOLUTION VECTOR DF1
THE EXPANDED FORM AND REORDERS DFI AND FI VECTORS TO
AND ALL THE VALUES

10

PUT ALL THE VALUES OF THE POTENTIALS IN FI

OF

2900
3000

400
500

6500
700
1000
2000

SUBROUTINE REARR (DFI1,FIT,KODE)

DERIVATIVES IN DFI

COMMON N

REARR
REARR
REARR
REARR
REARR
REARR
REARR
REARR

COMMON /ADD!/ NRGNS,ISTART(10),IEND(10)} ,NINTFC10,10),1DC10,10,050)REARR

I ,NEQNS,NL(10) ,EFFP(10)

COMMON /BIE2/ FI1(200),F15(200) ,HWE,TWE
DIMENSION DFIC1),FITC1),KODECD)
NB=NEQNS

NP=NEQNS

DO 3000 1=1,NRGNS

DO 2300 J=1,NRGNS

IF (J.LE.T.O0R.NINTF(I,J).LE.0) GO TO 2900
NB=NB-NINTF (I ,J)

CONTINUE

CONTINUE

IR=0

10=0

DO 2000 INDU=1,NRGNS

IS=1START ( INDU)

IE=1END (INDU)
DO 1000 1=IS,1E
IR=1R+1

[0=10+1

IF (KODE(1)Y.NE.2) FLICIR)=DFI(IO)

IF (KODE(I).NE.2) GO TO 1000 .

DO 500 IND=1,NRGNS

IF (IND.LE.INDU.OR.NINTF (INDU,IND).EQ.0) GO TO 500
NINT=NINTF ( INDU, IND) -

DO 400 INDC=1,NINT

1F (I.NE.IDUINDU, IND,INDC)) GO TO 400
FIICER)Y=DFIC(IO)

NP =NP+1

NB=NB+ |

FITINP)=DFI(NB)

GO TO 1000

CONT INUE

CONT INUE

DO 700 1IND=1,NRGNS

IF (IND.GE.INDU.OR.NINTF(INDU,IND).EQ.0} GO TO 700
NINT=NINTF ( INDU, IND)

DO 600 TINDC=1,NINT

IF (1.NE.IDCINDU,IND,INDC)) GO TO 600
FITCIR)=-FII(IDCIND, INOU, INDC}) *EFFP (IND) /EFFP ({INDU)
10=10~1 ‘

GO TO 1000

CONT INUE

CONT INUE

CONTINUE

CONT INUE
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SUBROUTINE REARR

2500

REO
IN

OoOOoo0n
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c0

80
100

110
140
150
200

SUBROUTINE INTER

c
C THIS SUBROUTINE COMPUTES THE POTENTIAL VALUE FOR INTERNAL POINTS.
c

DO 2500 IND=1,NP
DFETCIND)=FITCIND)
CONTINUE

RDER F1 AND.DF]1 ARRAY TO PUT ALL THE VALUES OF THE POTENTIAL

FI AND ALL THE VALUES OF THE
DO 20 I=1,N

IF (KODE(I).EQ.2) GO TO 20
IF(KODE(I)) 20,20,10
CH=FI(1I)

FI(II=DFIC(L)

DF1(I1)=CH

CONTINUE

IF (NRGNS.LE.1) RETURN
N1=N

DO 200 I=1,NRGNS
IS=ISTART (1)

TIE=TEND(])

DO 150 J=1S,IE
IF (KODE(J).LT.2) GO 7O 150
00 40 K=1,NRGNS

IF (I.EQ.K.OR.NINTF(I,K).EQ.0) GO TO 140

IF (K.GT.I) GO TO 100
NINT=NINTF (I ,K)

D0 80 INDC=1,NINT

IF (J.NE.ID(I,K,INDC)) GO. TO
FICJ)=FI(ID(K,I,INDC))

GO TO 150

CONTINUE

GO TO 140

NINT=NINTF(I,K)

DO 110 INDC=1,NINT

IF (J.NE.IDCI,K,INDC)) GO TO
NI=Nl+1

FI1(J)=DFT(NL)

GO TO 150

CONT INUE

CONT INUE

CONT INUE

CONT INUE

RETURN

END

SUBROUTINE INTER(DFI,KODE,CX,CY,X,Y,50L]

DERIVATIVE

B0

110

IN DFI

REARR
REARR
REARR
REARR
REARR
REARR
REARR
RFEARR
REARR
REARR
REARR
REARR
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REARR
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REARR
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SUBROUTINE INTER

5 : COMMON N INTER
COMMON /ADD1/ NRGNS,ISTART(10),IENDC10) ,NMINTF(10,10),10010,10,050)INTER
1 JNEQNS  NLC10) ,EFFP(LD) INTER
COMMON /BIE2/ FI1(200),F15(200) ,HHE, THE INTER
DIMENSION DFI(1),KODE(1),CX(10,0507,CY(10,050) INTER
10 1,X01),Y(1),S0L(10,050) INTER
C INTER
DO 50 I=1,NRGNS INTER
L=NL (1} INTER
IF (L.EQ.0} GO TO 50 INTER
15 C INTER
C COMPUTE THE POTENTIAL VALUES FOR INTERNAL POINTS INTER
C . INTER
IS=ISTARTI(I) INTER
IE=TEND(D) INTER
20 DO 40 K=1,L INTER
SOL(I,KY=0. INTER
DO 30 J=1S5,1IE INTER
X1=X(JD) INTER
Yi=Y({J) INTER
25 X2=X{I1S5) INTER
Ye2=y(Is) INTER
IF (J.LT.IE) Xe=X(J+1) INTER
IF (J.LT.IE) Ye=Y(J+1) INTER
' CALL INTE(CX(I,K),CY(I,K),X1,Yl,X2,YE2,A,B) INTER
30 30 SOL(1,K)=S0L{1,K)+DFI(J)*B-FI1(J)*A INTER
40 SOL(I,K)=SDL(I,K}/(2*3.1415926) INTER
50 CONTINUE ‘ INTER
RETURN INTER
END INTER
SUBROUTINE OUTPT
1 SUBROUTINE OUTPT(XM,¥M,DFI,CX,CY,S0L) QUTPT
C QUTPT
C THIS SUBROUTINE PRINTS THE RESULTS. QUTPT
C QUTPT
5 COMMON N QUTPT
COMMON /ADD1/ NRGNS,ISTART(10),1END(10) ,NINTF(10,10),1D(10,10,050)0UTPT
1 JNEQNS,NL(10) ,EFFPCLDD OUTPT
COMMON /BIE2/ F1(200),FIS(200) ,HWE, THE QUTPT
DIMENSION XM(1),YM(1),DFI(1),CX(10,050),CY(10,0560),5S0L(10,050) QUTPT
10 WRITE(B,100) OUTPT
100 FORMAT(® *,120("'*")//1X, RESULTS'//2X, "BOUNDARY NODES" 7/ DUTPT
16X, "NODE', 12X, X", 18X,"Y" 15X, "POTENTIAL ' 65X, '"POTENTIAL DERIVATIVEQUTPT
2',3%,"PIEZOMETRIC RISE' ,4X, "NODE" /] OUTPT
600 FORMAT (1HO, REGION NO = *,13) QUTPT
15 DO 10 I=1,N QUTPT
TP=F 1 (1Y+THE OUTPT
PP=TP-YM(]) DUTPT
10 WRITE(6,200) I,XM(I),YM(I).TP,DFLLD) PP QUTPT

[ali= i N BN e K]
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30

35

SUBROUTINE QUTPT

11 CONTINUE
200 FORMAT(6X, I4,5(6X,E14.7),6X,14%)
WRITE(6,300) )
300 FORMAT(//,2X, ' INTERNAL POINTS®, /711X, "X, 18X, "Y', 14X, "POTENTIAL ",
114X, "PIEZOMETRIC RISE'/)
DO 320 INDU=1,NRGNS
WRITE (6,600) INDU
L=NL { INDU)
DO 20 K=1,L
TP=SOL ( INDU ,K) +TWE
PP=TP-CY( INDU,K)
20 WRITE(6,400)CX(INDU,K),CY (INDU,K) ,TP,PP
30 CONTINUE
400 FORMAT(4(5X,.E1%.7))
WRITE (6,500)
500 FORMAT(' ' 120( **))
RETURN -
END

QUTPT
QUTPT
QUTPT
OUTPT
QUTPT
OUTPT
QUTPT
OUTPT
OUTPT
OUTPT
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QUTPT
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OUTPT
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FACTR

SUBROUTINE FACTR (A,PER,N,IA,IER,I1AN)

THIS SUBROUTINE FACTORS THE MATRIX A INTO A PRODUCT OF AILONER
TRIANGULAR MATRIX L AND AN UPPER TRTANGULAR MATRIX U. L HAS UNIT
DITAGONAL WHICH 1S5 NOT STORED.

DIMENSION A(ILAN} ,PER{N)
DOUBLE PRECISION DP,DABS
COMPUTATION OF WEIGHTS FOR EQUILIBRATION
DO 30 I=1,N
X=0.
1J=1
DO 20 J=1,N
IF (ABS(AClJ))-X120,20,10
10 X=ABSIA(IJ))
20 1J=1J+1A
IF {X) 180,180,30
30 PER(I)=1./X
10=0
Do 170 I=1,N
IMl=1-1
IPl=1+1
IPIVOT=1
X=0.
COMPYTATION OF THE ITH COLUMN OF L
D0 80 K=I,N
Ki=10+K
BP=A(KI)
IF (i-1) 180,60,40
40 KJ=K
B0 50 J=1, M1
[J=10+J
. DP=0P-1.DO*A(KJI*AC(]J)
50 KJ=KJ+IA
A(KT1)=DP
SEARCH FOR EQUILIBRATED PIVOT
B0 IF (X-DABS(DP}*PER(K))70,80,80
70 IPIVOT=K
X=DABS{DP) *PER (K)
80 CONTINUE
IF (X)180,180,90
PERMUTATION OF ROWS IF REQUIRED
80 IfF (IPIVOT-1) 180,120,100
160 KI=IPIVOT
[J=1
0O 110 J=1,N
X=A(lJ) ‘
ACTJI=A(KD)
A(KI)=X
KI=KI+IA
110 bJ=1J+1A
PERCIPIVOT)=PER(T)
120 PERCI)=IPIVOT
IF (I1-N) 130,170,170
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SUBROUT INE FACTR

130 1J=10+1

X=A(IJ)
C COMPUTATION OF THE ITH ROW OF U
KO=10+1A

DO 160 K=I1P1,N

Ki=10+K

A(KI)=A(KI) /X
IF (I-1)18B0,160, 140

140 IJ=1

KI=K0+I
DP=A(KI}

DO 150 J=1,1IM1

KJ=K0+dJ

DP=DP-1.D0*A(1J) *A(KJ)

190 TJ=IJ+IA

A(KI)=DP
160 KO=K0+IA
170 10=10+1A

IER=D
RETURN
180 IER=3
RETURN
END

SUBROUTINE RSLMC

Qoo

SUBROUT INE RSLMC JALAF B, X,N,EPST, IER, 1A,V ,PER, IAN)
THIS SUBROUTINE SOLVES A SYSTEM OF LINEAR EQUATIONS AX=B
DIMENSION ACLAN) , AF (TAN) ,BIN) ,X(N) ,V(N) ,PER(N)

OOUBLE PRECISIQON DP
INITIALIZATION

D0=0.
[ER=0
ITE=0

DO 10 I=1,N
V(II)=B(1)
10 X(I)=0,
20 ITE=1TE+1

THE PERMUTATIONS OF ROWS OF A ARE APPLIED TO V

DO 40 1=1,N
K=PER(])

IF (K-1)30,40,30

30 Di=VI(K)
VIK)I=V(1)
V(I)=Dl1

40 CONTINUE

SOLUTICON OF THE LOWER TRIANGULAR SYSTEM

DO B0

=2 ,N
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SUBROUTINE RSLMC

IMi=1-1
DP=v (1)
IK=1
DO 50 K=t, 1Ml
DP=DP-1.DO0*AF (1K) *V(K)
50 IK=IK+IA
60 V(I1)=DP

¢ SOLUTION OF THE UPPER TRIANGULAR SYSTEM

IF (AF (1K)) 80,70,80
70 1ER=Y
GO TO 130
80 VI(N)=DP/AF (1K)
DO 100 1=2,N
IMI=N-T1+1
INF=IM1+1
DP=V(IM1)
IK=(IMI-1)*1A+IM1
D1=AF (1K)
DO S0 K=INF,N
IK=1K+1A
80 DP=DP-1.D0*AF (1K) #*V(K)
100 V(IM1)=0P/Dl
C TEST OF PRECISION
D1=0.
D2=0.
KLE=0
DO 120 I-=1
D1=D1+ABS!
D2=D2+ABS (
IF (ABS(V(
110 KLE=1
120 CONTINUE
IF (KLE)240,130,140
130 RETURN :
140 IF (ITE-1)240,160,150

tN‘
vil)
XD
[1y-

)
)
EPSI*ABS(X(1))) 120,120,110

C ITERATIONS ARE STOPPED WHEN THE NORM OF THE CORRECTION 1S MORE
C THAN HALF OF THE ONE OF THE FORMER

150 IF- (DO-2.+D1)200, 160,160
160 DO 170 I=1,N
170 X(D=X(1+V(1)
DO 190 1=1,N
DP=B(1)
IK=1 _
DO 180 K=1,N
DP=DP-1.D0*A(TK) *X (K)
180 IK=IK+IA
. 190 V(1)=DP
DO=D1
GO TO 20
200 IF(ITE-2)240,240,210
210 IF (D1-EPSI*D2)220,220,230
220 1ER=1
RETURN
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SUBROUT INE RSLMC 73/74

230 [ER=2
EPSI=D1/D2
80 RETURN
240 [ER=3
RETURN
END

OPT=1

FTN 4.8+498

83s/07/22. 15.22.53
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Mission of the Bureau of Reclamation

The Bureau of Reclamation of the U.S. Department of the Intetior is
responsible for the development and conservation of the Nation’s
water resources in the Western United States.

The Bureau's original purpose “to provige for the reclamation of arid
and semiarid lands in the West” today covers a wide range of interre-
lated functions. These include providing rnurnicipal and industrial water
supplies; hydroelectric power generation; irrigation water for agricul-
ture; water quality improvement; fload contral; river navigation, river
regulation and control; fish and wildlife enhancement: outdoor recrea-
tion; and research on water-related design, construc tion, materials,
atrospheric management, and wind and solar power,

Bureau programs most frequently are the result of close cooperation
with the U.S. Congress, other Federal agencies, States, local govarn-
ments, academic institutions, water-user organizations, and other
concerned groups.

A free pamphlet is available from the Bureau entitled “Publications
for Sale.” It describes some of the technical publications currently
available, their cost, and how to order them. The pamphiet can be
obtained upon request from the Bureau of Reclamation, Attn D-922,
P O Box 25007, Denver Federal Center, Denver CO 80225-0007.
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