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CONTRIB[~ION TO ~{E T~•[EORY OF 
FLOW IN OPEN CHA~ELS A/~ PIPES 

The £mpulse principle is derived from the fund~nental equa- 
tions of dynamics. An equation for the sloDe of the wa~er surface 
is derived and discussed for several special cases, but it is only 
valid for flat Slopes. However, it can be extended to ~reater slopes 
and can be applied in this new form to the flow in pipes. Finally, 
several examples are discussed. 

The Impulse Princi2~_£ 

ieo~lard Euler developed one of the most important prin- 
ciples in the theory of ~he flow of ~mter. ile applied the basic 
equations of dyrma~ics to an infinitesimal volu~e of a fluid whose • 
position is defined by the vector, ~, or by the corresponding xyz- 
coordinates, and he obtained the equatlonG kno~m today in hydrodynsmlcs 
as the Euler equations. 

Euler,s theory, although only applicable to the flow of a 
frictionless fluid, can easily be transferred to flow possessing 
frictional resistance. A law of dynamics, when expressed vectorlally, 
shows that, 

in which ~ = the force of gravity vector. 
R= the pressure force vector. 
~= the f~'ictional force vector. 
t = the time. 
= the ~ass. /.~ 

• ~ ,,, the velocity vector. 

This relation is evidently valid for an infinitely small elamen~ of 
vol~me,dxl, and then its fo~.~ is as follows: 
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i~ which ~'= the specific weight of the fluid• 

= the acceleration of gravity• 

if we now integrate over any suitably chosen region, B, Within the 
fluid, we obtain the impulse principle; thus 

B 
B B 

The two 
• n~egrais on the right-hand side of the equation can be 

llghte~'e'luatedof physicaldirectlYdataas external forces. ~ ~ust be considered in the 

• e~t-hand: '" side of the equationalready obtained on fluid resistance. The • 
can be further transfor~aed. Thus . 
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-:-~equently, if the first te~ is differentiated before the integra- ' tc'n is Perfo~:md, we may write 
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The total impulse, l, in the region B of the fluid is, 

. . . . , " . 

However, it can be proved* that, 

." . - . 

= $ 9 ~ .  d o 

Since by definition, 

~ d o = d . Q  

-. [ " , " 

, . . • . 

~'~here Q is the discharge per second, the ~pulse principle ass~oes 
the following form . 
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*Proof of the equation, 
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C~ + ~ (3a) 

Cart esian 

. . . . 

and b are any two vectors and e~is a unit vector. 
coordinates are used throughout. 
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Then from the tensor g~, we have 

cu b = 

iK 
We can now evaluate . . - 

in which + . 

~nd obtain 
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~Y excluding compressible fluids and flow from sources, the equation °f.centlnuity is written. 

~ ° 

{ 

i. 

:ili!: 



. .  ° . 

Therefore Gauss' equation ~bec~es - 
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Put" 

Then 

The first integral is called the impulse transport. 

.L 

~3b~ 

Equation (3bl is the most general foz~L of the impulse prln- 
ciple for the sourceless motion of an incompressible fluid. Special 
types of flow can be easily definedon the basis of this equation: • 

if ct~ =O the flow is steady. Flow over a weir or under a sluice 
cLt ' 

gate, and motion of water in reservoirs created by dams, can usually 
be considered steady. ~ 

On the other hand,..if ~c~l'=O , we have uniform motion. 

This is the case presented by the pulsations of the mess of water in 
a penstock (u;ater hammer problem). Wlth steady unifoz~ flo~.v as in a 
cnnal wlth constant cross section and slope, the external forces 
must be in equilibrium. • 

The application of the impulse principle to a problem in 
hydraulics of the most general type proceeds as follow, s: 

i. Establish the boundary of the fixed 1~eglon B, called the 
"control area." 
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2. Calculate the external forces ectlng on the fluid within 
the region, B, in other words, compute the force of gravity, 

the pressure force,~ &~ , and the frictional force, ~ . 

3. Calculate the impulse as a function of the time and form 8_~ 

3t 
4. Dete~uine the impulse transport ' . 

It must not be forgotten that the use of the impulse principle 
presupposes that either the pressure or the velocity vector is known 
as a function of the position. As ~ rule, the pressure is calculated 
knowing theveloclty distribution. It can be determined by means of 
the equation of continuity d-i~ ~ = 0 as long as no reasonable 
asstznption is possible but this often introduces considerable mathe- 
matical difficulties. 

Application of the Impulse ~ ' , .  

. t o  an Open Channe~ . ~ .  

Given the curve of the bottam, the dimensions of the cross 
section, and the discharge, Q; to find the profile of the water sur- 
face. In order to solve this problem, we place two vertic~l sections ~ 
~erpe~dicular to the axis of the canal and /k~ apart. Their areas 
are A n and An+l, respectively. 

1. The voll~e of ~ter contained between these two planes is 
the region of integration, B. 

" i . . . .  

2. Ex__t e_rnal forces. 

Force of gravityo--~le force of gravity is glven at once by 
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Pressure force.-,The force due ~o the pressure acting on 

~n is, 

and on An+ 1 is, 
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The force of the pressure on the bottom is 
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The v~rtical component of this force is_ 

o o 

'~ne horizontal component is 

Frictional force.--In order to find an expression for the 
.frictional force, we assumeL~h~he resistance law for unl- 
form steady flow con be t"z~n~ferrcd directly to nonuniform 
~ns~,=& ~owj ...... Acco~di.ng to the equation already found above , 
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in which 
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- G =  A..~ + A~,. ,  . : .  ! 
and tan ~. ~ the slope,.[. ( can be computed according to the r L " 

formulas published by a ntuaber of authors. Thus i!opf, and . 
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CR = the hydraulic radiu's computed as the ratio of area of flow 
to the wetted perimeter. Or 

~o-~(K~Io~,~- v ~- ~ v z ,  L= 

A c c o r d i n g  t o  S t r i c k l e r ' s  f o r m u l a  

- _ ~ 2 / : 3  • , ~ .  . 
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~nus F is computed from - 
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4. Im~_ulse t ran_~ort. The impulse transport is uniquely 
depondent on the areas A n and Antl. If we ass~ue ~hat the velocity 
distribution at a cross section Is known, then at section A n we have 
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Since it is not convenient to integrate, we introduce the average 
velocity.. 

Then . - - 

O . 

V - A~ 

- V . ~  A , ~  ~ ~ 

Oqx is a correction factor which takes Int:o account the nonunlfomlty 
of the. veloclty distribution over the whole cross section. It Is 
found from .... " . .  

A 

( "  ~_ 
O v~,~. o t A  .~, O( = 

• "~" A - ~  ~v ~ -  
,"k~. 

• . . . . . . .  ] 

Therefore we use I" in the follm,ring form <:, 

. - 9 A,~.  
The impulse e.quatlon beco:~es !i'i " 
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But from figure i ' " 

• + ~ T  - za ~_ - . z a  ~ ~. za x t - & - ~  =/__x ,~ 

Introducing these equalities and cancellingwe have .• 

d x + Q ~ . , . ,  ~ ~ . , . , -  O v, , . ,  

- ~ ' Z : ' ( A  .-,.,. + ,A, 

~ei 
AJ(- 9 • ' ('A _ t _ A  ' ~  X i ' z  - "-",*') ~ - ~-~ ~ t , . ~ , , ) c  p,~.3,~, 

7, 

Divide throu~h by Z~Kand let 2kX-~Oand then ne~.lect all ter~s: con- 
taining infinitesimals of the second order or higher. Then . - . . 

2 
, , - , ,v  

~--@ + ~  V + ~, .~ i , : ,  : - - -  
. . • • - - =  

(lOa) 

. - . , - , -  . " .  

Since A is a function of [z-y), v~e have the following relations . 
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~X A Ox 
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(lOb} 

The equation of continuity is 

bQ ~bx. 
: - 5 Ill} b x  ~% 

Differentiate (lOb] a[ain with respect to z and equation (Ii} with 
respsct to t and x° Then introduce (ll) into (10b). .~Iter a 
single transfor.~ation, the following expression is obtained: 

This is the general differential equation for nonuniform nonsteady 
flow, especially for wave motion, in a canal v:hose cross section 
varies in nny way. However, a general solution is not possible. 

~mall Di sturba nee s 3~ 

We select a particularly simple case of equation (12). 
Given a canal of constant cross-sectlonal area, A, and a flat 
bottom. Let Z o be the initial depth of flow. If this condition 
is disturbed at any place X, the disturbance propegatos itself as 
a wave. Vie assume further that the maxLmt~n varlatlon in depth 
is very small in comparison to the depth of flow. Then 
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and the effect of the frictional resistance can be neglected• Hence 

we obtain 

b~z. _ A ~) 2.Z. - "+ ' " "- - " 
~--E~- -~-9 ~--~ (~) 

The solution of this differential equation is 

which satisfies (15) when • 

2 

The initial conditions are the positlcn Xl~ the time tl; and the 

depth, . - 

z - ÷ , 

- •  . . 

An equal depth ;',ill occur at X~ at some later t£me, t2, Therefore 
<~, :: . 

S × t ~  " X t - -  k L # ' ~ .  1 ,~ "~.- W -. 

O~'  

X~ + Lu t:, = X z -  f ~ t =  

and + ~ -  Xl 
- "L~ - ~-t 

The dlsturb~nce ~ropa~ates itself with a velocity, w. 

disturbar, c~ occurs there is ~ velocity, Vo; in the channel, the 
velocity of travel of the ~ave is 

Vo 

/ .4 • L-., 

If before the 

. r 

(lea) 

-i 

) 

i 

• ! 

-15- 

i 

i 



~2 

,h  

-5 

• {] 

, e  

/. 

! 

S: ° 

{ 

J 

f. 

or, if the channel has a'rectangular cross section 
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With steady flow 
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and also according to {ii) 

8__OG - - 0  
6 X  

Divlsing (10b) by Ag., we have 

: 

T h i s  e q u a t i o n  can be used t o  ,compute back-~,4ter c u r v e s  4 when o~ 

is assumed constant. Also place 

b T _ _ _  .z'a_..~. 

(zs} 

~nd obtain the following relation - 

f A  z O-'( S / " 

° ,  _ 

o~ s t-E~ ~ - F  
~16) 
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which is a form sLmilar to that found by H~gen 5. The n~lerlcal ccm- 
p~:tation proceeds in the following steps: 

1. Choose a suitable Z~ 

2. Calculate A, R, and S for Z o and then detennlne ~. 
3. Find Z1 = Z o + zhV__ and repeat the process. 

A value of X is found for each corresponding value Of Z and when 
plotted give the backwater curve (fi&mre 2). Although the value of 

is about 1.06, it is usually taken as unity. If the average 
velocity, 'Q/A, is small, the followir~ relation may be introduced: 

Qse 

he result is the approximate fonnula much used in hydraulics for com- 
puting backw~ater curves, or 

~ 'cL7_  

d , . x  

Q2 

A~ ~ Qj R -'-~' q. 

Since Z = y + d' 

d.7_ _ d.~ d,. D 
J R  u,_× + ~x.  

Then 

~t 

Henc e 

d.b 
d x  

.QZ 

A ~ c~R~.~- 

d'd S 
c~x 
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Lateral inflow or outflow can be easily included in the 
case of steady f)ow. Then the discharge in the canal varies with 
X and dQ. If V, is the projection of the lateral inflow velocity 
of the inflow discharge~dQ, on the velocity in the canal , then 

This equation ~s first derlv~d by Henri Favre 6 Inhis"Contributlon 
a l'Etude des Courants Liquids, (Contributions io the Study of the 
Flow of Liquids,,), Zurich. 

Or 

Shooting and Stre~ing Flow ? 

Neglecting the friction loss, (15) becomes 

" " ' __ ) o ~ s  d ~ .  

bz_ .(cj A 3 - 
8 x  

" c_A.X 

Some general conclusions can be drawn from this equation. 

1. If the slope of the water surface is zero, the bottom 
slope must also be zero or ~ must be zero, that is the vmter is 
at rest. 

2. If the slope of the bottom is zero~ C~X ~ O I 

the slope of the water surface must be zero or 

o 

Then 

A c~ 
c~o~s ~ A ~ 
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This formula~ when C< = I , agrees with the velocity of propagation 
of small disturbances in still ~mter. 
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then 

(9 A~ - Q~ ~ s)  2 o 

A disturbance moves downstream with a velocity 

.L 

and upstream with a velocity 

~V 

The signs of the surface slope and the bottQm slope are opposite if 
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A 3 __ 

and a disturbance moves with a negative velocity 

A 
v / g - 7  - v 

! 

? 

Therefore it does not move upstream. The surface slope, therefore, 
has the same sign as the bottom slope. 

As proposed to Eehbock when 

('gA ~ ' O "~ o~ s) > o. 
the flow is said to be Streaming and when 

• :~ A 3  2 - Q a s  <o 
r~ 

? 

i 
o 

it is said to be shooting° 

In order to simplify this concept we shall consider in 
the following a cannl of rectangular cross section° The transition 
from shooting to stre~Ing is when 

'-~ne depth at this transitional velocity is called the critical depth; 
it is computed from .... . 

d c ~ -  % 5a9 

3 

k. 

and the type of flow can be called 
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Streaming flow If 
Shootlngflow if 

D> d~,- 
O<.dc,- 

If a h~mp is placed on the previous level floor of the 
c~nal aud the cross section is rectar~ular, three types of overflow 
Jets are possible. 

Case I. If (~3 Q2~S) is always positive, that is, if d > dcr, 
streaming flow persists throughout and the slope of the water surface 
and the bottom slope have opposite signs° 

Case II. If (gA3-Q2~S) Is always negative, that is, if d <dcr, 
shootin~ flow exists throu.~b.out and the slopes of the water surface 
and the bottom have the same sign (a rare condition)• 

Case III. If (-ZJ.3-Q 2~S) char~=.es sign, at the crest of the hump, 
where dy/dx ~. O, 

~nus the flow changes from a streaming to a shooting condition. 

Since the concept of a weir with a rounded crest is funds- 
mentally not far removed from that of a hump in the floor, the flow 
pattern being as In III, an att~pt can be made to develop a weir 
formula using the assumption that the critical depth takes place 
at the crest of the ~eir (Bundschu) 8. Of course such a theory is only 
roughly approximate, since the curvature of the stream lines, which 
is ~portant with thls type of weir, is neglected though thls is not 
permi~slblep as experimental results show. 

However, the curvature of the stre~ lines can be neglected 
with some Justification for very low sills, and from case IIl we ob- 
tain 
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Introducing the height, h, of the energy g~adlent above the crest of 
the weir, we have 
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With this 

~2o~) 

The situation when a rectangular canal of variable width, S, and a 
level floor (y = o) is used, is entirely analogous. 

Formula ~10a) then reads 

d . 7 _  O . z  d A  . . 

c , . - - 7  - OA a a 4 x  

: :~'i 
: ! 

% 

! ? 

-'- i "? 

A - -  Z,S 

d A  d z  ds . 
4--~ -- s.~-7 + z - & x  

:.T 

c__.4. × c t ×  

• ° • 

As before, three possible patteras of flow exist v,'hich are 
ah own i n  f l g u r e  4 .  

,! 

! 

"'| 

figure 3. However it is to be notlce~ that ~ith type I, the depth 
., decreases as the width decre~es; vath type II, the depth increases ! 
.:L; With decreasing width. For type III, either dlscharge fo~ulm (20a) 

or (20b) is applicable, since the critical depth occurs at the narrow- 
e~t section. 

In most caseo, however) when the cross section is narrowed, . . 
d~/dx and Often the friction term I/CRI.314 must be taken Into con- 
sideration.~ For the present, particularly if da/dx enters, these ' : 
~ac~ors can only be considered from an experimental standpoint. Thus 
the above an alysi s is only of theoretical value. 
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E#._tenslon to Steep Bottom Slope_s9 
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Although all of the foregoing formulas are not general, since. , 
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These patterns show a complete correspondence to those in ,~ 
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they were derived for channels of very flat slope, they possess, 
however, at least same practical significance for open chamnels, For 
steep slopes, the force 'of friction must be resolved .into horizont.al 
and vertical c~_~ponents, This means that the ~ressure on the bottom~ 
ropresented by the pressure head h (E), is no longer equal to the 
depth of flow as given by the i equation of the profile of the cross 
section p (E). Since the friction acts parellel to the direction 
if flow, h ( ~ ) is best determir~d in the fol~owlng man~er: 

s ,S 

0 

i. 

As can be easily shown, the pressure distribution aloLg a vertical 
i s  t n e m g u l a r ,  h o , , e v e r ,  t h e  p r e s s u r e  a t  t h e  b o t t m  m u s t  be  s e t  e q u a l  

t o  - 
° 

Considering this, we can easily obtainusing equation (lOa} as a basis 

C t 4 '  C O  (j) 
.. A9 (23) 

~ne equati, ow can be found frc~ 

J.-z-fr~.2L CO 0c5~i~C0 or- 5 
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Equation (16) for computing the backwater and drop-down curves has 
the following new fo~m: 

~ ¢ - o ~  
~ ' X  ~ _ -  . \ O z  . . : . 

O ~ S ~  4 .  I 

Similar to equation (le), we have 

' v~ - 
c o-"B ~ r \ 

(26) 

Application to Pipe Lines 

The equations derived above are also appllcable to pipe 
lines. The following simplifications are now apparent: 

1. A depends uniquely on X and is indepezdent of Z. 

2. Q is uniquely a function of the tiz~e, t, and is not depen- . 

dent on X. With this, 

~Q:__ = f (£)  ~ t  

Equation (2~) can now be writtem 

• ~-~ A~;% + 
+ 

c~R ' ' ~  ~os--~ 

~x 
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or 
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a t  ae~s ~ 9 a x  c ~  ~ 8 co~ ¢ [ a x  + - ! - 
C 

__ ~ 7 _  :' 

The cross-sectional aree, a, no~.aal to ei:d the velocity, v, parallel ] 
to the axis of the pipe are introduced in place of #~ and V. Also dx ~ 
Is replaced by an el~nent of the center line of the pipe, dl (figure 
5) • Then 

c~ 

d . ×  

i" 

L i ~ 

L " 

Since now V,~, and o( and, therefore, the entire left-hand side of i: 
equation (23a), are independent of Z, xe integrate with respect to 
X, or rather ~ , and obtain " 

- t -  

7_ 

"V ~ ct 2 , "zgc R,..~ ~ - - z 

The third and fourth terms are combined and the sum integrated by 
parts. Thus 

~ v  z ao~ d . . l . L . [ v  z d ~  "2 -  'az 4- 

"~ (27) 
- i z z- Jv " 
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This expression represents the loss caused by a change in the veloei%y " 

distribution, 

Since Z represents the sum of the elevation and pressure 
~-eads, it may be replaced by 

Z-- hg+ h p  

where h, - elevation head measured from any conveniently chosen 
datum p~ane and hl~ - the pressure head (figure 5). 

The final e~uatlon is 

"2. 

-~Q ~ ~ c~zv~ c:z,V, ~ 

I 

?_ 

S v ~ ctZ 

I 

- h . ~ ,  + h~-h~-o 

This ex~reszion can be reduced to the ordinary Bernoulli equation 
by putting O( ~ l, thus 

J 2 

v~ _ v, ÷ + P2 hP, 

(e8} 

(2~) -. 

- j  

According to the so-called~power law 10, the value of (X ~ 1.02 - 
lO0 

Example s 
/- [ • 

The application of the computation of backwater curves ~ 
t;~s been given above. It will no~ be shown tha~ the weir formula 
c~:: also be derived fret. the general e~uations. It is evident that 
Guch a fo~mla will not contain an accurate value of the ~eir coeffl- 
~ien~. Equation (20bl, glvan above, for the case of a r~ctangula~ 

_ h a 
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A triangular weir can be treated in a slu, ilar fashion (figure 6) 
We have . . 

-~'~:~ - C O  o ~ s  = o 

A . = ( D  t~-~ ,3)O = Ib 

$ = 2 . 0  t~--.-~'~ i':-g 
V t A o ~  (g 

-2 9 "2c~ s ~,~ D ~.I~ 

2 

D 

The head upstream from the weir can in Practice be replaced by 

,~ith this 

I q : - D  + X/2 

u t o ~  

_ ~c~ 4- ~ 

H c ~ + l  

IDa, 3 9 e.~A f3-2Q'~c~ D ~-a(cs 

9 O ~- c~_K"-;3 
2 ~  

_ ~ ~-c~ ~- 
- z.z(~_~)-% h ~ t~-~ 
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c l  

To simplify, we place 

.;.h ,.n 

14 S" 
LI- d,. ~ 

G ~ -"r ,)S OC = j G .  
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The ordir~ry form of the equation is 

The value of 
ed weir with ~ - .¢5 o ,  i% is 0 . 5 £ .  

' r  

Two further examples taken from pipe-line problems a r e  now 
:~ considered, the first beirA~ a sudden expansion in a pipe (figure 7), 

The loss of head, h w , can be calculated fr~n equation (22), thu~ ! 

A l s o  

.! 

r- 

must be determined sxperimerJtally. For a sharp-crest- 'ii 

ii 

O-z v 

CL 

At the transition from the mnaller pipe to the larger pipe, the flow 
is similar to an expanding jet in ~hich the velocity, w, would be 

7 

present. ~ithin this transition ~>| end is easily computed from 

O( -- 
~ Q  v 

k 

.q 

| 

In order to integrate, we replace the sudden transition by e very ' ,,~ 
short transitional cone, " !i:: :i, 

4 ! 
Within the li~..its of this cone, the inte~;ral 

2 ( c ~  v c~.v. d /. 
J d l  

is easily computed, thus 

2. ,,:.z. 20,. 

, d,'~ .,, v 
I 

v d v  d~" -- S urdv d.~ g-f- 
! 
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On account of the shortness of the transition, it is permissible to 
p l a c e  • 

Then " 

~oc 

ell : v, =: vza" 
I i 

Downstream from cross section Z, 

d,.',,,/ 
",/= Con~(:. " - - -  0 

.° 

and when this Is so, the integl.al is also equal to zero. 

h w is easily c~.sputed now from 

I "2. _ _  ! 

Equation (~:8) is evidently a~plicable for establishing 
the influence of the closin~ time of valves or gates on water ,hara,~er, 
as well as for Investi~atin~ other nonsteady types of flow in 
pipe lines. Let the problem be to find Q as a function of the 
t~e when the dlschar~e gate at the end of a pipe llne .is suddenly 
opened• The trivial solution is obtained that ~ rapidly approaches 
the value 

i i, 
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Since this problem has little practical value, it will be considered 
only briefly here. 

} 

If we assume that O~ is not subject to any.varlatlon through- 
out the whole length of the pipe line, we have according to equation 

Position 1 is at the level of the reservoir feeding the pipe llne~ i 
and position 2 IS at the ~ate at the end of the pipe llne. ~e in- 
tegrals 

?_ 

| 

• z c  " 

I 

can be eva3uated for any pipe llne to be investigated. A nonh~o- 
ceneous differential equation of the second degree is obtained whose 
solution is best obtained by methods of approzlmatlon (Ridge Kuita, 
"lherationzverfahren., '~tethod of Iteration.,) 

This method of solution is to be reco~nended for accurate 
investigations because the coefficient of the term, ~2 is a function 
of the tlme if the cross-sectlonal area, al, chan&es as a conse- 
quence of the action of the gate mechanlsm. In many cases this de- 
pendence cannot be represented analytically in a simple way. The 
nest unfavorable case is frequently that in which this cross section 
decrmases from a maximum value of zero In a definite time, Ts. Then 
vJhen the &mte is closed, Q = 0. T s is called the openi~E or closing 
~Dne. ~ The difference bet;:'een the total pressure and that pressure 
obtained with steady flow is called the d~.namlc pressure. It mnounts 
to 

: , L 

? 

o 
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For an approximation, we generally asstt~e that Q decreases 
linearly from its maximum value to zero. in the time, Ts, or 

! 

i 5 "~ 

• r~ 

Z 

The relative pressure head is 

If a is constant and L is the total length of the plpe llae, it 
follows that 

In concluslon, it ~iould be mentioned that the basic 
equation of Idlievl proceeds ~u~ediately fr~a equation (2~), thus 

5v. _ 8h 

providing kllievi,s asst~ptions are included; namely, constant cross- 
sectional area of the pipe, and frictionless flew. 

" Starting with the fundamental equations of dyn~llcs, a for- 
wmla for the Impulse principle was obtained for the slope of the 
water surface in an open chanuel as a function of the cross-sectional 
area of the channel, the bottc~ slope, ~he discharge, and, in certain 
circuw.stances, the velocity distribution at a c~oss section. A pro- 
cedure for c~mputing backwater curves was derived in terms of these 
factors. 
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The two types of flow, shooting and streaming, were dis- 
cussed in terms of this equatlon after neglecting all losses. Several 
general conclusions relative to the general types of flow over humps 
in the bottom of a canal and through contracted canals were also 
discussed. Next the equation was extended to channels of steep slo~s. 
The differential equation obtained thereby can be Integratedfor 

• closed pipe lines, giving the so-called general Bernoulll equation, 
Atthe conclusion several examples were analyzed. 
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