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. . Units Used 

T HE FORMULAS to be described and elaborated 
upon in this monograph apply to certain 
important cases of ground-water movement. 

The formulas are expressed in a notation which 
has been selected, on the basis of experience, to 
serve the needs of this subject. Units are speci- 
fied in the notation as ,a means of identifying 
physical dimensions, but !,he formulas are written 
in consistent form and v d l ,  therefore, apply in 

unit does not agree with the chosen unit of time. 
Graphs appearing in the text have been prepared 

by using dimensionless parameters. Suc.h param- 
eters are often composed of a group of quantities 
which have units but they are so arranged that the 
parameter, as a whole, has none. Using such 
parameters is advantageous in that they permit 
the construction of generalized charts which can be 
used with any system of consistent units. 

any consistent system of units. A system of 
units is consistent when :no more than one unit Notation and Definition of Terms 

-- 

of a kind is permitted. I~~ general, these formulas The following notation is used throughout the 
involve only the units of length and time. The text: 
use of consistent units ~iecures the advantages a a well or drain radius (feet) 
of simplicity and flexibility. b an outer radius (feet) 

An example of a consistent unit system based 
upon the units of length in feet and time in 

G= (f) -0.5798 (dimensionless) 
seconds is: 

Length: feet 
~ i m e  : seconds 
Flow: cubic feet per second 
Permeability: feet pe:r second 
Drawdown : feet 
Thickness of aquifer: feet 
Radius: feet 

This system, for .example, would become incon- 
sistent if flow were expressed in gallons per minute, 
because the gallon unit of volume does not agree 
with the chosen unit of length and the minute 

D the initial saturated thickness of 
an aquifer (feet) 

D, an average saturated thickness 
(feet) 

d the vertical distance between the 
centerline of a drain and an 
impermeable barrier or a sat- 
urated thickness below some 
maintained minimuni water 
level (feet) 

1 



GROUND-WATER MOVEMENT 

e=2.7!828+. The bhse of the nat- Ko(x), Kl(x) modified Bessel's functions, of 
ural system of logarithms orders zero and one, of the pa- 

f a pumphg rate distributed over 
afi hrea (ft per sec) 

F a fiow of ground water through o, 

unit wiclth of aquifer (ft2 per 
ssc) 

a flow to a drtrein, per unit length 
el &.p' ~ n n ,  es b i t e d  by a lucd 
resistance (it2 per sec) 

E a value of F at  2=0 (ft2per sec) 

B(~?) s Emeticn o: tha parameter 
1' 

h, and H,  

h 

' ~ ~ I ~ ~ ' I .  

-) - The iiischarga of a. 
\ W .  

less 
tra.nsient and maximum ampli- 

;udes of reservcir fluctuation 
(feet) 

iii the Dquit-Forchheimer id eali- 
:sation, a drakeble depth of 
wa'cer iii! al: aquifer (fee;). In  
<,he Laplace idssliaation: a pres- 
rrure in exzess of hydrostatic, ex- 
yxessaa ix terms of the pressure 
tics t o  a ucit depth oi  water 

drainable depths as used in the 
method of Brooks 

an inieiai drainsble depth (feet) 
an infiltration rate (ft per sec) 
a modified Bessel function of the 

parameter x of zero order and 
the first kind 

Bessel's functions, of order zero 
rmd one, of the parameter x (di- 
~nensionless) (Notation of Refer- 
ence 4) 

permeabiiity uf an aquifer (ft per 
e ec) 

K D  the ~rarlsrnissibility of ti11 aqruf er 
(ft2 per sec) 

, LC 
m and n 

rameter x of the second kind 
(dimensionless) 

the distance between parallel drains 
(feet) 

the length of a leaky canal (feet) 
consecutive whole numbers used 

in specifying the terms of a 
series 

the thickness of a horizontal bed 
or member which offers a high 
resistance to the flow of ground 
water (feet) 

the permeability of a bed which 
offers a high resistance to the 
flow of ground water (ft per 
sec) 

the part of t.he drainable water 
which remains in the aquifer a t  
the time t (dimensionless) 

a portion of the flow of a well which 
is taken from an identified 
source (ft3 per sec) 

a flow- per unit length of a line 
source or a flow to a unit length 
of a drain (ft2 per sec) 

a radius (feet) 
a total return flow up to a time t 

per unit width of aquifer (feet2) 
an increment of storage capacity 

contributed by bank storage 
per unit length of bank (feet2) 

drawdown (feet) 
for a flowing artesian well, the 

initial pressure reduction a t  the 
well when flow began, expressed 
in feet of water 

time (seconds) 
an equivalent time. See Figure 10 

(seconds) 
a time between irrigations (sec- 

onds) 
a time during which a flow to a 

drain is limited by a local resist- 
ance (seconds) 

a period (seconds) 
a dimensionless variable 

h U=- (dimensionless) H 



UNITS USED 

V voids ratio. The ratio of drain- 
able or fillable voids to the total 
volume (dimensionless) 

W a factor in the equation U= WY 
(W is dimensionless) 

x and y rectangular coordinates (ft) 
x a symbol used to indicate a dimen- 

sionless parameter 
Y o ( )  Y )  Bessel's functions of the zero and 

f i s t  ordtrs of the second kind 
(Notation of Reference 4) 

Y a factor in the equation U= WY 
(Y is dirr~ensionless) 

y,, y,,, y, drainable clepths ss used in the 
drain spacing procedure of 
Dumm, 'rapp, and Moody 

y, an initial drainable depth midway 
between drains 

y,, a drainable depth at  the point mid- 
way between drains at  the time t 

y, an initial clrainable depth at the 
point x 

K D  
a = - the diffilsivity (ft2 per sec) v 
Pn a root of a Bessel's equation, de- 

fined where used. The dimen- 
1 

sions of if are - 
feet 

2n 1 o= - - 
T sec 

u= - (dimensionless) 
2?rKD2 

t (dimensionless) 

S 
p= ( , (dimensionless) 

2nKD 

p= r J$D (dimensionless) 

x - (dimensionless) -z 
Uo(Pnr) = Jo(Pnr)Yo!Pna) - Jo(Bna,)yo(P~) 

r= 3.14159 + (dimensionless) 
r ( ~ )  = a  gamma function of the parameter 

x (dimensionless) 

Definitions 

Aquifer A water-bearing bed or stratum. 

Diff usivity K D  A quantity a=- used with v 
the Dupuit-Forchheimer ideal- 
ization to specify the t,ransient 
behavior of an aquifer. 

Transmissivity A quantity expressed in the 
Dupuit-Forchheimer idealiza- 
tion as the product KD. It 
defines the ability of an aqui- 
fer to transmit ground water 
under the influence of a 
gradient. 

Exponential A tabulated function defined by 
integral the integral 

S:f du 

Probability A tabulated function defined by 
integral the integral 

71 =(&? t (dimensionless) 



Introduction 

T HIS MONOGRAPH presents a~lalyses of a variety 
of ground-water problems encountered in 
the planning and development of Bureau of 

Reclamation water resources projects in the 
western United States. Thest: problems include 
analysis of depletions caused by pumping, esti- 
mates of seepages, computation of return flows, 
analysis of drawdown, and estimates of per- 
meabilities for selection of purnp capacities. I n  
analyzing these and other grourtd-water problems, 
theoretical sr.ssurnpt,ions and l i ~ ~ i t a t i o ~ s  Ere czt- 
lined and specific problems are computed through 
the use of charts, tables, and the solution of 
equations derived from the theoretical consid- 
erations. 

Many of the problems preseni,ed were originally 
analyzed to serve an immediate need and were 
made available to interested B~lreau of Reclama- 
tion engineers through infor.ma1 memoranda. 
I n  1960, these memoranda were compiled, edited, 
and issued as Technical Memorandum No. 657, 
"Studies of Ground-Water Movement," to assist 
the Bureau's engineering staff m its analyses of 
ground-water problems. To exi;end the coverage 
of situations encoutltered on Eleclamation proj- 
ects, to assure an orderly presentation and to 
provide solutions for a wide vruiety of ground- 
water conditions, this monograph includes the 
information contained in the technical memoran- 

dum, suitably revised and rearranged, and in 
addition, includes accounts of other data and 
analyses prepared both by Bureau of Reclamation 
engineers and by others. 

The solutions to the problems described are 
generally based upon the Dupuit-Forchheimer 
idealization, which involves the assumption that 
the gradient a t  the water table is effective through 
the entire saturated thickness of an unconfined 
aquifer. This assumption is justified on theoreti- 
c d  g r s ~ n d s  0 ~ 1 y  if the gradients are smal.ll as 
compared to unity. I t  is equivalent to an as- 
sumption that the vertical gradients can be 
neglected. 

An alternative approach can be based upon the 
concept that, for each element of volume below 
the water table, the flows of water into and out of 
i t  must be equal. This formulation yields a dif- 
ferential equation of the Laplace type. 

These two formulations will be dealt with in 
detail subsequently, but  i t  will be of interest here 
to consider the relative merits of these two ap- 
proaches. The Laplace formulation, while ad- 
mittedly the more general of the two, suffers from 
the limitations imposed by serious mathematical 
difficulties. On -the other hand, if the Dupuit- 
Forchheimer idealization is used and an additional 
simplification is introduced, by neglecting the 

5 



6 GROUND-WATER MOVEMENT 

effect of draw-down on the areas available for 
flow of ground water, the differential equations 

I obtained become identical in form with those 
which have long been studied in the theory of heat 
conduction solids. There is, therefore, a great 
tactical advantage in making this latter choice, 
since the wealtli of resources available to this older 
discipline becomes immediately available for ex- 
ploitation in the new field. These advantages are 
bought at  a price, however, since the simplifica- 
tions introduced appear, from a theoretical stand- 
point, to limit the validity of the solutions that are 
obtained to those cases where the gradients are 

small compared to unity and the changes of 
ground-water level are small compared to the orig- 
inal saturated depth in the aquifer. Under these 
conditions it  is fair to raise the question as to how 
well the solutions obtained will hold up under 
conditions met in the field. Some comparisons 
of observed and computed values are presented 
later to permit the reader to judge for himself the 
effect of these simplifications. 

The cases presented herein represent transient 
condjtions. In  general, stea.dy states are con- 
sidered only where they represent a terminal 
condition. 



Analytical Formulations 

D IFFERENTIAL EQUATIONS provide a basis for 
the development of formulas to account 
for the flow of ground water. These 

equations express the requirement that if the 
flows into and out of an e1emr:nt of aquifer volume 
are different, then there must be a corresponding 
loss or accumulation of wa,ter in the element. 
The differential equations, therefore, express tbe 
important fundamental fact that water volumes 
are conserved. As a consequence, it will be found 
that  even though the differentid equations may 
fail to account for some fr~ctors known to be 

content above its own level. The rakio of 
the drainable or fillable volume to the gross 
volume is V. 

(3) All flow takes place below the water 
table. 

(4) The aquifer rests upon an impermeable 
horizontal bed. 

The Dupuit-Forchheimer idealization a.pplies 
the water-table gradient to the entire saturated 
depth of the aquifer. The continuity condition 
is developed as follows. The notation is shown 
in Figure 1. 

. . . . present, they do impose ul~on the solutions a 
---Ground surface 

rigid accounting for water volumes. This is 
true without exception so long as the solutions 

. . 
are exact in the mathematical sense. All of 
the solutions presented herein are of this type 
unless otherwise explicitly noted. The budgetary 
requirement expressed by the differential equa- 
tion will be referred to hereafter as the continuity 
condition. The following cor~ditions are assumed 
to prevail: 

(1) The aquifer is ho:mogeneous and iso- 
tropic and has a permeability K. 

(2) When the water table descends, it 
leaves the aquifer drained above it and 

I 

when i t  rises, it fills the aquifer to its own 
Impermeable barrier-' 

level but contributes nothGg to the water FIGURE 1.-Aquifer geometry. 

7 
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8 GROUND-WATER MOVEMENT 1 1 
The flow F through a unit width and the height Linearized in this way, Formulas (3), (4), 
h  at the distance x  from the origin is and (5) are identical in form with the differential 

equations of heat conduction in solids. The 
a h  F=Kh -. (1) great advantage of the Dupuit-Forchheimer 
a x  formulation is a result of this correspondence, 

which makes the resources of the older develop- 
The continuity cc~ndition is 

ment available for computation of ground-water 

a h  movements. g d x  d t = V z  dt dx. 
Bx The Laplace formulation deals &th the con- 

dition of continuity of an infinitesimal unit of 
By substitution and rearrangement volume dx d y  d z  where x, y, and z are rectangular 

coordinates. In this treatment i t  will be assumed 
that the coordinates x and y lie in a horizontal 
plane and the z coordinate is' vertical and positive 
in the upward direction. The condition that the 

If, as an approximation, the quantity h  ah is flow into the element of volume must equal the ax 
bh flow out of i t  is 

replaced by D - rtnd 
a x  

KD 
f f = ~ l  (2) or 

the above relation reduces to 

If y  represents a  coordinate whose direction is 
horizontal and norinal to that of x  and if there 

bh are gradients -, the above relation takes the form 
b y  

These are the linearized forms of the Dupuit- 
Forchheimer continuity equations. I t  may be 
noted that the simplification introduced above 
introduces the restriction that h  must be small 
compared to D. 

In radially symmetrical cases, the differential 
equation takes the form* 

where h represents the departure of the pressures 
from some stable hydrostatic cod~guration. I t  is 
expressed in terms of the pressure due to a unit 
depth of water. Equation (6) is of the Laplace 
form. Many solutions are available for steady 
state cases, but in the free water table transient 
cases, where the moving upper boundary must 
be accounted for, serious mathematical difficulties 
are encountered. I t  is the difficulty with the 
moving boundary which has kept this formulation 
from coming into general use. If solutions of 
Equation (6) meeting the appropriate initial and 
boundary conditions could be found, the vertical 
gradient wodd be accounted for and the limita- 
tions imposed by the Dupuit-Forchheimer idealiza- 
tion would not appear. 

If the flow is radially symmetrical this continuity 
equation takes the form 

'In some cases it is expedierit to work in terms of the quantity h and in The treatment of specific cases can now be 
other cases the quantity 8 .  R~?asons lor each choice will become clear when 
a specific case is being considered. attempted. 
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Radially Symmetrical Cases 

Pumped well-confined aquijer. The case of a 
well in a confined aquifer may be met in an artesian 
area where the pressures have declined to the 
point where pumps must be used. The aquifer 
of permeability K and thickness D is confined 
above and below between impermeable formations. 
The pump maintains the flow Q. The condition 
of continuity is 

A solution which satisfies; the continuity re- 
quirement and the conditions 

s=O when t = O  flor r>0, 

s +O when r--+ 03 , (8) 
is 

Q m e - U 2  

s=- [ -- du.  
2rKD. , 21 

The integral which appears in Equation (9) 
is a form of the exponential integral. Values of 
this function have been tabulated. In  terms of 
the exponential integral function its value is 

Values of 

JG 

can be obtained from Table 1 or they crtn be 
computed from the series 

In this series x represents an argument for which 
the function is to be evaluated. I n  the series 
(11) the error committed by stopping at any term 
is less than the first term omitted. When used 
for finding values to use in Equation (9), 

r 
z=--- This integral can also be evaluated by 

&at 
use of the tabulated exponential ihtegral as 

as noted previously 

Pumped well-uneonfned aquifer. A we13 that 
is to be pumped from an unconfined aquifer 
occurs commonly. The aquifer rests on an 
impermeable bed and the saturated portion of the 
aquifer terminates a t  the top in a water tJable. 
Such conditions are often found, for example, in 
the alluvial sediments of river valleys. 

The aquifer in these instances is composed of 
sands and gravels deposited by the stream. The 
stream runs over the surface of the aquifer and 
is in contact with the ground water stored in it. 
A moment's consideration will show that Formula 
(9) can be used to provide an approximate treat- 
ment for this case if the drawdown s is everywhere 

9 
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small comparedl to D. This is the customary second and is pumped a t  the rate of 500 gallons 
treatment for the water-table case. per minute. The original saturated depth is 7 0  

feet and the ratio of drainable voids to the gross 
Example 1 volume of the sediments is T7=0.20. Compute 

A well of 2 feet effective diameter is sunk into the drawdown a t  radii 50 and 100 feet from the well 
an aquifer of permeability K=0.0020 foot per after i t  has been pumped for a period of 7 2  hours. 

TABLE 1.-Values of the 
e-"l 

integral Ir du jor given values oj the parameter 
- ,- 

J2Z 



RADIALLY SYMMETRICAL CASES 

TABLE 1.-Values of ,!he integral Jm ") du jor given values oj the parameter -$= -Continued 
r u  - at - 
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the integral Jr  $ du j o i  giv6 
- 
G t  

!n values o j  the 



RADIALLY SYMMETRICAL CASES 

r 
TABLE 1.-Values oj the integral du for @en values of the parameter =-Continued 

J4at  
, G t  

0.53600 
0.53700 
0.53800 
0.53900 
0.54000 
0.54100 
0.54200 
0.54300 
0.54400 
0.54500 
0.54600 
0.54700 
0.54800 
0.54900 
0.55000 
0.55100 
0.55200 
0.55300 
0.55400 
0.55500 
0.55600 
0.55700 
0.55800 
0.55900 
0.56000 
0.56100 
0.56200 
0.56300 
C!. 564C!0 
0.56500 
0.56600 
0.56700 
0.56800 
0.56900 
0.57000 
0.57100 
0.57200 
0.57300 
0.57400 
0.57500 
0.57600 
0.57700 
0.57800 
0.57900 
0.58000 
0.58100 
0.58200 
0.58300 
0.58400 
0.58500 
0.58600 
0.58700 
0.58800 
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RADIALLY SYMMETR!CAL CASES 

- e - ~ Z  
TABLE 1.-T7alusr o j  the integial - d u  for given vo,bea o.f the parameter s - c o n t i n u e d  

r u  - 1 4 4  

*'Gt 

T - 
,/G 

I 
1. 01300 1 
1.. 01400 ! 
1. 01500 1 
1. 01682 
1. 0179C I 

1. OlYOO I 

1. 02330 
1.02?00 
1. 022'0 
1.02390 
1. 02400 
1. 02500 
1. 02633 
1. 02700 ( 
1. 02800 ( 
1. 02900 1 

1. 03000 
1. 03100 

1. 03400 
1. 03500 
1. 03600 
1. 03700 
1. 03800 
1. 03900 
1.04000 
1. 04100 
i. 04200 
I.. 043 00 
1. 04400 
I.. 04500 
1. 04600 
I. 04700 
1.. 04.800 
1. 0490g I 
1. 050G.O 
1. 05100 1 
1.05200 
i.. 05300 
i. 05400 1 
1. 05500 / 
1. 05690 I 
1. 05700 
1.. 05800 
1. 05900 
1. 06000 
1. 06iOO 
1. 06200 
1. 06300 
1. 06400 1 
1. ,06500 





RADIALLY SYMMETRICAL CASES 

9 of the integral Jr  $ du for given valuer of the parameter i-~ontinued 
- - t'4at 
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e - ~ Z  
TABLE 1.-Values of the integral - du f ~ r  given ualczs of the para mete^ $=--continued 

J_I- U at 

442 

c; d".' 

V'4Tt 



RADIALLY SYMMETRICAL CASES 

TABLE 1.-Values of the integral j: $ du for given values of the parameter ontinued d 4 ~ r t - ~  - 
1G 
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TABLE 1.-Values of the integral L$ du for given values of the parameter i-~ontinued 
,/4nt 

&t 
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T A B L E  1.-Values o j  the integral J * du /or given values of the parameter $=-Continued 
r u  - at 

diz 



RADIALLY SYMMETRICAL CASES 

e-u= r 
TAB=. 1.-Values of the integral - du /or given values of the paramelei -- ontinued 

r u - JZ.Z-~ 

2.60300 
2.60400 
2.60500 
2.60600 
2.60700 
2.60800 
2.60900 
2.61000 
2.61100 
2.61200 
2.61300 
2.61400 
2.61500 
2.61600 
2.61700 
2.61800 
2.61900 
2.62000 
2. 62100 
2.62200 
'2. 62300 
'2. 62400 
'2. 62500 
2.62600 
2.62700 
2. 62800 
2,62900 
2. 63000 
!Z. 63100 
2. 63200 
2. 63300 
:!. 63400 
:!. 63500 
:!. 63600 
:!. 63700 
:!. 63800 
i!. 63900 
2.64000 
2.64100 
2,. 64200 
2.64300 
2.64400 
2.64500 
2.64600 
2.64700 
2.64800 
2.64900 
2.65000 
2.65100 
2.65200 
2.65300 
2.65400 
2.65500 
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TABLE 1.-Values 41 the inieyal J: 7' du for given values of the pararneler -L--~ontinued 4Gt - 
dzz 

Solution. Since 1 cubic foot per second is 
equivalent to 448.8 gallons per minute, 

500 Q=-=1.1141 ft3 per sec, 
448.8 

* (0'0020)(70)=0.70 f t Z  per a=-= v 0.2 

. t= (72) (3,600) =259,200 seconds. 

The given data are now ~ I I  consistent units, 
since only foot and second units are involved. 

Q - 1.1141 ]..I141 =--=I2665 feet, -- (6.2832) (0.0020)(70) 0.87965 

I&= J(4) (0.70) (259,200)= d725,760=851.9 feet, 

From Table 1, for 

Then the computed drawdowns are 

a t  r1=50 feet, s - (2.5484)=3.23 feet; '-2aK~ 

(1.8611)=2.36 feet. a t  r,= 100 feet, sz=- 2aKD 

These are the required drawdowns. 
Readings are sometimes made in observation 

wells adjacent to a pumped well of this sort for 
the purpose of finding the permeability of the 
aquifer. Many authorities state that the well 
should be pumped long enough for the draw- 
downs to stabilize before taking readings for such 
purposes. Strictly speaking, the drawdowns 
never stabilize, in this case, as the level of the 
water table continues to sink as long as the well 
is pumped. A better criterion for determining 
when the observed drawdowns can be used for 
permeability determinations is, therefore, needed. 

When simultaneous readings of the drawdowns 
sl and s2 are taken in observation wells located a t  
distances r1 and r2 from the pumped well, with 
rz>r:, t-he permeability may be compl~ted from 
the expression 

provided that : 
ri-6 - 
4at 

is small compared to 

When observations are made a t  the times tl and tz, 
with t2>t1, of the drawdowns s, and ss in the 
same well, the permeability may be computed 
from the relation 
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provided that : 

is small compared to 
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These values are deduced from the series (11) by  
noting the relationships among the terms when x 
is small compared to -loge x. 

Example P 
Estimate the permeability K by using the 

drawdowns computed in the previous example as 
observed drawdowns. 

Solution. Since the data from two observation 
wells are to bt! used, Formula (12) is appropriate. 

I t  will &st be desirable to test the suitability 
of these data. Since simultaneous readings from 
two wells are to be used, Formula (13) is appro- 
priate. Then 

2 log. e)= 1.3863. 

Then since the first of these values, 0.01033, is 
small compared to the second, 1.3863, note 
Formula (13), i t  is concluded that the conditions 
favor a close determination of K. From Formula 
(12) 

SI-~2:=3.224-2.357=0.867, 
and 

K= ( ~ ~ ~ ~ ~ ~ ~ ~ ) ( ~ ~ 6 ~ ~ ~ ~ ) ~ ~ 0 0 0 0 2 0 2  ft,sec. 
0.867 

The advantage of using the computed drawdowns 
is now apparent, since the vdue of K=0.0020 used 
in the first example should be recovered. This 
expectation is very nearly realized. 

FIGURE 2.-Drawdowns around a pumped well in an unconfined aquijer where the draz~down i s  .not small when compared to 
Lhe original sa tura~edde~ th .  
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Pumped well--uncon$ned tzquifer-large draw- 
downs. The case where the clrawdowns s are not 
small when compared with the original saturated 
depth D has been treated by (:lover and Bittinger 
(Reference 11). Based upon considerations de- 
scribed in this reference, they obtain a second ap- 
proximation which accounts for the effect of draw- 
down on the area available for the flow of ground 
water. The results of the;. investigation are 
shown on Figure 2. Numerical values are given 
in Table 2 which was computed for this mono- 
graph. In addition to the quantity (QI2aKD) 
which appears in the first approximation solution 
of Formula (9), a new parameter u=(Q/2aKD2) 
appears. The quantity 2rKLI2 is the quantity of 
water which would flow across a cylindrical area 
of radius D and height D under the action of a 
unit gradient. The parameter u, therefore, relates 
the pumping rate to the capacity of the aquifer 
to transmit ground water. The ratio (s/D) is also 
shown on this chart. The second approximation 
is given by the formula 

Formulas 9 and 16 are developed upon a basis 
which implies that the flow of the well is all taken 
from storage. It should be espected, therefore, 
that the drawdown at  the wcell will ultimately 
reach the base cf the snuifer. 'i 1fi.e:: this happens, 
the original pumping rate can no longer be main- 
tained because the aquifer cannot supply water as 
fast as the pump takes it out. In Formula (16) 
this point is reached if, with r=a, the integral 
attains such a value as will make the quantity 
under the radical equal to zero When this hap- 
pens it will be found that s=D at  r=a. 

To avoid overstepping this limitation Formula 
(16) should not be used if 

Computation of drawdowns near a well by use of Formula (16) 
based o n  data of example 1 

Computed from the series 01 Formula (ll), log. 1,000=6.90776. 
*' First approximation. 
*" Second approximation. 

The drawdowns s near the well are sensitive 
to the pumping rate. An increase of the pumping 
rate to 1,000 gallons per minute would give a 
drawdown a t  r=1.0 foot which is 16.36 feet by 
the first approximation but 18.91 by the second 
approximation. A pumping rate of 2,000 gallons 
per minute would cause a drawdown of 32.7 feet 
by the first approximation but 52.1 feet by the 
second approximation. 

Example 3 where 

This second approximation may be used to 
estimate the drawdowns near the well under the 
conditions of Example 1. The computation may 
be arranged as shown below. 

The Development of Boulton 

An analysis of the drawdowns produced in an 
unconfined aquifer by pumping a t  a constant rate, 
based upon the Laplace formulation, is described 
in Reference (2). The drawdown s is given by an 
expression of the form 
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and Vo is a frmction developed in the paper. A 
table of values of Vo(p, T) is given for values of T 

between 0.05 and 5.00 and of p between 0.2 and 
1.5. Some simplifications introduced make the 
function Vo(p, :r) approximate and correction curves 
are presented to improve the treatment in certain 
ranges of the variable T. For 7>5 his solution 
agrees with the exponential integral within 3 per- 
cent. I t  is this writer's understanding that this 
result would also hold for Formula (9). For val- 
ues of T between 0.05 and 5, certain restrictions on 
Q and p sboulcl be observed. When T is less than 
0.05 the correction curves may be used. 

With the conditions of Example 1, i t  will be 
found that r==37.0. This is in the range where 
7>5 and the solution should agree closely with 
that given by the first approximation, Formula 
(9). 

This is the only case known to this writer where 
a. tmnsient co~~dit~ion has been h a t t e d  under t.he 
Laplace formulation. The close agreement ob- 
tained between formulas developed under the 
Laplace and Dupuit-Forchheimer idealizations for 
this case is rearsuring. 

Determination of Aquifer Properties 

A convenient means of deriving aquifer con- 
stants from test data makes use of a characteristic 
of logarithmic scales. With such scales a shift 
represents muli,iplication, and this is the principle 
used in the construction of slide rules. Suppose a 
curve is plotted on graph paper which has log- 
arithmic scales in both directions. If the ordinates 
of this curve are all multiplied by some constant 
and the curve is replotted, i t  will be found to be 
shifted vertically on the chart but will be un- 
changed in shape. A horizontal shift will be ob- 
served if all of the abscissas are multiplied by some 
constant. The important feature to be borne in 
mind is that the shape of the curve remains un- 
changed. 

sionless quantities. For reference purposes, this 
chart will be called the master chart. An index 
point is selected on the master chart. I t  will be 
convenient to use the point where the ordinate and 
abscissa are both unity. An example of such a 
chart is shown on Figure 2. 

The test data can now be plotted on a similar 
sheet of graph paper. I n  this case the ordinate 

T 
can be s and the abscissa -. The master chart is 

-\lt 
now laid over this plot and adjusted, while keeping 
the axis parallel, until the plotted points coincide 
with one of the curves of the master chart. The 
index point of the master chart will now fall on 
some point on the chart showing the observations. 

T T1 On this chart read the value of s=s, and -=- -\lt dtl 
for the point on which the index falls. For this 
point: 

and 

Since the flow of the well &is  a known quantity, 
the transmissibility KD and the diffusion constant 
a can be determined. If the observed drawdowns 
are large enough, the values of 6 may also be found. 
The curve for 6=0 on the master chart is a plot of 
Formula (9). If the observed drawdowns s are 
small compared to IS) the plo.tted points from all 
observation wells a t  all times should fall on this 
curve. The process of making a determination of 
aquifer properties by this method is shown in the 
following example. 

Example 4 
To put this characteristic to use for determination It will be of interest to use the second approfi- 

of aquifer properties, (I6) is fint plotted mation drawdowns for radii of 1, 10, 50, and 100 
on a sheet of transparent logarithmic graph paper. feet as assumed observed drawdowns for the 

S 
For this plot the ordinate will be purpose of illustrating the use of the graphical 

method of determining the aquifer properties, 
T since the aquifer properties from which they were 

abscissa will be -. JGi Both of these are dimen- obtained are already known. 
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From Examples 1 and 3 and Table 1 with 

t=259,200 seconds, or 72 hours, 

T T S - 
( f e e t )  fi ( f e e t )  

1 0.00196 8.72 
10 0.01964 5.48 
50 0.09821 3.31 

100 0.19642 2.40 

When these points are plot1,ed with the draw- 
down s in feet against r/Jt and the adjustment is 
made on the master chart in the manner described, 
the i'ndex of the master chart is found to fall on 
the point 

The Flowing Artesian Well  

When a well penetrates a confined a.quifer of 
thickness D and permeability K which is under 
sufficient pressure to raise wa.ter above the top of 
the casing, a flowing artesian well can be obtcined. 
To treat this case a solution of Equation (5 )  must 
be sought which satisfies the conditions 

s=O when t=O for r>a  
s=so when r = a  for t>O. (19) 

A solution for the case of the infinitely extended 
aquifer, as required to meet these conditions, is 
not available, but it  is possible to coilstruct a 
chart for the infinite case by using the solution for 
a finite case haring an outer boundary at the 
radius b. The solution for this finite case is 

T n= m 

s=1.26 z= 
where 

then 
Uo(Bnr)=Jo(Pnr)Yo(Pna)-Jo(Bna)Yo(~nr) (21) 

1.26 
and 

7r 

and 1 ------- 

KD= 
1.1141 

(6.2832) (1.26) 
=0.1407 ft2/sec The symbol 8, represents the roots of 

with D=70 ft 

also with 

The values which should have been recovered 
are: KD=O. 1400 ft2/sec, K=0.0020 ft/sec, a =0.70 
ft2/sec, and V=0.20. In  the process described, 
the difference of units is absorbed into the factor 
represented by the scale shift. 

This arrangement adapts the solution to repre- 
sent the case where an impermeable barrier exists 
at the radius r=b. If a ratio of b to a is chosen i t  
will be found that a large number of terms are re- 
quired to compute the pattern for values of t near 
zero and also that, after the lapse of a cert,ain 
amount of time, the value of s a t  r=b will begin to 
depart from zero. If a series of vdues of the b/a 
ratio is chosen, the use of an excessive number of 
terms can be avoided and, when s begins to depart 
from zero at the radius b, a new b/a ratio can be 
chosen and the process repeated. I n  this way the 
computations can be extended to as great an outer 
radius as desired. A chart ~ r e ~ a r e d  for the infinite 
case, based in part on computations made by f,his 
process, is included as Figure 3. For values of the 

parameter @ > 1,000, the curves were computed 
a 

by an approximate method to be described later. 

*A form developed by 11'. T. Moody 
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FIGURE 3.-Pressure reduction caused by  a flowing arlenian well. 

The flow of an artesian well diminishes with 
time. The varia;tion of flow with time has been 
investigated for the artesian case. Table 3, which 
is based upon the data of References (18)) (19), and 

(20), contains -values of the function G 

The flow of the well is given in terms of this func- 
tion by an expression of the form, 

A series of the tabular values were checked by 
use of the formnla 

Possession of this outflow function permits the 
construction of a simple approximate formula for 
obtaining values of s for values of the parameter 

'5 greater than 1.000. This formula is 
a 

J4rrt 
The curves of Figure 3 for values of - greater a 
than 1,000 were computed by use of this relation. 

Apuijer with a semipermeable upper con$ning 
bed. This development relates to the case of a 
well of infinitesimal radius drawing water a t  the 
rate Q from an aquifer of thickness D, perme- 
ability K, and coefficient of storage V. The 
aquifer has an upper confining bed of thickness m 
and permeability p, with 1,he permeability p 
being small compared to the permeability K. 
Before pumping begias, the water table lies above 
the upper confining bed as shown in Figure 4, 
and the water pressures are continuous through 
the upper confining bed and the aquifer. After 
pumping begins, the pressure in the aquifer is 
diminished by the amount s, and a gradient is 
created which drives water vertically downward 
through the upper confining bed, and horizontally 
through the aquifer. Initially, water to supply 
the well comes in part from storage and in part 
from seepage through the upper confining bed. 
The drawdowns eventually stabilize when the 
pressures in the aquifer become sufficiently 1011- to 
gupply the entire flow of the well by  seepage 
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+ 
Impermeable ----' 

FII:URE 4.-HTe'e21 with a semipermeable confinzng bed. 

ihruugh the upper confining bed. This case 
possesses a definite terminal state. I t  occurs 
whenever the upper conking bed is sufficiently 
permeable to contribute significantly to the flow 
of the well. I t  appears to occur frequently in 
glaciated regions where aquifers of sand are over- 
lain by beds of glacial till. 

This case has been treated by Jacob, Reference 
(17). The continuity condition is 

The solution given by Jacob for the finite case 
where the drawdown s is maintained a t  zero a t  
the radius b can be put in the form 

where Jo(Bnp) represents the zero order Be~sel 
functions of the parameter (Bnp) of the first kind. 

lo(.) and KO(.) represent the zero order modified 
Bessel functions of the parameter (.) of the first 
and second kinds, respectively, and : 

pn are the roots of J0(Pnpe) =O 

n = m  2 J ~ ( P , ~ ) ~ - ( ~ + B ; ) ?  The first term in the right-hand member of 

KO(pe) L(~)]-z p:z(pnpe)(l+g) Equation (28) represents the final steady state 
drawdoun. In the infinite case, this reduces to 
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TABLE 3.-Values of G 

4Gt -- 
a 
-- 

0. 73 
0. 74 
0. 75 
0. 76 
0. 77 
0.78 
0. 79 
0. 80 
0. 81 
0. 82 
0. 83 
0. 84 
0. 85 
0. 86 
0. 87 
0. 88 
0. 80 
0. 90 
0. 91 
0.92 
0. 93 
0. 94 
0. 95 
0.96 
0. 97 
0. 98 
0. 99 
1. 00 
1. 01 
1. 02 
1. 03 
i. 04 
1. 05 
1. 06 
1. 07 
1. 08 
:L. 09 
I .  10 
:I. 20 
11. 30 

' 1.40 
1. 50 
1. 60 
I.. 70 
I.. 80 
1.. 90 
2. 00 
2. 10 
2. 20 
2. 30 
2.40 
2.50 
2. 60 
2.70 
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TABLE 3.-Values of G 
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The infinite case can be treated by the computa- 
tion procedure described for the case of the flow- 
ing artesian well. A chart prepared in this way 
for the present case is shown in Figure 5. 

When many wells are located in an area and 
have been pumped long enough to have reached 
the final steady state, as given by Formula (30), 
their zones of influence overlap and i t  becomes of 
interest to determine the influence of the distrib- 
uted pumping on the drawdown a t  an individual 
well. We may idealize this situation by assuming 
that the punkping is distributed with complete 
uniformity over the area and that the individual 
well is located a t  the center of a circular tract of 
outer radius li. With a distributed pumping of 
amount f, per unit of area, the drawdown due to 
the distributed pumping is given by 

where, in this case also 

and Kl(p) represents the modified Bessel function 
of the first order and second kind. Values of this 
function can be obtained from tables or from 
Figure 6. 

Then the value of s given by Equation (31) 
represents the amount which should be added to 
the drawdowns computed for an individual well 
to account for the effect of other wells in the area. 

Flow in O n e  Direction Only 
In  this section the flows of ground water in one 

direction only 11411 be considered. A number of 
important cases are of this type. These will in- 
clude, among others, the cases of flows to parallel 
drains, return flows from irrigated tracts, canal 
leakage, and bank storage. 

lain by a ,semi- permeable bed 

I 

0.0 02 0.00 5 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5 .O 

P 

FIGURE 5.-Drawdown caused by pumpiny a well with a semiper.tt~euble confinzng bed. 
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FIGURE 6.- Values  of KO (z) and  K, (z) . 
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L 

FIGURE 7.- Water table conjigurations produced by parallel drains.  
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The solutions presented in the following para- Then the differential Equation (35) takes the form 
graphs are based upon the Dupuit-Forchheimex 
idealization. 

bU g (u g)=%. (39) 
Parallel drains. A solution of Equation (3) 

which satisfies the conditions: A solution of this equation is 

h=O when x=0 for 2>0 
where W is determined from the relation 

h=O when x=L for t>0 " wdw 
h=H for O<x<L when t=O (33) (41) 

4 n = m  e ' n?r h=H- C -- sin - x. (34) 
T n-1, 3. 5, etc. n L 

A plot of this function is shown in Figure 7. 
Because of the limitations imposed by the Dupuit- 
Forchheimex idealization, the solution will be 
appropriate if H is small compared to d and if d is 
small compared to L. The notation is shown on 
Figure 8. 

The part p, of the drainable water which still 
remains in the ground a t  the time t can be obtained 
by integrating the above expression with respect 
t o  x. Then 

r hdz 

where 

and Y is given by* 

A plot of this solution is shown on Figure 9. 
A comparison of computations made on the 

basis of Expressions (34) and (38) indicates that if 

is used to compute a diffusion constant of the form 

The  result of this integration i ~ j  

? z Z r M  

(45) 

8 n = m  e 
Pl -7  C 7 , ~ .  (36) Expression (34) may be used as a reasonable 

?r a=l, 2, 5 approximation for ail depths of drains. 
A plot of this function is show11 on Figure 8.  

Because of the limitations on the solution of 
Expression (34) i t  will be of inherest to consider a 
development for the limiting case where the drains 
are placed on the barrier. For this development 
the  origin is placed a t  one of the drains. The 
continuity condition is 

Le t  H represent the value of h a t  z=L/2 when 
t=O, and let 

h u=p 

The Method of Brooks 

To obtain an improved treatment for cases 
where H is not small compared to dl R. Brooks 
(5) has used the Poincare-Lighthill-Kuo method to 
treat the nonlinear form of Equation (3).  He has 
also obtained a second approximation of the type 
described by Haushild and &use (14). 'This 
second approximation is convenient t o  use because 
i t  is expressed in terms of the first appr~ximat~ion. 
If h, represents the first approximation and hb the 
second approximation and the notation is other- 
wise as used herein, this second approximation 
takes the form 

'It has teen brought to the attention of this writer by Marlnus Maasland 

(3s) that the solution described above had been obtained previously by J.  
Doussinesq (3). 
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Droin-, 

Para l le l  dra ins 
(Consistent units) 

0 0.2 0.4 0.6 0.8 I .O 1.2 1.4 

/ Y E )  
F I G U R E  8.-Part o j  drainable volume remaining. 



40 GROUND-WATER MOVEMENT 

FIGURE 9.-Water table con$gurations produced if the drains are on the barrier. 

h h2 
First approximation -2 and second ~zpprozimation - as computed from formulas (34)' and (46) .  Position of the water table H H 

midway between drains. 

Tlme (days) h sg* 
H  2 H  

For one day of t1=86,400 seconds ~\=0.017280. L 

'Values of L / H o  read irom fig. 2. 
"Computed from fonnula 
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I n  Brook's development the origin is taken at a 

point (3 above the level of the drains. This 

position of the origin should be kept clearly in 
mind when Porrnula (46) is used. 

As an example of the use of these formulas, the 
drawdowns a t  the point midway between drains 
will be computed for a case where H=d. 

Example 

Compute the irate of sinking of the water table 
midway between drains if the following conditions 
prevail : 

H=10 feet 
d=10 feet 
L=500 feet 
K=0.0005 foot/second 
v=0.15 

Do= d+- )=15 feet ( ?  

The computed rlesults are shown on page 40. 
A comparison of observed values of (h/H) and 

values computed from the second approximation 
is shown by Brooks (5) for the ratio (H/d)= 1.08. 
A good correlation is shown, indicating that the 
second approximrttion gives good results for values 
of (Hid) in the rrtnge between zero and one. 

Drain Spacing Formula 

In  the series o~f Formula (34) it will be found 
that the higher order terms die away rapidly, 
leaving the first term to represent nearly all of 
the computed value after the drainage has pro- 
ceeded only a short time. This characteristic 
was employed in a paper by Dumm (8) to develop 
a drain spacing formula. When only the first 
term of the series remains, the resulting expression 
may be solved for. the drain spacing L in the form 

where: 

L represents the drain spacing 
K permeability 
t i  time between irrigations 
yo vertical distance between the draintile and 

the maximum permissible water-table 
level 

y, difference in elevation between the draintile 
and the water table midway between 
drains at the end of the period between 
irrigations 

d depth of the impermeable layer below the 
level of the draintile 

With the permissible height of the water table 
above the level of the drains and the drainable 
depth ccntributed by deep percolation from each 
irrigation known, the ratio (y,/y,) at the point 
midway between drains can be fixed. This value 
can then be used in Formula (47) to make a direct 
determination of the drain spacing. 

The spacing obtained in this way will be such 
that the deep percolation from each irrigation will 
be drained away by the time the next irrigation,is 
applied. The spacings given by this formula have 
been compared with the field performance of drain- 
age systems by Lee D. Dumm and he finds that, 
in some cases at least, the winter drainout m a y  
make sufficient storage space available so that the 
drains are never required to dispose of the entire 
drainable increment between irrigations at any 
time during the summer irrigation period. I n  
such cases adequate drainage may be provided by 
drains installed at wider spacings than are indicated 
by Formula (47). 

Computation of Flow to the Drains 

The rate of flow of ground water to drains can 
be estimated by differentiating Equation (34) 
with respect to x to find the gradient and applying 
these to the transmissibility. The result obtained 
by this process is shown on Figure 11. A peculiar 
difficulty arises here. Formula (34) is developed 
on the Dupuit-Forschheirner basis, which is valid 
so long as the gradients are small compared to 
unity. At the drain, at x=O or x=L, and a t  times 
near zero, the gradients approach infinity. I t  is 
obvious that the limitations imposed by the 
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Dupuit-Forschheimer idealiza-tion have been ex- 
ceeded and that the very high flow rates iniplied 
by this formula for the early times do not need to 
be taken seriously. There is generally a local 
resistance a t  the drain, due to convergence of flow, 
and this factor alone will limit the initial flow to 
moderate rates. 

On the basis that the flow q, converges radially 
through a quadrant from an outer radius d to an 
inner radius a the local resistance can be approxi- 
mated by the expression 

where: 

h, represents the head required to drive the 
flow q through the restricted area adjacent 
to the drain 

a represents the effective drain radius 
ql represents the flow to a unit length of drain 

from one side 
d the distance from the drain to the barrier and 

K the permeability. 
This limitation of the flow can be recognized by 

truncating the top of the graph and moving the 
remainder to the right a suffici~ent distance so that 
all of the flow is accounted for. Some modifica- 
tions of this type are shown on Figure 11. These 
curves are constructed on the basis that the limit- 
ing flow FL prevails for a t i~ne  tL such that the 
tot.&! flow out to the t h e  tL wc!u!d be the same as 
would have entered the drain if no local restrictions 
were present when the flow ha'd dropped to FL. 

The effect of a local resistarlce which will limit 
the flow to a unit length of a drain, from each side, 
to the finite value FL, when the drain is inundated 
to a depth H a t  the beginning of a drainage cycle, 
may be accounted for, approximately, in the fol- 
lowing way: 

The flow to a drain, F, in the absence of a local 
resistance, would be given by Formula (36) and 
would plot as shown by the solid line of Fig- 
ure 10. Let i t  now be supposed that a local 
resistance limits the flow to the finite value FL. 
The total amount of water to be drained away 
will be properly represented if a time tL is deter- 
mined so that the flow quantity FLtL is the same 
as that which would have drabned out in the time 
t ,  if the local resistance had been absent, and the 
solid curve is shifted to the right to the position 
of the dashed curve. The shaded area of Figure 

10 represents the volume of water discharged up 
to the time t ,  in the absence of a local resistance. 

The early stages of a drainage cycle may be 
idealized as a semi-infinite case to which For- 
mula (58) applies. This idealization will be ap- 
propriate until the effect of the drain begins to 
be felt a t  the point midway between drains. 
With this idealization, the volume discharged to 
the drain is given by Formula (61) and the re- 
lation described above can be expressed in the 
form 

The right-hand member of this expression is 
an evaluation of the volume of flow represented 
by the shaded area of Figure 10. By making use 
of the relation 

and by multiplying the numerator and denomina- 
tor of the right-hand member by L2 followed by a 
multiplication of both sides by 4, the expression 
can be put in the form 

or, by rearrangement 

FIGURE 10.-Flow to a drain from one side. 
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As an example of the use of this relation choose total volume of water to be drained away will b e  

an ordinate F ---5.0 and read from the chart properly accounted for. i"yH- I t  remains to determine whether the limitations 
of Figure 11. of the idealization used have been exceeded. T h e  

(%)=0.052. effect of the drain will begin to be felt at  the point 
midway between drains when, approximately 

Then 

2 * = ~ = 0 . 2 2 8  L 

and 

If the curve of Figure 10 is now shifted to the 
F -  right until i t  passes through the point 

4a t  5.0 and -=0.103, an approximation to the actual 
2 

drainage perforniance will be obtained and the 

4a te  
The value read for L, was 0.052. This is less 

than 0.0625 and i t  is concluded that  the above 
computation is valid. 

I t  can be concluded, therefore, tha t  the actual 
drainage performance will be represented b y  

out to (%)=0.103 and by the shifted 
KDH (-A 

curve, as represented by  the dashed line, for all 
4at greater values of 7. L 

(9) 
FIGURE 11.-Flow to a drain front one side as limited by  a local resistance due to convergence. 
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The Dumm, Tapp, Moody procedure, described 
in the next section, ignores the high initial rates 
which may prevail for a brief ,period following each 
irrigation. Drainage systems so designed may 
have the drainage rates teniporarily liinited by 
the drain capacity but this will not prevent an 
effective perform.ance, as a re:ference to Figure 11 

FL will show, since the -- values of real ('y) 
systems will generally be of the order of 30. 

'The Methods of Dumm, TaF,p, and Moody 

The methods of these investigations were 
developed to provide an expeditious procedure 
for estimating drain spacings and for estimating 
the flows to be carried by drains. I t  was realized 
that  cases would occur where the drains would 
have to be placed near the br~rrier and it was de- 
sired to make the treatment of such cases as 
eff ectibe as possible. The following considerations 
provide the fundamental basis for these develop- 
ments. 

(1) While the first irrigation in a new area or 
the first irrigation of the season in an older area 
that  has been previously irrigated may yield a 
nearly uniform drainable depth, such as is postu- 
lated in the development of Formula (34), ap- 
plication of a succession of irrigations will develop 
a ground-water mound with a rounded profile. 
rnL l u e  height of this ~lioiiild will be greatest at the 
point midway between the drains. 

(2) A study of a number of observed profiles 
indicates that the shape of the mound can be well 
represented by the fourth-degree parabola. 

A solution of Equation (3) which has this configu- 
ration a t  time zero is 

A plot of this profile is shown on Figure 12. 
(3) A flow to a drain from one side can be esti- 

mated approximately from the gradients derived 
from Formula (51). After sufficient time has 
elapsed so that only the first term remains, this 
is found to be 

where y,, represents the value of y a t  z=L/2  a t  
the time t. 

(4) Computations are based on the depth of 
water over the drains at the point midway between 
the drains (y,,) and on the basis that the two 
drains are a t  the same elevation. 

(5) Each computation of the sinking of the 
water table during an interval between irrigations 
is made on the basis of a D, value appropriate a t  
the beginning of the interval. The winter drain- 
out period may be split into a few intervals, when 
the drains are near the barrier, in order to permit 
corrections to be made in the D, value even though 
no irrigation or precipitation may be applied. 

(6) The principle of superposition is not used. 
Each computation makes a new beginning. 

(7) Drain spacings are determined by cut-and- 
try procedure. By use of Formula (47), or from 
other considerations, a trial drain spacing is ee- 
lected. This is then checked by the computation 
procedure described above, carrying the computa- 
tions over a period of several years, if necessary, 
to evaluate the buildup of the ground-water niound 
by the contributions from previous irrigations. 
The drain spacing which will hold the rise of the 

Wofer fable 
pro f i le  ----,-, 

At the point midway between drains, this takes 1 Level o f  droins---., 
the form i. Y 

& 

!' ------. x- ----" 
n-?L (nz-;) 

~..-..--------------------------- 2 

&-192 C - (-137- e ' L 1  
Yco ?r3 n=1,3,6, . . . n5 FIGURE 12.-Wder table profile used as  a basis for the 

, (53 q=f~ Dumm, Tapp,  and Moody procedure. 
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water table within the prescribed limits a t  the end 
of the last of a succession of irrigation seasons is 
accepted. 

(8) When the drain is placed on or very near 
the barrier, Formula (41) as represented by Chart 
9 is used. The flow to the drain from one side is 
then taken as 

d 
(9) Where -- 1 0 . 1  the computations are 

l/c 0 

made on the bassis that the drain is on the barrier. 
(10) If the depth to thme barrier is greater than 

L/4 the comput~~tions are made on the basis that  
d= L/4. 

A worked example is shown below. 

A field in neecl of drainage has a barrier 28 feet 
below the snrfsce of the ground. Drains are to 
be installed a t  a depth of 8 feet, and i t  is desired 
\ to  keep the water table a t  least 4 feet below the 
'ground surface a t  all times. The permeability of 
bhe soil is 5 inches per hour and the voids ratio 
kppropriate for drainage is 0.15. Deep percola- 
{ion $om each irrigation is estimated to be 1 inch 
of water. An early season snowmelt will add a 

0 . p  slmilar amount. I t  is assumed that increments 
of recharge will occur on the following dates: 

Dralnable Tlme Interval 
Source of recharge 1 Date / i ~ ~ g z t  1 (days) (hours) 

Inch and hour units will be used as a basis for 
the computations to illustrate the use of con- 
sistent units. Then 

Snouymelt ----------.- 
First irrigation- -. - - - -  
Second irrigation- - - - - 
Third irrigation- - - - - -  
Fourth irrigation- - .__ 

Fifth irrigation-'------ 
Sixth irrigation,:-- - - -  

Totals - - - - - -  - - -  

K = 5  inches per hour 

*A value consistent with Boussinesq's development would be 
(1.7247)~h: 

g =-. The formula with the Factor 2 has an empirical basis but 
L 

acwrds well with the available observations. It may be conceded that, in 
practice, the axis of the dn%h is generally above the barrier. 

d=240 inches 
V=0.15 (dimensionless). 

Apr. 22 
June 6 
July 1 
July 21 
Aug. 4 
Aug. 18 
Sept. 1 

- - - - - - - - -  

The depth of ground water produced by each 
1 

6. 67 
6. 67 
6. 67 
6. 67 
6. 67 
6. 67 
6. 67 

46. 69 

increment reaching the water table is - - 
0.;5-6.67 

inches. After the drainage system has been in 
operation for a period of years a proper drain 
spacing would permit the ground water to rise t o  
the allowable limit a t  the time of the last irrigation 
of the season. B y  starting with such a ground- 
water position the computations can be limited to  
a single year. The following computation is made 
by the methods of Dumm, Tapp, and Moody. 

A trial spacing of 1,200 feet proves to be too 
short and a trial spacing of 1,600 feet proves to  
be too wide. By  plotting the computed water- 
table levels on cross section paper and making a 
linear interpolation, it  is indicated that a spacing of 
about 1,400 feet should be suitable. The compu- 
Gation for this spacing is shown beiow. The com- 
puted position of the water table after the Sep- 
tember 1 irrigation is found to be 49.37 inches. 
The desired value is 48 inches. 

L =  16,800 inches (1,400 feet) 
L2=282,240,000 inches2 
K 
-=33.333. v 

The computation for the 1,400-foot spacing will 
be checked by superposition to illustrate the opera- 
tion of this method, and to bring out certain 
limitations of these procedures. I n  the previous 
computation a new D, value was computed a t  each 
step and the computation proceeded one step a t  
a time. I n  the computation to follow the D, value 
will be taken as 240 inches or 20 feet. The cor- 
responding a value will be 

The effect contributed by each increment a t  the 
end of the irrigation season will be computed and 
the results added. The (h/H) values are read from 
Figure 7 for (x/L) =0.5. 

Check by superposition. 

L=  16,800 inches= 1,400 feet 
L2=282,240,000 
a=8,000 in.2 per hr 

a/L2= (28.345) (l/hr) 
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Time 1 l i t  (inches) ye. 

September 1, 1960 
April 22, 1961 
June 6, 1961 
July 1, 1961 . . . . . . . . . . . . . . . . . . . . . .  
July 21, 1961 . . . . . . . . . . . . . . . . . . . . .  
August 4, 1961 - - - - - - - - - - - - - - - - - - -  
August 18, 1961 --------------.--- 
September 1, 1961 - - - - - - - - - - - - - - - -  - 

D,= ( d + F )  

(inches) 

Time 
Time 

September 1,1960- - ..----------- 
April 22, 1961 - - - - - - - - - - - - - - - - - -  
June 6, 1961- - - - - - - - - - - - - - -__ - - - -  
July 1, 1961 - - - - - - - - - - - - - - - - - - -  
July 21, 1961 - - - - - - - - - _ - - - - - - - -  
A u g u s t 4 , 1 9 6 1 - _ _ _ _ _ - - - _ _ _ - - _ - -  
August 18, 1961 - - - - - - - -  - - - - - - - -  
September 1, 1961 - - - - - - - - - - - - - -  

Comparison 

A comparison of these results indicates a differ- 
ence of 49.37-45.66=3.71 inches in ihe computed 
height of the ground water a t  the end of the 
irrigation season. The anakytical work for the 
superposition method is based upon the assump- 
tions that  the added increments of ground water 
are uniform in depth over the drain spacing L and 
tha t  the drain holds the water table to its own 
level a t  the drain. Since the superposition com- 
putation is based upon a saturated depth of only 
240 inches (20 feet) available for the flow of ground 
water and the 48-inch depth initial increment is 
treated as uniform over the width L between 
drains, the computed rise of 45.66 inches should 
be an overestimate unless some fault can be found 
with the assumptions upon which the method is 
based. The assumption of a uniform ground- 
water increment arising from deep percolation 
from an application of irrigation water seems 
reasonable enough but the boundary condition 
may be questioned on the basis; that  there may be, 
and generally is, a local resista:nce to flow near the 

drain which is not accounted for in the analytical 
development leading to Formula (34). This local 
resistance comes from the convergence of flow 
cear the drein. 0~ this b8sis it mzJn b e  ccnceded 
that  the computed rise is not necessarily too high. 

The Dumm, Tapp, and Moody procedure may 
introduce some errors because of di5culty with 
initial conditions. If the fourth-degree parabola 
does truly represent the ground-water profiles, 
then no trouble can actually arise from this source. 
But i t  is found that if the winter drainout period 
is broken into a number of steps to permit a more 
accurate representation of the saturated depth, the 
computed depths increase with the number of 
steps. A moderate change of this sort should be 
expected but  the magnitude of the computed in- 
crease indicates that  another factor is present. 
The difficulty can be traced to the initial condi- 
tions. The curve of y,, versus time is flat near t = O  
and i t  can be seen that if the number of steps in the 
winter drainout period were progressively in- 
creased, the computations would soon begin to in- 
dicate that  there was no drainout a t  d. The 
process of starting over with each irrigation may 
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introduce a small error of this kind into each com- 
putation because of an imperfect representation of 
the initial conditions. Replacement of the fourth- 
degree parabola with a sinusoidal variation, as 
represented by the first term of the series of For- 
mula (34), could be expected to cure the trouble 
encountered in the winter drainout period but, 
if the computations were based upon the depth 
midway between drains the amount of irrigation 
water to be drained away would be underestimated 
and the computed rises would be too low. The 
fourth-degree parabola, therefore, appears as a 
compromise between conflicting requirements. 
Its general adequacy is supported by comparisons 
with field obwavations on the performance of 
operating drainage systems. The superposition 
procedure works well in this case, but it  would run 
into difficulties jf the drains were near the barrier. 

Canal Seepage: 

Values of the function are given on Table 4. 
When the canal is in a river valley, the leakage 

which reaches the water table may ultimately 
find its way back to the river. The pattern of 
the return flow will be given by Equation (66) 
since the leakage from each element of length of 
the canal can be considered as a source which 
would behave as a recharge well. This formula 
is appropriate if all of the leakage does return to 
the river. If the canal parallels the river for some 
distance LC then the total leakage in the reach 
will be Q=qlLc. This is the Q value to be used 
in Equation (66). 

Example 

A canal leaks at the rate of l-cubic-foot-per- 
second per mile of length and parallels a river a t  a 
distance of 2 miles. The aquifer properties are: 

If a canal leaks at the rate pl per unit length, 
the height h of the mound built up at the time t K=0.0005 foot Per second 
will be given by the expression: D=70 feet KD=0.035 - 

V=0.17 
PI' I/; sm du h=- 

2n K D  z u2 (55) a=KD-  
- ----0.206 foot2 per second. 
6 v 

where x represents the distance from the canal, 
which is assumed to have a straight alinement. Estimate the height of the mound under the  

At x=O this expression becomes indeterminate canal, the height a t  a distance of 1 mile from the 

and is to be replaced by the relation: canal, and the return flow to the river if the canal 
parallels the river for 15 miles and has been in 

q144nrat. &=- (56) operation for 6 months. 
h K D  

The leakage is assumed to flow away from the -0.0001894 ft2 per sec q1=5,280- 
canal on both sides so that the flow (f) goes each L= (5,280) (15) =79,200 feet 
way. Formda (55) is a solution of Equation (3) Q=ql Lc=(0.0001894)(79,200)=15 ft3 per sec 
and is subject to the limitations imposed by the t= 15,768,000 seconds. 
simplification introduced in the development of 
this differential equation. At the canal, where x=O, 

The integral appearing in this equation can be 
expressed in terrns of tabulated- functions in the /+,------ ql.j40rt (0.0001894)~~(0.206)(15,768,000) 
form: h K D  - h(0.035) 1.77245 

=5.51 feet. 

This is the rise a t  the center of the canal. At 

1 x=5,280 feet 
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From Table 4 returns again to the reservoir. Similar changes 

and 

=0.098 feet. 

This is the rise of the wai;er table 1 mile from 
the canal if the river is absent. 

The  values computed in this way represent the 
heights of the mound if the aquifer extended to 
great distances on either side of the canal. The 
presence of the river can be accounted for by the 
use of an image. I n  this case i t  may be idealized 
as a pumped drain paralleling the river a t  a dis- 
tance of 2 miles on the side opposite to the canal 
and having an inflow rate equal to the seepage 
rate of the canal. With this arrangement, the 
level of the water table a t  the river will be repre- 
sented as unchanged. This will include in the 
computations a recognition of the ability of the 
river to control water-table levels along its course. 

The point 1 mile from the canal is 3 miles from 
2 

the drain. Then for the im.age, ---- &- ( 3 )  (1.46) 

accompany rising and falling stream stages. 
A solution of Equation (3) subject to the 

conditions, 

when x=0 h=O for t>0, 

when t=O h=H for x>0, is 

The integral which appears here is the tabulated 
"Probability Integral." The notation is as shown 
on Figure 13. 

The flow F toward the reservoir a t  x is: 

The flow out of the bank a t  x=O a t  the time t is: 

HKD Fo=-. 
,Gt 

The total flow from the bank into the reservoir 
up to the time t is: 

=4.38. A reference to Table 4 will show that  
t he  effect of the image will be negligibly small a t  

(61) 

this time. This will be true for the point under 
the  canal also. The estimated heights therefore When the reservoir goes through a yearly cycle 
remain a t  5.51 feet and 0.098 foot a t  the canal of filling and emptying, there is an amount of 
and 1 from the canal, respectively. The water which flows into the banks when the reser- 
return flow to the river is from Formula (66) on voir level is high and returns again when the level 
the  basis that  all of the leakage returns to the is low. If a reservoir goes through a regular 
river. cycle of filling and emptying year after year the 

T h e  minus sign indicates that the flow is toward 
the  river. 

Bank Storage 

When a reservoir is filled there is a flow of 
water into the banks and when the reservoir is 
emptied some of the water stored in the banks FIGURE 13.-Bank storage conditions. 
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m e-"2 I' 
dzt-Continued TABLE 4.-Values of \i;S -;i du for given ualues of the parameter - 

- 
G t  

-- 
I .m &j, Zdt' 

-- 
v'1Z -- 
0. 63045 
0. 62785 
0. 62525 
0. 62267 
0. 62010 
0. 61754 
Cl. 61500 
0. 61246 
0. 60993 
0. 60742 
0. 60492 
01. 60242 
0.59994 
0.59747 
(I. 59501 
0.59255 
0.59012 
0.58768 
0.58527 
0. 58286 
0.58046 
0.57807 
0. 57569 
0.57333 
0.57097 
0.56862 
0.56628 
0.56396 
0. 56164 
0.55933 
0.55703 
0. 55474 
0. 55246 
0. 55020 
0. 54794 
0.  54569 
0.54345 
0 .  54122 
0 .  53900 
0.53679 
0.53459 
0 .  53239 
0 .  53021 
0.. 52804 
0.52587 
0.52371 
0.. 52157 
0.. 51943 
0.. 51730 
0.. 51518 
0.. 51307 
0.. 51097 
0.50888 
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i., - 
&z 

-- 
I 

1. 75900 
1. 76000 1 L.16100 

1 1. 76200 
1.76300 
1.76400 
1.76500 

1 1.76600 
1. 76700 
1. 76800 
1. 76900 
I. 77000 
1. 77100 
1. 77200 
1. 77300 
1. 77400 
'1. 77500 
:L. 77500 
:L. 77700 
11. 77800 
!i. 77900 
I.. 78000 
I.. 78100 
I.. 78200 
I.. 78300 
1.78400 
1.78500 
1. 78600 
I. 34733 
1.78800 
1.789'00 
1. 79000 
1.79100 
1.. 79200 
1. 79300 
1. 79400 
1. 79500 
1. 79600 
1. 79700 
1. 79800 
1. 79900 
1. 80000 
1. 80100 
1. 80200 
1. 80300 
1. 80400 
1. 80500 
I .  80600 
!. 80700 
1. 80800 
1. 80900 
1.81000 
1. 81100 
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- e=ul 

Valuea o j  du j o i  given valuer of the 
- - 

GI 

0. 00135 
0. GO135 
0. 00134 
0. 00133 
0. 00133 
0. 00132 
0. 00131 
0. 00130 
0.00130 
0. 00129 
0. 00128 
0. 00128 
0. 00127 
0. 00126 
0.00126 
0.00125 
0.00124 
0.00124 
0.00123 
0.00122 
0.00122 
0.00121 
0.00120 
0.00120 
0.00119 
0. OC! 18 
0.00118 
C.OOi17 
0.00117 
0.00116 
0.00115 
0.00115 
0.00114 
0.00113 
0.001 13 
0.00112 
0.00112 
0.00111 
0.00110 
0.00110 
0.00109 
0.00109 
0.00108 
0.00108 
0.00107 
0.00106 
0.00106 
0.00105 
0.00105 
0.00104 
0.00104 
0.00103 
0.00102 

0.00102 
0.00?01 
0.00101 
0. ooioc 
O.OC100 
0.00C9E 
0.30099 
0. CC098 
0. COO98 
0.00097 
0.00097 
0.OC096 
0.00095 
0.00095 
0.00094 
0.90094 
0.00093 
0.00093 
0.00092 
0.0G092 
0.00091 
O.OCC31 
0.00090 
0.00090 
0.00080 
0.00089 
0.00089 
0. GO088 
0.00088 
0.00087 
0.00087 
0.00086 
0.00086 
0.OG083 
0.00085 
0.00084 
0.00084 
0.00083 
0. ocoa3 
0.03082 
0.00082 
0.00082 
0.00081 
0.00081 
0.00080 
0.00080 
0.00079 
0.00079 
0.00078 
0.00078 
0.00078 
0.00077 
0.00077 
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bank storage and return will contribute to the 
storage capacity of the reservoir. The bank 
storage capacity can be estimated by idealizing 
the rise and fall of t.he reservoir surface as sinus- 
oidal with a period T. 

Fluctuation of reservoir level. If the instan- 
taneous departure of the reservoir surface from 
the mean level is h, and the maximum departure 
from the mean H,, then it is assumed that: 

h,= H, sir1 w t  (62) 
where 

A solution of Equation (3) which reduces to the 
above variation when z=0 is: 

- 
h,=H,e - 4  sin t - )  (64) 

The total volume of wa.ter stored, per unit 
length of bank, as the reservoir is filled and then 
returned as the reservoir is drained is: 

The total amount stored vlrould be obtained by 
multiplying this quantity by the perimeter of the 
reservoir. 

Since the cycles of filling and emptying of 
reservoirs are generally irregular, Formula (65) 
can only serve as a meant; of estimating the 
increase of reservoir capacity provided by the 
bank storage. If the reservoir has only recently 
been placed in service or the o'peration is irregular, 

the contribution of bank storage can be approxi- 
mated by a stepwise application of Formula (61) 
to increments of reservoir rise or fall corresponding 
to suitably chosen uniform increments of time. 
The total flow would be obtained as a summation 
of the flows originating in the individual incre- 
ments. In the case of a reservoir recently placed 
in service, the flows will generally be moving 
outward to build up the ground-water mound 
which will ultimately be created- by the surface 
reservoir. 

A few words of explanation concerning the 
nature of Formula (65) may be helpful. 

This formula represents an ultimate stable 
regimen which would prevail after all of the 
starting transients had died out. A solution 
containing the starting transients wouid be quite 
complicated and would not add much in the way 
of useful results. I t  will be worthwhile to 
remember that Formulas (64) and (65) become 
applicable only after the reservoir has been 
through several cycles of filling and emptying. 

Example 

A reservoir is to be constructed in a valley filled 
to considerable depths with alluvial and wind- 
blown sands. The visible storage, with a depth of 
80 feet, will be 25,000 acre-feet. The transmissi- 
bility of the material adjacent t o  the reservoir is 
0.220 ft2 per sec. The yield on drawdown is 
V=0.15. The r e s y o i r  will have a shoreline, 
when filled, of about 75,000 feet. A yearly 
fluctuation of 40 feet is expected. At the mean 
water surface, corresponding to a 60-foot depth, 
the shoreline will be about 56,000 feet. Estimate 
the rate of flow into the banks after the reservoir 
has been filled 1 year, the total bank storage a t  
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the end of 1 year and the effective increase in 
capacity due to the bank storage and return. 

The average depth of water applied to the banks 
is 80/2=40 feet. Then H=40 feet. One year is 
3 1,536,000 seconds. 

From Formula (60) the flow into the banks is: 

H K D  -F~=-.- (40) (0.220) 
@ '-4741.47) (31,536,000) 

cubic-feet-per-second per foot of bank. The total 
outflow is obtained by multiplying this figure by 
the length of the bank. Then the total flow into 
the banks a t  the end of a year would be estimated 
as : 

cubic feet per second. The total flow into the 
banks in the f i s t  year would be, by Formula (61), 

cubic feet per foot of bank. Then the total bank 
storage accumulated in the first year is estimated 
to be 

The increase in effective capacity of the reser- 
voir due to bank storr~ge would be, by Formula 

The amplitude of the yearly fluctuation is H,= 
40/2=20. Also with a period of 1 year, or 
3 1,536,000 seconds, 

-\lZ=-\1(0.293)(10:?=0.000541 (ftlsec) 

then 

cubic feet per foot of bank. The total capacity 
increase would be, for the 56,000 feet of bank a t  
the mean level, 

The conditions chosen for this example repre- 
sent an unusually permeable bank material. They 
are such conditions a.s might be found in a sand- 
dune area and the seepage losses and reservoir 
capacity increases are correspondingly high. In  
such an area there would be a leakage around 
the dam and the volume of the ground-water 
mound would be limited to the volume it could 
attain under ultimate steady state conditions. 
An electric analogy tray is a useful device for 
finding the ultimate size and shape of the ground- 
water mound. 

Use of Images 

The usefulness of the formulas for ascertaining 
the drawdown that can be attributed to well pump- 
ing in indehitely extended aquifers may be ex- 
tended by the use of images. Suppose, for 
example, that a well, drawing water from an un- 
confined aquifer, is located near a stream and i t  is 
decided to compute the pattern of drawdown 
around the well a t  some given time after pumping 
begins. If the stream were absent there would be 
a drawdown along the line where the near bank of 
the stream is located, but so long as the stream is 
there, no drawdown can occur along this line. 
This fact can be accounted for by assuming that 
the stream is absent and introducing an image well 
a t  the point where the pumped well would be 
imaged by the line representing the location of the 
near bank of the stream. Since the condition 
maintained by the stream is one of zero draw- 
down, the image well is a recharge well which is 
supplied with the same flow as is being taken from 
the pumped well. Since both wells are a t  the same 
distance from the line representing the near bank 
of the stream and produce drawdowns of equal 
magnitude but of opposite sign, the net result will 
be to keep the drawdown along this line zero. 
Then the mathematical procedure for computing 
the drawdowns around the pumped well will be to 
assume the aquifer is infinite in extent to assume 
that the stream is absent, to introduce the image 
well, and to compute the drawdowns from the two 
wells. 
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Variations of this expedient can be used to 
account for an impermeable boundary, for the case 
of a well in a corner between a stream and a 
tributary which comes in a t  a right angle, for the 
case of a well between two streams, and for other 
similar cases. 

In  some cases, a succession of imagings will be 
needed to meet the appropriate boundary condi- 
tions. This process often leads to an infinite 
series of terms, but the series generally converges 
rapidly. 

As an example of the use of this process i t  will 
be used to estimate the depletion of a stream due to 
pumping a well a t  the rate Q a t  the distance x, 
from the stream. I t  is assumed that the well 
draws water from alluvial sediments and that the 
stream runs over the surface of these sediments 
and is in contact with the ground water in them. 
The course of the stream will be idealized as a 
straight line. 

In  an infinitely extended aquifer, as postulated 
in the development of Formula (9), a drawdown 
would develop along the course of the stream. 
The stream, however, will maintain the water- 
table elevation along its course. The condition 
of no drawdown along the course of the stream 
can be met by introducing a recharge well of 
strength Q located a t  the distance XI from the 

The integral which appears here is the tabulated 
"Probability Integral." 

The treatment of ground-water movement has 
proceeded along analytical bnas in the preceding 
sections of this monograph. Analogs, however, 
provide an alternative approach, which becomes 
particularly valuable when the conditions to be 
dealt with are complex. Analog procedures are 
basically experimental in nature. If time and 
funds permitted, i t  would be possible, in many 
cases, to develop needed information by direct ex- 
perimentation in the field. Such an approach is 
seldom permissible, however, because of the large 
expenditures which would be needed to support 
such investigations. Experimentation becomes 
feasible if the field phenomena can be replaced by 
analogous phenomena of such nature that i t  be- 
comes possible to bring the problem into the 
laboratory. 

Electrical phenomena provide such a possibility. 
They are, in addition, easily controlled and 
measured and also are capable of tremendous 
speeds of operation. Analogous quantities in the 
prototype and its electrical representation are the 
following : 

Analogous quantities 

stream at  a point directly opposite the pumped Hydraulic prototype Electric analog 
well. 

The flow of grollnd W R I I , P ~  RCrms the s t r eam 
boundary, due to pumping the well, can be found 
by introducing a rectangular coordinate sys tem 
with the coordinate y measured along the course 
of the stream and the coonilinate x measured to- 
ward the well from the point y=O. In  this sys- 
tem, the radius, drawn from the well, is: 

The gradient across the stream is found by dif- 
ferentiating Expression 9 with respect to x. The 
flow per unit length along the axis of y is found by 
multiplying this gradient by the transmissivity KD. 
And the total flow q across; the y axis is found 
by integrating this unit flour along the axis of y. 
This procedure is described jin detail in Reference 
(10). The result, including the effect of the image 
well, is: 

Flow of ground water Current 
Water-table elevation Voltage 
Transmissivi ty Conductance 
Storage Capacitance 

The procedure for establishing correlations 
among the prototype and analog quantities is 
explained in detail in Reference (12) but i t  is 
essentially the following: 

a. Write a system of equations expressing 
the proto type relationships 

b. Write a similar set of equations for the 
analog 

c. Write a set of correlation equations ex- 
pressing the prototype quantities in 
terms of the analog quantities. 

The last set of equations will contain a set of 
constants. Several trials will generally be neces- 
sary before a satisfactory relationship can be 
worked out, but these constants will fix the size 
of the analog components and its speed of opera- 
tion. 
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Highly develo.ped electrical and experimental 
and analytical skills are needed if economical and 
expeditious analog procedures are to be realized. 
A few wrong choices can bog the whole operation 
down in a morass of unnecessary construction and 
operational diffic~llties. A combination of analog 
and analytical procedures is often effective. 

Comparisons of Observed and Computed 
Quantities 

The formulas presented herein have been de- 
veloped on bases nrhich include certain simplifying 
assumptions. These simplifications were intro- 
duced to make the cases analytically tractable but  
they do impose some limitations on the range of 
validity. It will be worthwhile, therefore, to 
compare some computed and observed quantities 
to learn how important these limitations are. 
Comparisons are made for a pumped well operating 
under water-table conditions, for a leaky aquifer 
case, and for the return flows originating in an 
irrigated area. S~lmplifying assumptions often 
must be used in engineering work and i t  is gen- 
erally recognized that formulas derived on such 
a basis must be used with a knowledge of the 
limitations these simplifications impose. The 
comparisons shown here indicate that these for- 
mulas, when so used, can be expected to serve as 
well as those having a longer history of use in the 
practice of engineering. 

Pumping test in an uncon$ned aquger. This 
test was made on a gravel-packed well installed 
to a depth of 90 feet. The well casing was 8 
inches in diameter. The pump column was set 
at  88 feet. The well penetrated the entire thick- 

ness of the aquifer which extended from 24 to 90 
feet. The depth of water was 60 feet, leaving 6 
feet of unsaturated material a t  the top of the 
aquifer. The pump was operated continuously 
for 5 days with a £low of 150 gallons per minute. 
Depth to water was measured in the pumped well 
and in six observation wells ins tded to a depth 
of 45 feet. These were perforated from 20 feet 
down and sealed to 20 feet. Based upon the 
performance of the well, the aquifer properties 
were determined to be: 

K=0.0020 f t  per sec 
D=60 (feet) 
V= 0.154 (dimensionless) 

=0.78 ft2 per sec. 

The theory for such cases, as described in the 
development leading to Formula (9), indicates 
that i t  should be possible to draw a type curve, as 
shown by the solid line on Figure 14, and that all 
drawdown observations a t  all radii and a t  aU 
times should f d  on this curve if they are plotter? 
in terms of the dimensionless parameters 

and s/(AD). 
The test of the validity of the theoretictil 

development is here made to depend upon con- 
formity with the observed pattern of drawdowns. 
If the observations do plot on the type curve, then 
the pattern derived from the theoretical con- 
sideration is acceptable, otherwise not. A list of 
observed drawdowns is shown in the following 
table : 

TABLE 5.-Observed drawdowns due to pumping from an  unconfined aquifier 

Well 

. . 
Distance from 
pumped well I (feet) / July16 / J:;Y&~ 1 J$Y;~ 1 Jy;b;7 1 Jy;W;S "(~Y;Q 1 JY;~, I JT$l 6315-1/2 

The following computations are based upon these observations: 

Values of -L G 
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July 21 
830 

429,270 

TABLE 5.-Obstrrved drawdowns due to pumping from an unconfined aquifierc-Continued 

A type curve and the corresponding values 
obtained from the pumping test are shown on 
Figure 14. 

A scrutiny of Figure 14 will show that, while 
the  observations exhibit some scatter, they do fol- 
low substantially the theoreitical type curve. It 
is concluded that the validity of the theory is con- 
firmed by this test. 

A Leaky roof aquifer case. The test described 
here was made in an area of previous glaciation. 
As the glaciers receded, they first deposited a bed 
of sand and later covered the sand with a thick 

deposit of glacial till. The permeability of the 
till is very low compared to that of the sand. In  
the area of the test, the water table is in the till. 
When a well casing is installed and perforated 
through the thickness of the sand bed, removal of 
water by  a pump will reduce the pressure a t  the 
base of the till and induce a vertical movement of 
water in the till. The situation is amenable to  
treatment by an analysis of the type described 
under the heading, "Aquifer with a Semipermeable 
Upper Confining Bed." 

The present case differs fundamentally from the 

F I G U ~ E  14.-Comparison oj obsc!rved and computed petformance. Well drawing water from an unconfined aquifer. 

July 16 
Q:15-1/2 

0 sec 

w 

July 16 
Q:35 

I, 170 sec 

1. 65 
3. 30 
6. 62 
1. 67 
3. 33 
6. 67 

Well 

N-2-35-------------------  
N-4-48-- - - - - - - - - - - - - - - - - -  
N-6-50-------------------  
W-2-50--- . . - - - - - - - - - - - - - - -  
W-4-50------------------- 
W-6-48_--_---- . . - ---------  

Radius (feet) 

100 
200 
400 
101 
20 1 
403 

July 16 
2230 

47,670 

0.259 
0. 519 
1. 037 
0. 262 
0. 521 
1. 045 

July 17 
12:m 

86,270 ------- 
0. 182 
0. 365 
0. 730 
0. 184 
0. 367 
0. 735 

July 20 
12:30 

357,270 

0. 095 
0. 189 
0. 379 
0. 096 
0. 190 
0.382 

July 18 
12:m 

182,670 

0. 132 
0 .265 
0. 530 
0. 134 
0.266 
0. 534 

July 19 
12:CQ 

269.070 

0. 109 
0. 218 
0.436 
0. 110 
0. 219 
0.440 



RADIALLY SYMMETRICAL CASES 69 

one previously described since the drawdowns, aquifer does not produce correlation, as is indicated 
represented in this instance by a pressure reduc- on Figure 15, even though the transmissibility of 
tion, ultimately reach a steady state where the the aquifer and its specific yield may be well 
leakage from the upper confining bed will supply dehed .  If the analysis appropirate for an 
the flow from the well. In the unconfined case aquifer with a semipermeable confining bed is 
no ultimate stfrady state is ever reached. An applied, a good correlation is obtained, as is shown 
attempt to apply the analysis for an uncodned on Figure 16. 

1692 400 300 200 100 0 100 200 300 400 790 
DISTANCE FROM PUMP WELL - FEET 

FIGURE 15.--Dratcdown curves as computed from Equation 9 with physical constants K and V based on measured drawdowns 
at maximum time shown. Circled points repredent corresponding measured drawdowns. Observation wells are designated 
S1, W*, etc.  

well July 16 I July 16 July 16 July '17 July 18 July 19 
9:16% 9:35 12:W 12:W 

July 20 July 21 
1230 8:30 

2 s K D =  (6.2832) (0.122) =0.766 

Q= 0.3342 f t 3  per sec &=0.4363. 
(27rKD) 

(&)=2.2916 
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1692 400 300 200 100 0 100 200 3 00 400 790 
DISTANCE FROM PUMP WELL  - FEET 

FIGURE 16.-Drawdown curves as computed by use of the idealization of Figure 4 which includes the effect of leakage through a 
bed of permeability p overlying the aquifer. Circled points represent corresponding measured drawdown observations. 
Wells are designated Sz, Wz, etc. 

I t  can be concluded in ithis case also that the 
validity of the analyS6s is confumed by the test. 

Comparisons of Obsenled and Computed 
Return Flows 

A comparison of observecl and computed return 
flows in the Mesilla Valley in New Mexico is 
given in detail in Bureau Technical Memorandum 
No. 660 (Hurley, Reference 15). 

This study covers a 12-year period terminating 
in 1945. No significant amount of pumping 
was being done a t  this time. The Mesilla Valley 
is an irrigated area served by the Rio Grande 
Project, covering a long narrow strip bordering 
the Rio Grande in southern New Mexico. I t  is 
about 50 miles in length and 5 miles wide. The 
gross area is about 180.7 square miles and is 
served by about 152 miles O F  drains. From these 
figures an average drain spacing of 1.19 miles was 
obtained. The surrounding area is desert which 
contributes little or no inilow. Diversions are 
made a t  the Leasburg and Mesilla Diversion 
Dams. Project operation was quite consistent 
and without major construction changes during 
the period of the study. The irrigated area in 
the valley is about 70,000 acres. 

Records for diversions and return flows are 

available for the period. The analysis was based 
upon the use of the chart of Figure 8. The 
computations were based upon a time interval 
of 1 month. The results are shown on the follow- 
ing six figures. (Figures 17, 18, 19, 20, 21, and 
22.) 

A close correlation is obtained for 10 of the 12 
years of the study period. The author states that 
"The differences in 1935 and 1945 can be ex: 
plained by unusual situations during these years." 
He concludes that "Considering the quantity of 
water dealt with and all the variables and assump- 
tions, the results obtained are remarkably good. 
This seems to indicate that the theory and the 
the method are valid, at least in the range of 
accuracy anticipated." 
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FIGURE 17.-Comparison of observed and computed drain jlows. 
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1 9 3 7  YEARLY T O T A L S  

Percolation 178,700 acre - feet --- Drains 180,300 (observed I - Ret. Flow 184, I00  (calculated) 

FIGURE 18.-Comparison of observed and computed drain flows. 
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FIGUR.E 19.-Comparison of observed and computed drain ~7ows.  
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FIGUREI 20.-Comparison of observed and computed drain flows. 
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GRAPH No. 5 
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Percolation 235,100 acre- feet 
Drain 235,800 (observed) 
Ret. Flow 229,900 (calculated) 
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Percolotion 266,700 acre- feet 
Drain 256,800 (observed 1 
Ret. Flow 265,900 (calculated) 

FIGURE 21.-Comparison of observed and computed drain jlows. 
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- Ret. Flow 276,700 (calculated) 

FIGURE 22.-Comparison of observed and computed drain $outs. 



List References 

1. Boreli, M., "Free Surface Flow Toward Partially 
Penetrating Walls," Transactions of the American 
Geophysical Unzon, 1955, Vol. 36, pp. 664-672 
(contains some flow nets constructed by relaxation 
procedures which show the seepage surface above 
the water level in the well). 

2. Boulton, N. S., "The Drawdown of the Water Table 
Under Nonsteacly Conditions Near a Pumped 
Well in an Unconiined Formation," Paper 5979, 
Proceedings of the Institution of Civil Engineers, 
Vol. 3, 1954, pp. 564-579, incl. 

3. Boussinesq, J., "Recherches, Theoretique sur l'ecoule- 
ment des nappes d'eau infiltrees dans le sol et  sur le 
debit des sources," Journal Mathernatique Pures 
el Appliques, 1904, Vol. 10, Fifth Series. 

4. British Association Mathematical Tables VI, Bessel 
Functions, Part 1, British Association for the 
Advancement of Science, Cambridge University 
Press, 1937. 

5. Brooks, R. H., "Unsteady Flow of Grbund Water 
Into Drain Tile," Journal of the Irrigation and 
Drainage Division, American Society of Civil Engi- 
neers, Vol. 87, No. 1R  2, June 1961, Part 1. 

6. Bureau of Reclamation, "Cooling of Concrete Dams," 
Boulder Canyon Project Final Reports, 1949, 
Bulletin 3, Part 'iII. 

7. Crank, J., The Mathtsmatics of Diffusion, Oxford, 1957. 
8. Dumm, Lee D., "Drain Spacing Formula," Agicultural 

Engineering, October 1954. 
9. Dumm, Lee D., "Validity and Use of the Transient 

Flow Concept in Subsurface Drainage," a paper 
presented a t  the 1960 Winter Meeting of the 
American Society of Agricultural Engineers, Mem- 
phis, Tenn., December 4-7, 1960. 

10. Glover, R. E. and Balmer, G. G., "River Depletion 
Resulting From Pumping a Well Near a River." 
Transactions of the American Geophysical Union, 
Vol. 35, No. 3, June 1954. 

11. Glover, R. E. and Bittinger, M. W., "Drawdown Due 
to Pumping From an Unconfined Aquifer," Paper 
2594, Journal of the Irrigation and Drainage Division, 
American Society of Civil Engineers, September 1960, 
Vol. 86, No. IR  3, Part 1, pp. 63-70, incl. 

12. Glover, R. E., Hebert, D. J., and Daum, C. R., 
"Electric Analogies and Electronic Computers-A 
Symposium-Application to an Hydraulic Problem," 
Paper 2569, Transactions of t.be American Society 
of Civil Engineers, Vol. 118, 1953. 

13. Gray, A. and Matthews, G. B., "Trerttise on Besdel 
Functions," MacMillan and Co., London, 1922. 

14. Haushild, William and Kruse, Gordon, "Unsteadj 
Flow of Ground Water Into a Surface Reservoir," 
Paper 2551, Journal of the Hydraulics Division, 
American Society of Civil Engineers, July 1960, 
pp. 13-20. 

15. Hurley, Patrick A., "Predicting Return Flow From 
Irrigation," Bureau of Reclamation, Denver, Colo., 
August 1961, Technical Memorandum No. 660. 

16. Ingersoll, L. R., Zobel, 0. J., and Ingersoll, A. C., 
"Heat Conduction," McGraw-Hill Book Co., Inc., 
New York, 1948. (A tabulation of the func- 
tion is given in Appendix 3.) 

17. Jacob, C. E., ''Radial Flow in a Leaky Artesian Aq~li- 
fer," Transactions of the American Geophysical 
Union, April 1946, Vol. 27, No. 11, pp. 198-205. 

18. Jacob, C. E. and Lohmnn, S. W., "Nonsteady Flow 
to a Well of Constant Drawdown in an Extensive 

7 5 



GROUND-WATER MOVEMENT 

Aquifer," Transactions of the American Geophysical 
Union, 1952, Vol. 33, pp. 559-569. 

19. Jaeger, J. C., "Heat Flow in the Region Bounded 
Internally by a Circular Cylinder," Proceedings of 
the Royal Societl~ of Edinb?crgh, 1912-43, Section A, 
Part 111. 

20. Jaeger, J. C. and Clarke, Msrtha, "A Short Table of 

Proceedings of the Royal Society of Edinburgh, 
1942-43, Section A, Part 111. 

21. Jahnke, E. and Emde, F., "Tables of Functions With 
Formulas and Curves," Dover, 1945. 

22. Kirkham, Don, "Exact Theory of Flow Into a. Par- 
tially Penetrating Well," Journal of Geophysical 
Research, September 1959, Vol. 64, No. 9, pp. 
1317-1327. 

23. McLachlan, N. W., "Bessel Functions for Engineers," 
Oxford, 1934. 

24. Muskat, M., "Flow of Homogeneous Fluids," 
McGraw-Hill Book Co., 1937. 

25. "National Bureau oi Standards, Tables of Sine, 
Cosine and Exponential Integrals", Superintendent 
of Documents, Washington, D.C., 1940, Vols. 1 and 
2, Tables M.T. 5 and M.T. 6. 

26. Pierce, B. O., "A Short Table of Integrals," Ginn and 
Co., 1929, Third Revised Edition. 

27. Polubarinova-Kochina, P. YA., "The Problem of a 
System of Horizontal Drains Archiwum Meehaniki 
Stosovanej," 1955, Vol. 7, No. 3, pp. 287-300. 
(Yield of water to drains considered on a steady 
state bask.) 

28. Polubarinova-Kochina, P. YA., " Theory of Grolrnd 
Water Movement," 1952 (translated by R. J. 
Dewiest). 

29. Theis, C. V., "The Relation Between the Lowerifg of 
the Piezometric Surface and the Rate and Duriction 
of Discharge of a Well Using Ground Water Stor- 
age," Transactions of the American Geophysical 
Union, 1935, pp. 519-524. 

30. Tuthill, L. H., Glover, R. E., Spencer, G.  H., and 
Rierce, W. B., "Insulation for Protection of New 
Concrete in Winter," Journal of the American Con- 
crete Institute, November 1951, Vol. 23, No. 3. 

31. Watson, G. N., "Theory of Bessel Functions," Second 
Edition, Cambridge University Press, 1962. 

32. Zangar, Carl N., "Theory and Problems of Water 
Percolation," U.S. Department of the Interior, 
Bureau of Reclamation, April 1953, Engineering 
Monograph No. 8. 




