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ERRATA 

Page 3, f igure 1: 
The upper coordinate system should bear the s u b t i t l e ,  
a .  Cylindrical coordinates ( r ,  0,  z) . 

Page 11, next t o  last l i n e  of r i gh t  hand column: 
Q = 0.006~996. 

Page 14,  f igures 11 and 12, and page 15, f igure  13: 
Ordinates should be c ra ther  then k; statement i n  upper 
r igh t  of each f igure  should read "Valueq of c f o r  values 
of . . ." ra ther  than "Values of k f o r  values a f  . . ." 

Page 52, f igure  43: 
Ordinates should be simply >, not "HEAD ON WELL BOTTOM - h--l - 
RADII." 1 rl 

Page 54, figure 45: 
LA Values of CU a r e  from f igure  43 (qot f igure  I), and - = 1.00, 

(not - 1.00). 
hl 

hl 

Page 62, f igure  53: 
The phrase, (steady s t a t e ) ,  should follow Q = 0.50 f t .3 /sec .  

twahl
Note
This errata page is for the first printing, 1953.  All errata are corrected in this version (May 1957 reprint).



ERRATAmdENGINEERING MONOGRAPH No. 8 

THEORY AND PROBLEMS OF WATER PERCOLATION 

by Carl  N. Zangar 

p. 68. . . Eq. (14A) should read: 

p. 68. . . last paragraph in 2nd column should read: 

Experimental results are  in almost complete 
agreement with this analysis. Results of electric 
analogy tests show average values not greater than 12 
percent below calculated values for ~ / r  > 8. The 
approximate mathematical method has reasonable 
validity for L / r  5.0, and almost perfect agree- 
ment for L / r  2 20. 

p. 70. . . ~ q .  (7B) should read: 

p. 71. . . Eq. (8B) should read: 

Inlerior - Reclamation - Denver, Coln. 

twahl
Note
This errata page was included in printings between 1953 and 1957.  All errata are corrected in this version  (May 1957 reprint).
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and so 

For incompressible liquids the equation 
of continuity holds, so  we may write 

and substitution of equations (6) and (9) into 
(10) gives 

Equation (11) i s  Laplace's equation in 
three dimensions. Any function p or $3 that 
satisfies Laplace's equation i s  a solution 
to a flow problem if the boundary conditions 
can be satisfied. Equations similar to (11) 
govern the steady flow of heat and electricity. 
It is for this reason that the electric analogy 
may be used to solve problems in the steady 
flow of fluids. 

The  p r e s s u r e  function that  sat isf ies  
equation (11) i s  known a s  the potential func- 
tion It, of course, must satisfy the boundary 
conditions and since i t  was derived f rom 
Darcy's law i t  is subject to the same r e -  
strictions. The potential function, since i t  
applies to the steady state, i s  based on the 
assumption that the soil mass contained in 
the flow system i s  completely saturated. 

It  is possible a t  this point to state cer -  
tain boundary conditions in t e rms  of the @ 
function. F o r  example: 

1. At an impermeable boundary 

where n is normal to the boundary. 

2. Fo r  a constant potential surface 

@ = constant. 

3. For a free surface (such a s  the phreatic 
line in an earth dam, or a streamline and a 
constant-pressure line), 

4. F o r  a seepage surface  ( a  constant- 
p r e s s u r e  surface, but not a s treamline),  

gz 0 - =  P = C  

There are  many fluid systems that pos- 
sess axial symmetry and for these problems 
it i s  convenient to express Laplace's equa- 
ticn, equation ( l l ) ,  in cylindrical coordinates 
(r, €3, z), (see figure la). The velocity com- 
ponents become 

a .  Cylindrical coordinates ( r ,  0, z ) .  

I 

b. Spherical coordinates (r,e,C). 

Figure 1 - Two Coordinate Systems. 
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INTRODUCTION 

The flour of water through darns ana their 
foundations, and the accompanying pressures 
and gradients that exist, have long been rec- 
ognized by engineers a s  important factors 
in dam design. This monograph i s  concerned 
with the effects of this "percolating" water 
and the methods for correcting these effects 
when they a r e  thought to be detrimental. Al- 
so given a r e  several methods for determin- 
ing the permeability of soils by field tests. 

These problems resolve themselves into 
a study of the slow flow of water through 
porous media Slow flow a s  used here i s  de- 
fined a s  laminar flow in which the Reynolds 
number i s  1 or less. If the Remolds number 
becomes l a rge r  than 1, it is possible for 
turbulence to develop. In this case, Darcy's 
law governing the slow flow of water through 
porous media, no longer applies. Darcy's 
law will be treated in detail under the sec- 
tion on general theory, which follows; but 
briefly, it s ta tes  that the ra te  of flow, Q, 
of water through a porous medium is di- 
rectly proportional to the cross-sectional 
area, A, and to the pressure gradient acting. 

There a r e  many engineering problems 
to which the laws of slow flow of water apply 
and which, consequently, affect the design 
of the structures involved. Some of these 
problems are: 

1. Percolation through concrete dams and 
their foundations. 

2. Percolation through ear th  dams and 
their foundations. 

3. Flow into drains embedded in concrete 
and soil. 

4. Flow around cut-off walls. 

5. Foundation settlement (consolidation). 

Most of these problems involve a knowledge 
of the permeability of the materials involved 

Percolating water, while not necessarily 
dangerous, usually results in one or more of 
the following objectionable conditions : 

1. Water losses by seepage through the 
dam and foundation. 

2. Uplift pressures that tend to cause over- 
turning of the dam. 

4. Application of body forces which affect 
stability. 

There e r e  several methods which may 
be used to assist in solving the problems en- 
countered a s  s result of percolating water. 
These methods include pure mathematics, 
electric or membrane analogy experiments, 
hydraulic model experiments, and field ex- 
periments. Solutions to some flow problems 
may be obtained by a combination of methods, 
as, for example, the combination of an elec- 
tr ic analogy experiment with a hydraulic 
model experiment. 

GENERAL THEORY 

The movement of water through granular 
materials was f i rs t  investigated by Darcy 
in 1856 when he became interested in the flow 
characteristics of sand filter beds.' In his 
experiments he discovered the law govern- 
ing the flow of homogeneous fluids through 
porous media. Darcy's law is expressed 
by the equation 

KAH Q = - . . . . . . . . . . . . . . (1) 
L 

where 

Q = ra te  of flow, 
A = cross-sectional area ,  
H = head, 
K = permeability coefficient, and 
L = length of path of percolation. 

Many experimenters have worked on the 
range of validity of Darcy's law and their  
results nre not in complete agreement. But 
all have expressed the applicable range in 
t e r m s  of Reynolds number, which is well 
known in hydraulics and hydrodynamics. The 
Reynolds number is giver, by the equation 

d v u  R =-  . . . .  . .  . . . .  . . .  . (2) 
k' 

in which 

R = Reynolds number, 
d = diameter of the average grain: 
v = average velocity of flow, 

through the pores, 
1* = density of water, and 
p = absolute viscosity of water. 

3. Flotation gradients (piping) that may Dsrcy, EL, 1 , e s  Fontaines de l a  
cause local failure o r  even total failure of 
a structure. Ville de Dijon, Dalmont, Paris ,  1856. 



The diameter of the average grain used in meability, if we e x p r e s s  the gradient in 
equation (2)  i s  defined by the relat ion terms of pressure head p, instead of pres- 

su re  P. (K will be constant for  any par- 
ticular mater ia l  if the temperature does 
not change. Since the viscosity of water 
varies appreciably with temperature, any 

(3) considerable temperature variation may . . . . . . . .  
warrant a corresponding modification of K.) 

in which We may then write 

. . . . . . . . . . . . .  ds = arithmetic mean of the open- v = K dp (5) 
ings in any two consecutive ds  
sieves of the Tyler or U. S. where 
Standard sieves. and 

ns = number of grains of diameter 9 d = hydraulic gradient. 
ds found by a sieve analysis. ds  

Physically, d should represent the av- Now consider the case of three-dimen- 
erage pore diameter rather than the diam- sional flow and assume that the resultant 
e t e r  of the average grain. However, the fluid vc40cit~ given by equation (5) may be 
average pore diameter can be measured resolved into th ree  components along the 
directly only by microscopic examination selected coordinate axes. Then if K has 
of a cross-section of the porous different values along the coordinate axes, 
itself. Therefore, in the case of soils, al l  Darcy's law may be written a s  
at tempts to define o r  use  a value of d in 
Reynolds number have referred to the diam- 
eter of the average g ra in  

For the above definition of Reynolds num- 
ber, experimenters 2 2  have determined 
that Darcy's law holds only if the relation 
R S 1 is satisfied. 

The general differential equation for the 
flow of water through homogeneous porous 
media is readily deduced from the general- 
ized form of Darcy's law and the equation 
of continuity. 

From Darcy's law, equation (I), and the 
principle of dimensional homogeneity, it can 
be shown that 

where 

C = a dimensionless constant, 
P = pressure, 
s = length along path of flow, and . - * = p r e s s w e  gradient. 

ds 

If the fluid is of specific weight, r , and 
there elcists a body force of components gx, 
gy, and g, per unit of volume acting on the 
fluid, it will affect the velocity just a s  the 
hydraulic gradients  do and equation (6) 
becomes 

2 d , p, and C may be grouped to make one 
constant K, the familiar coefficient of per- When the positive Z axis is taken up- 

ward, K assumed independent of direction, 
the only body force, the potential 

Fancher, G. K ,  Lewis, J. A., and Barnes, ecg~,"$d may be  written a s  
K B., Bulletin 12, Min. Ind Exp. Sta , Penn- 
sylvania State College, 1933. 

Muskat, M., Flow of Homo~eneous Fluids, @ = P + ~  gzz . . . . . . . . .  (8) 
McGraw-Hill, New York, 1937. 



and so  

For incompressible liquids the equation 
of continuity holds, s o  we may write 

and substitution or equations (6) and (9) into 
(10) gives 

Equation (11) is Laplace's equation in 
three dimensions. Any function p o r  pl that 
satisfies Laplace's equation is a solution 
to a flow problem if the boundary conditions 
can be satisfied. Equations similar to (11) 
govern the steady flow of heat and electricity. 
It is for this reason that the electric analogy 
may be used to solve problems in the steady 
flow of fluids. 

The r e s s u r e  function that sa t i s f ies  
equation 81) is known a s  the potential func- 
tion It, of course, must satisfy the boundary 
conditions and since it was derived from 
Darcy's law it is subject to the same  r e -  
strictions. The potential function, since i t  
applies to the steady state, is based on the 
assumption that the soil mass contained in 
the flow system is completely saturated. 

It is possible a t  this point to state cer-  
tain boundary conditions in t e rms  of the 0 
function. For  example: 

1. At  an impermeable boundary 

a B = o  
a n  

where n is normal to the boundary, 

2. For  a constant potential surface 

0 = constant. 

3. For a free surface (such a s  the phreatic 
line in an earth dam, or a streamline and a 
constant-pressure line), 

4. For  a seepage su r face  (a constant- 
pressure  surface, but not a streamline),  

There are  many fluid systems that pos- 
sess axial symmetry and for these problems 
it is convenient to express Laplace's equa- 

uation (ll), in cylindrical coordinates 
r, 8, z , (see figure la). The velocity corn- ?? 

ponents become 

b. Spherical c o o ~ t e a  (r,8,Z). 

Figure 1 - Two Coordinate Systems. 



and equation (11) now becomes 

If the flow i s  not a function of 8, equation 
(13) may be written 

F o r  spherical  coordinates (r, 8 ,  ) (see  
figure lb), the velocity components become 

- 
Vc - r sin 8 ae 

and equation (11) now becomes 

v2g = 1 a (,2 2&) + 
r 2  a r  ar 

1 a -(sin e *) + 
r2 sin 8 ae a e 

A, function can be obtained that defines 
the path along which a fluid particle moves 
in traveling through a soil mass. This func- 
tion is called a stream function and i s  given 
the Greek letter +. It i s  related to the po- 
tential function O through the equations 

The velocities then become, in terms of 9, 

ANALYTICAL SOLU'l'IONS 
(STEADY STATE) 

General. In the preceding section it has 
been shown that Darcy's law applies to prob- 
lems in steady-state slow flow through po- 
rous media, and also what conditions the po- 
tential function must satisfy in order to offer 
solutions to flow problems. Flow problems 
may be solved by analytical or  experimental 
means o r  a combination of the two. A few 
analytical solutions a r e  presented on the 
following pages. 

o-Dlme ' low (P ' -Soure L). H-a two-&%ension$ 
flow system (figure 2) in which the velocities 
va ry  only with the distance,  r ,  f rom the 
point-source ( l ine-source from a three- 
dimensional point of view), s o  that 

Equipotential 

Figure 2 - Two-Dimen~ional Radial Flaw. 

vr I K* ar 

and 

= K * =  0 Ve r ae 

where 

v = velocity, 
K = permeability coefficient, and 
p = pressure head, 

and cylindrical coordinates a r e  used. 

Equation (6) may now be written 

The function 

will be found to satisfy equation (19). Then 



we have, for the boundary conditions, 

where a and b a r e  respective radii from 
the point-source to two a rb i t r a ry  equi- 
potential lines (see figure 2). 

Using conditions (21) successively in 
equation (20), 

and 
C1 = Pb - pa b In , 

a 

Placing the values of C1 and C2 into equa- 
tion (20) gives 

Exarn~le 1. In foundation tests  for Deer 
Creek Dam, Provo River Project, Utah, a 
12-inch diameter well was drilled 84 feet 
to bedrock, and twenty observation wells 
were located symmetrically on 5- to 200- 
foot radi i  f r o m  the 12-inch well. After 
pumping 210 gallons per minute (0.4679 
second-feet) for 87 hours a steady state was 
approached and the following data were ob- 
served (The two equipotential lines inf ig-  
ure 2 were arbitrari ly taken a t  distances 
of 10 and 200 feet, respectively.) 

At 200-foot radius, average water ele- 
vation = 5276.5 - . -  

At 10-foot radius, average water ele- 
vation = 5274.6 

z = thickness of bed a t  10-foot radius 
= 78.9 feet. 

Inserting these values in equation (24) and 
solving for K, 

= 0.0015 feet per second. 

Then, by differentiation, 

The total flow, Q, is given by the equatiin 

where z i s  the thickness of the porous me- 
dium Equations (22) and (23) may be written 
in terms of Q a s  follows: 

T w o - D i m e e a l  Flow B tw 
. . 

urce and a P A -  
Images.) This  is s imi lar  to the problem 
of radial flow into a well except that in this 
case a linear source rather than a circular 
source represents  the external boundary 
(see.figure 3). This  solution a lso  is two 
dimensional. 

b - l m o 9 e  well 

(0,-bl 

P i p e  3 - Flav between a IheSource 
and a Point-Sink. 



In this development i t  will be assumed and r g  = 2 b, so  that equation (28) becomes 
that an infinite line-source extends along the 
X axis and that at a distance b from the X 
axis is s well of radius r = a For the mo- pa = c h a  2 b  
ment, it will also be assumed that the pres- 
sure along the line-source is maintained at 
zero and that the well pressure is pa. In from which 
two-dimensional problems, one may repre- 
sent any well with uniform pressure, pa, at 
the periphery by a point-source or sink at  

Pa c = -  a . . . . . . . . . . . .  (29) 
the center of the well. The potential func- In- 
tion for this case will then become 2 b  

Substituting th is  value of C into equation 
P = c h i  +pa  . . . . . . . .  . (27) (28) gives 

where C is a constant determined by the p = -  Pa in - 1 . . . . . . .  (30) a 
boundary conditions. Since there is no sand In r b  2 
o r  porous medium in the well, equation (27) 
does not hold for the well interior ( r  less It may be m o r e  convenient in special 
than a). cases to specify the pressure over the line-- 

source a s  po ra ther  than zero, where po 
If there a r e  several wells in a system, may  have any value. In this case ,  then, 

each well will contribute an amount p of 
equation (27) to the resultant pressure dis- 
tribution. The r to any point, of course, P a - P o  rl 

P = a In - + P o  mus t  in al l  cases  be measured from the h -  
centers of the individual wells. 2 b  

r2 

It will be noted that the streamlines from 
the line-source, or boundary, have the same 
pattern and direction as though they had come 
from a point-source o r  well a t  the point 
(0, - b). In this discussion, this well will 
be called an image well, and, in particular, 
a negative image well. It will be substituted 
for the line- source to facilitate evaluation 
of the pressure distribution. If we add the 
pressure contributions of the actual well and 
the image well, for any point (x, y), the re- 
sultant effect will be 

'1 r 2  P = C h z +  pa - C h -  -pa  a 

o r .  

where r ,  and r, a r e  the distances to any 
point f r i m  the :enters of the actual and 
image wells, respectively. It i s  to be noted 
that when r l  = rg, p = 0, the condition as- 
sumed along the X axis. 

We shall now proceed to find the value 
. of p over the actual well surface. It is 
assumed that the radius, a,  of the well is 
small compared with 2b, the distance be- 
tween the actual well and the image welL 
Over the actual well periphery, then, r l  = a 

The total flow f rom the line-source to the 
well is given by the  equation 

E x a m ~ l e  2, In the foundation test for  
Deer  Creek Dam, Provo River Project ,  
Utah, water elevations in observation wells 



showed that the direction of drainage was 
from the ground to the river. If the ground- 
water table had been lower so that seepage 
from the river alone supplied the well, and 
the steady-state discharge of 210 gallons 
per minute had caused the observation-well 
drawdown used in Example 1, the K could 
have been determined from equation (32). 
Then, using an infinite line-source 200 feet. 
f rom the well to represent  the r ive r ,  at 
Elevation 5276.5, and an average ground- 
water elevation of 5274.6 at  10-foot radius 
from the well, and solving equation (32) for 
K, we would, after substitution, have 

= 0,0018 feet per second. 

Thus, ~f this type of flow had existed, 
the data would have shown 20 percent higher 
permeability than in Example 1. Converse- 
ly, if the K of 0.0015 computed in Example 
1 had been retained, and the groundwater 
level had been lowered so that equation (32) 
applied, then 17 percent less well discharge 
would have caused the drawdown noted. 

TWO-Dimensional Finite J ,ine-Source or  
2Lp.k A ~ ~ l i e d  to Flow Beneath Im~erviouq 
Dam on a Pervious Foundaw.  It has been 
shown and is general ly  known that  the 
streamlines under an impervious dam rest-  
ing on a pervious infinite foundation a re  a 
system of confocal ellipses with center at 0 
(see figure 4). The base of the dam. AR. 

7 - 7  

is a streamline and is  the limiting form of 
this family of ellipses. 

Woter Surfoce n 
\ 

---Pressure along base of dom 
in  te rms of H 

Figure 4 - Flow beneath an Impervious Dam on a Pervious 
Foundation. 



The stream function, V (which represents Similarly, solving fo r  cash I $ and sinh 
physically the total flow crossing any line H 
connecting the origin with a point (x, y) in 2 $ , we have 
the flow system) and the potential function, H 
g, passing through the same point, can be 
expressed by the complex function cosh 2 "  $ - sinh2 t = 1 

b n . . . . . . . .  . z - cosh - w (33) 
2 H . (39) 

in which 

The uplift pressures  along the base of 
the dam (y = 0) may be found from equation 
34) by substitution of Q = 0. Then equation 
34) becomes 

Placing the expressions for z and w in 
equation (33) gives 

b x = - c o s z f d  . . . . . . . .  
2 H 

(40) 

Note that the boundary conditions a r e  
+ i s i nh  A $  sin 3 gj satisfied in equation (41), with 

H 
b g j = H a t x = - -  2 

On equating the r ea l  and imaginary parts, 
we get and 

b n (I 
X = 7 C O S ~  - $ COS - fl . (34) H R 

sinh 1- $ sin l- . . (35) Y =7 The uplift pressures  along the base of 
H H the dam a r e  given in  figure 4 in terms of 

H, the acting head. 
Solving for cos 1- fd and sin 2 8, 

H H Streamlines and equipotential lines may 
be lotted by the use of equations (38) and 

x (397, respectively. Then with the flow net . . .  cos A gj = b n 
(36) established, the seepage losses, Q, may be 

. - cosh - gj determined by use of the relations 
2 H 

Then squaring and adding, 
in which 

cos2 1~ gj + sin2 1 gj = 1 K = the permeability coefficient, 
H H der 

2 
- = pressure-head gradient 

= X + y2 (3 ds (dimensionless), 
Z v = velocity, 

( g c o s h  ' t)Z A = cross-sectional area,  and 
. .  - H ,  Q = discharge o r  seepage loss. 



Two-Dimensional Finite Line-Source 
W Amlied to Flow Around S h e e t - P u 4 .  
Consider the function 

z = b cosh w . . . . . . . . . . (43) 

Again 

Placing these values in equation (43) gives 

x + i y = b cosh + cos $ 

+ i b sinh $ sin $ 

On equating the rea l  and the imaginary 
parts, we get 

x = b cosh $ cos $ . . . . . . . .(44) 

y = b sinh $ sin $ . . . . . . . .(45) 

Solving for cos jd and sin jd, we get 

cos $ = X . . . . . . . . (46) 
b cosh $ 

s i n $  = Y.. . . . . .  . !(47) 
b sinh $ 

Then squaring and adding, 

Similarly, solving for cosh $ and sinh $, 
we have 

From equations (44) and (45) it can be seen 
that @ = T represents the negative par t  of 
the X. axis beyond x = - b. Lf equation (49) 
is written 

'4. Vetter, C. P., 
(Volume I), Technical Memorandum No. 620, 
U. S. Bureau of Reclamation, Denver, Colo- 
rado, September 1941, p. 100. 

it can be seen that @ = and @ = repre- 
2 2 

sent the line x = 0, or the Y axis. 

Now if the coordinate system i s  drawn 
~ i t h  the X axis positive upward and the Y 
axis positive to the left, the function given 
in equation (43) is seen to represent the flow 
around a sheet-piling wall of depth b, shown 
in figure 5. To correctly represent the flow, 
the branches of the equipotential lines fall- 
ing in the second quadrant only should be 
drawn for values of $ between n and 3 d 2 ,  
and the branches falling in the third quad- 
rant only should be drawn for values of @ 
between 71/2 and'll. 

Note in this development that the up- 
stream potential is given a s  = 3n/2 and 
the downstream potential a s  $= d2. This 
means that the head of water upstream must 
correspond to 3 ~ / 2  and the head downstream 
mus t  correspond to T/2. (See f igure  5.) 
This can better be seen by considering the 
potential function with g/r equal to unity, or 

it is known that on the upstream foundation 
line, p = H1 + Hz, and y = 0; hence, by 
equation (50), $ = H1 + Hz. The mathemat- 
ical  solution gives fj = 3 ~ / 2 ,  s o  H1 + H2 
= 3n/2. Similarly, along the downstream 
foundation line it is known that p = H2 and 
y = 0, hence @. = HZ. The mathematical 
solution gives @ = q/2 along this line, so  
HZ = 7f/2. The r e s u l t s  of this study a r e  
shown in figure 5. 

T h r e e - D i m e n s i o u  Radial Flow (Point- 
Sink) Many problems in the flow 

%??dsOobrough porous media can be adapted 
to a two-dimensional flow system,but oc- 
casionally thore a r e  problems that can be 
treated only by a three-dimensional solution 

In three-dimensional problems i t  be- 
comes necessary to consider gravity. The 
potential function given a s  equation (8) is 

and Laplace's equation, equation ( l l ) ,  in 
terms of @, is 



Figure 3 - Flow around Sheet-piling. 

S~her ical  Flow, Spherical flow i s  analogous 
to the two-dimensional problem of radial 
flow. for  he re  the potential and velocity 
distributions will depend only on the radius, 
r, of a spherical coordinate system. La- 
place's equation in a spherical coordinate 
system (r ,  0 , T )  will have the general form 

1 a 
t - ( s in  e *) 

r2 sin 8 a8 a 9 

but in the case  of spherical flow this 
reduces to 



1 a - -(r2 2.) = 0 . . . . . .  (52) 
- - - ( %  - Pia) K 

r 2  a r  a r 
- - 2- ""  

(56) 
It will b:? found that tile potential function, b a 

c1 The total flow through the system is given 
@ = - -  + C2 (53) . . . . . . . .  by 

i s  a solution to equation (52) and that i t  gives 
the potential $3 throughout a spherical flow 
system. The constants C1 and C2 can be 
determined f rom the boundary conditions. 
In figure 6 

Figure 6 - Three-Dimensioml Radia l  Flow. 

Substitution of equation (54) in equation 
(53) gives 

(gb - 1 
C2 = %a + - 

l l a  - - -  

Q =Jn d x L n  r2 sin 6 vr dB 

Using equation (57) with equations (55) and 
(56), 

and 

Exam le  3 Equation (57) may be used in 
m a n h r  the determination of the av- 
erage coefficient of permeability of a soil  
by means of a simple field experiment. At 
the Elk Creek Damsite, Conejos River, San 
Luis Valley Project, a hole was drilled into 
the soil  foundation and an  open end casing 
with an inside diameter of 5.75 inches was 
sunk into the bed. All ear th material  was 
cleaned out of the casing down to the level 
of the bottom. A measured flow of water 
was supplied to the casing, the inside diam- 
eter of tile pipe was noted, and also the head 
differential between the water level inside 
and outside of the casing. In applying equa- 
tion (57) to this problem, it i s  assumed that 
hemispherical flow takes place, and that the 
outer radius of the sphere, b, becomes in- 
finite. Then with flb - fla equal to H, o r  
the head differential inside and outside of 
the casing, equation (57) becomes 

Then the velocity is Data received from tests a t  the Elk Creek 
Damsite showed that a t  Drillhole No. 3, with 
the open end of the casing 25.0 feet below 
the ground surface, H = 8.8 feet, Q = 0.006, 
936 second-feet, and a = 2.875/12 = 0.249 



feet. Then 

= 527.2 x feet per second 

= 16,630 feet per year. 

A second test  made with the open end 
of the casing 47.0 feet below the ground sur- 
face gave H = 9.8 feet, Q = 0.001,493 second- 
feet, and a = 0.240 feet. Then in this in- 
stance 

= 101.2 x 10 '~ feet per second 

= 3,190 feet per year. 

Electric m o g y  experiments show that 
when using a casing with a flat bottom for 
the field determination of K in the manner 
descr ibed above, the equation should be 

water must be equal to the wet density, W, 
of the soil in order to produce the critical 
or flotation gradient. The statement may 
be proved a s  follows: 

Figure 7 - Element of Soil in 
Pemioua Foundation. 

Consider the rectangular parallelepiped 
shown a t  the bottom of f igure 7, bounded 
by streamlines and equipotential lines, with 
end a rea  ha  and length A s .  The force a t  
face  A is equal to p A a ,  and a t  face B is 
equal to (p + A p) A a. Then neglecting the 
curvature of the streamline, the net force 
acting on the element in the direction of the 
streamline i s  given by the equation 

K = Q . . . . . . . . . (61) and since the volume of the element i s  A s Aa, 
5.553 a H t h e  f o r c e  p e r  uni t  of volume becomes 

which differs from equation (60) in that the F = - A ! ? = - &  
A S M  A s  

constant in the denominator is 5.553 rather 
than 2 1(. The difference results from the is made to approach zero this gives fact that the flow is not truly hemispherical. 
Equation (61) will give K-values 13 percent 

r e a t e r  than equation (60) for  the same 8. ield data. F = - &  . . . . . . . . . . . . .  
ds  

(63) 

De- of C r m  . . . . 
Gradients. Water, in percolating through 
a soil  mass ,  has a certain residual force 
a t  each point along i t s  path of flow and in 
the direction of flow which i s  proportional 
to the pressure gradient at  that point. When 
the water emerges from the subsoil, this 
force acts in an upward direction and tends 
to lift the soil particles. Once the surface 
pa r t i c les  a r e  disturbed,  the res is tance 
against the upward pressure of the perco- 
lating water i s  further reduced, tending to 
give progressive disruption of the subsoil. 
The flow in this case  tends to form into 
"pipes," and it i s  this  concept that has 
brought a b o ~ t  the commonly accepted term 
of "piping. This action may also be de- 
scribed a s  a flotation process in which the 
p r e s s u r e  upward exceeds the downward 
weight of the soil mass. Since the soil i s  
saturated, i t  is apparent that the upward 
p ressure  gradient, F ,  of the percolating 

in  which dp/ds is the pressure  gradient 
a t  the point. 

Now consider figure 8. A t  each point 
along a streamline the two forces, W and F ,  
wi l l  be acting. Their effects can be resolved 
into a resultant, R,  a t  that point. 

Figure 8 - Force Components. 



For stability there must be no upward com- 
ponent of the resultant. The vertical com- 
ponent of R i s  

. . . . . . .  Rv = W - F cos 8 (64) 

The dangerous region in a structure i s  
near the point, E ,  where 8 = OO. Soil par- 
ticles a t  E will be on the verge of failure 
if R = 0. This condition will define the limit- 
ing case, or  

But equation (63) shows that F was the 
pressure gradient at any point. So the crit- 
ical gradient becomes 

The above equation states that the critical 
or flotation gradient i s  equal to the wet den- 
sity of the soil. 

A mathematical method5 has been 
developed for determining the critical gra- 
dients, or in particular the exit gradients in 
the vicinity of a cut-off wall extending into 
the pervious foundation material. The meth- 
od i s  based upon a function of the complex 
variable and makes use of the Schwarz- 
Chr istoffel transformation The derivation 
is not given here because of space limita- 
tions, but the results  that follow give the 
findings for the hydraulic exit gradient, GE, 
a t  the  c r i t i ca l  point fo r  several  cases.  

Case m. This is for a single pile-line 
with no s tep,  and no apron upstream o r  
downstream. 

W.S. 

Figure 9 - Exit Gradiente: Case One. 

SKhosla, A. N., Bose, N. K ,  and Taylor, 
E. M , Pesim of Weirs on Permeable Fow- m, Publication 12, Central Board of 
Irrigation, India, September, 1936. 

At Point C 

Figure 10 - Exit Gradiente: Caee Two. 

At Point -7 

Case TWO. This is for a single pile-line 
with step, and no apron upstream or  down- 
stream. 

W.S. 

I 
Y I 

E I 
7 , / / / / / ; / / , T ~  

where 
c = cos 8 

and 

t 
I 
I 
I 

dl 
I 
I 

i - - - - - _ s - - L  

The meaning of a l l  symbols used is 
evident from the sketches given above with 
the exception of c, which is a function in- 
volving dl, d2, and x , and is most readily 
determined from the curves of figures 11, 
12, and 13. 

c 
/ r /*, / ,  / 

t 
I 

q2 

The value of GE is obtained either by 
calculation or  by interpolation in Table 1. 

v m  OF Og (W m) 
(After Khosla, e t  s l ,  Fubllcatlom 12, 
CQLtlml Board or Irrlg.tlom, M i a .  ) 



Figure ll - Values of c for Use i n  Determining Exih 
Gradient. i 

Figure 1 2  - Values of c for Uee i n  Determining Exit 
Gradient (Continued). 



Figure 1 3  - Values of c f o r  Use i n  Determining &it 
Gradient (Concluded). 
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Figure 14 - Forchheimer's Graphical Solution of an Impervious 
Dam on a Pervious Foundation. 



Case Three. This is for a dam with no 
pile-line. 

Figurc 15 - Exit Gradients: Case Three. 

At Point B 

Along BC 

Exam le 4 Equations (67) and (68) may 
also&; determine the depth of piles 
to give a desired exit gradient First  con- 
sider the problem a s  shown in figure 9. 

Assume H = 14 feet and that i t  i s  de- 
sired to have an exit gradient of 0.2. (This 
will ve a safety factor of 5.) From equa- 
tion %7), 

= 22.3 feet. 

Now assume the problem to be a s  shown 
in f i w e  10. From equation (68) with GP 
= 0.2 and H = 14 feet; and letting dl - d i  
= 14 feet, 

By definition, 

and by definition 

t a n 8  - 8 = 
d2 

dl - d2 
Theref ore 

d2 = 20.0 feet. 

FactQ1- of S a m .  Theoretically, a struc- 
ture would be safe against piping if the exit 
gradients are only slightly smaller than the 
wet density of the soil. However, there are 
many factors, such a s  washing of the sur- 
face and earthquake e££ects, that could easily 
change such a stable condition into one of 
incipient failure. For this reason it  i s  de- 
sirable to have a factor of safety so  that 
the exit gradients a r e  much smaller than 
the critical value. Although the question 
of amount of factor of safety has not been 
settled, values of 4.0 to 6.0 have been pro- 
posed, the smaller value for coarse mate- 
r i a l  and the la rger  value for  fine sand. 

EXPERIMENTAL SOLUTIONS 

W e r Q  By choosing the appropriate analyt- 
ical solutions to the Laplace equation and 
combining their effects, many flow problems 
can be solved. Solutions other than those 
previously mentioned, however, are  usually 
cumbersome, and the use of experimental 
methods i s  justified. The five commonly 
used experimental methods are: 

1. Graphical construction of flownets. 

2. Membrane analogy. 

3. Electric analogy. 

4. Hydraulic models (including Viscous- 
Fluid Method). 

5. Field experiments on the actual 
structure. 

Each of these methods has an advantageous 
field of application. Of the five methods, 
the electric analogy has,in most cases,been 
found to give the best accuracy with the least 
cost and greatest speed. Where transitory 
effects a r e  of major interest, the use of 
hydraulic scale models i s  justified. The 
first four methods will be treated separately 
in the following paragraphs. 



of Flow N e b  It i s  
known that streamlines and equipotential 
lines are  everywhere normal to each other. 
Ignoring the effect of gravity, al l  boundar- 
i es  of a flow system must also be either 
streamlines o r  equipotential lines. It is 
possible then to make a sketch of a flow 
system, starting with the known boundary 
conditions. Professor Forchheimer ti in- 
troduced this method some forty years ago. 
The method is  approximate, but gives re-  
sults which a r e  generally sufficiently ac- 
curate for practical purposes. 

The method can be best demonstrated 
by considering the sketch shown in figure 14. 
It is assumed here that an impervious dam 
r e s t s  upon a pervious layer af foundation. 
material which in turn res t s  upon an im- 
pervious rock foundation A cut-off wall a t  
the center of the dam extends approximately 
halfway into the pervious material. The 
horizontal upstream line, AB, is a line of 
equipotential a s  is also the line FG. They 
a re ,  however, not a t  the same potential, 
but differ in potential by the depth of water 
in the reservoir, H The line BCDEF and 
the line LM a re  immediately known to be 
streamlines. Therefore, it is only neces- 
sary to insert additional streamlines between 
these two limits. All these lines must be 
perpendicular to AB and FG. We now 
choose an  arbi t rary  number of stream- 
lines within the area  arranged so  that the 
seepage passing between any pair is the 
s a m e  a s  that passing between any other 
pair. The equipotential lines are also spaced 
s o  that the drop in head between any pair 
is the same a s  that between any other'pair. 
The resulting ''flow net" will then possess 
the property that the ratio of the sides of 
each rectangle, bordered by two stream- 
lines and two equipotential lines, is a con- 
stant. This means, for example, that some 
distance m must be approximately equal 
to the distance n, that other distances such 
a s  m l  must be approximately equal to such ' 
distances a s  n l ,  and that m/n = ml /nl 
= a constant. The flow net is usually spoken 
of a s  consisting of a system of "curvilinear 
squares. " This is a trial-and-error method 
in which one must make the streamlines 
everywhere intersect the equipotential lines 
at right angles and also produce curvilinear 
squares. It usually requires more than one 
attempt to produce a good net Once the net 
i s  established it is possible to compute the 
quantity of seepage through the medium, the 
uplift pressure  caused by the percolating 
water, and the pressure gradient a t  any point. 

The following suggestions a r e  made in 
order to assist  the beginner in employing 
the graphical method: 

1. Study the appearance of all  available 
flow nets regardless of their source. 

2. Don't use too many flow channels in 
your first  and second trials. If necessary, 
additional flow channels can be inserted 
later. 

3. In your first trial observe the appear- 
ance of your entire flow net. 

4. Use smooth, rounded curves even when 
going around sharp corners. 

5. Make detail adjustments only after the 
flow net is approximately correct. 

Membrane Analoay. The study of f1c.u 
through granular material in the steady state 
resolves itself into solving Laplace s dif- 
ferential  equation fo r  specific boundary 
conditions. It can be shown that Laplace's 
equatisn also applies to phenomena which 
a r e  entirely unrelated to fluid flow. The 
small deflection of a loaded membrane is 
one of these phenomena, and, by analogy, 
may be used to solve fluid flow problems 
experimentally. The Laplace's equation 
also governs the flow of electricity in ho- 
mogeneous isotropic media. 

Consider a uniformly stretched mem- 
brane supported a t  tne edges and subjected 
to a uniform pressure, P, a s  shown in fig- 
u r e  16. Then, a s  in the case  of a thin- 
walled vessel  subjected to  a unifbrm in- 
ternal pressure,  the tension in the mem- 
brane will be given by the equation, 

r 
Figure 16 - Uniformly Stretched Mem- 

Forchheimer , Philip, J&draulilr, (Teubner , brane Subdected to a 
~e ipz ig ) ,  1930. U n i f  onn Pressure. 



since the tension, T, must be equal in all di- 
rections. The curvatures for the membrane, 
for small deflections, are given by the equa- 
tions, 

and substitution of equations (71) and (72) 
into equation (70) gives 

Equation (73) must be made to take the form 
of Laplace's equation, 

which is comparable wlth the equation, 

This can be accomplished by performing 
the experiment without applying the pres- 
sure, P; that is, if P is made equal to zero, 
equations (73) and (74) are  of the same form. 
The membrane then, since it satisfies La- 
place's equation, can be used for the deter- 
mination of streamlines, equipotential lines, 
o r  lines of equal pressure in any flow sys- 
tem where the model is subjected to the 
proper boundary conditions. 

The tech- 
n i q u ~ b e d n ~ ! ~ e i ~ P ~ ? d e v e l o p e d  by 
the Wlreau Other procedures could be used 

It will be assumed in the following dis- 

cussion that it is desired to determine the 
lines of equal pressure in a pervious earth 
dam resting on a foundation of the s ame  
permeability a s  the dam. A base plate about 
1/4 inch in thickness i s  cut to scale repre- 
senting the cross-section of the dam and a 
large portion of the foundation The amount 
of foundation to be included should be an 
area approximately three times a s  long a s  
the base width of the dam and twice a s  deep 
a s  the reservoir. (See figure 17.) 

! (  I 
Y - 

-L G 

Figure 17 - Menibrane -1. 

Around the boundaries of the model i s  
attached a vertical  s t r ip  of pyralin about 
1/16 inch in thickness. I ts  vertical ordin- 
a tes  a r e  made of a height proportional to 
the prototype pressure a t  every point. Re- 
ferring to figure 17, the s t r ip  would have 
a height of zero along FED. The point D 
is a t  first unknown a s  is the shape of CD, 
but it is known that the pressure along CD 
is zero and that  i t  is a lso a streamline. 
The exact determination of CD will be dis- 
cussed in another paragraph. Along CB 
the vertical strip would vary uniformly from 
zero height at C, to height H at  B. Height 
H could be made to any convenient scale, 
say 112 inch. If this scale  were  adopted, 
the vertical s t r i p  along BA would be 1/2 
inch higher than along E F  o r  a t  C. AL 
would increase in height from 1/2 inch a t  
A to 1-1/2 inches at L, and LG would de- 
crease to 1 inch at G. Finally, the bound- 
a ry  GF would drop in height from 1 inch 
at G back to zero a t  F. Not.? that in this 
system of boundary conditions, the pres- 
sures due to the gravitational potential have 
been added to the boundary conditions. 

Next the model is placed on a table, 
which is p a r t  of a scanning set-up, and 
leveled. A rubber membrane which has 
been uniformly stretched and fixed to a 
f rame approximately two feet square, is 
placed over the modeL Steps must be taken 
to insure that the membrane is everywhere 
in contact with the boundaries of the model. 

It has been found through experimen- 
tation that, if the boundary JE i s  made at 
zero pressure  and no attempt i s  made to 
force  the membrane into contact with the 
line KJDE, a line CD automatically de- 
velops at zero pressure and the equipotential 
lines become perpendicular to it. The line 



CD is then the desired ohreatic line. The 
model now is fully prep&ed and its surface 
can be surveyed. This is done with the de- 
vice shown in f i w e  18. which consists of . . 
tws 1-:.,r.ll-. t i ~ r s  suptcrt:nc .i trEvc:in? 
S.lr wt~i:l. i:. I I r rs  , z  f:icr3rn:c? 
depth-gage. The accuracy of the experi- 
ment i s  increased by painting the membrane 
with a thin coat of varnish and dusting the 
painted surface with flaked graphite, thus 
making the membrane an electrical conduc- 
tor. A 1/8-watt neon glow-lamp connected in 
s e r i e s  with the mic romete r  needle and 
membrane to a 110-volt alternatine-current 
source makes a very sensitive iLdicator. 
The exact point of contact between the mem- 
brane and he descending micrometer deoth- 
gage point is indicated gy the Lighting o i  the 
neon lamp. 

The membrane analogy does not lend 
itself to experiments in which the percola- 
tion factor of the material  i s  different in 
certain zones than others. It is not quite 
a s  accurate nor a s  rapid an experimental 
method a s  the electric analom. It is also 
difficult to make the boundary ordinates 
exactly correct  at every point. 

ce r t a in  problems a r i s ing  in the f ield of 
hydraulics, particularly in the branch deal- 
ing with the slow flow of water through earth 
masses. It may be applied to both two- and 
three-dimensional problems. The method 
consists essentiallv of oroducin~ and studv- 
ing an analogous conformation, &I which the 
actual flow of water in the soil is replaced 
with a s imi lar  flow of electricity through 
an electrolyte in a tank or tray that has the 
same relative dimensions as  the earth em- 
bankment. This i s  Dermissible since La- 
place's equation both the flow of 
electr ici ty and the flow of water,  where 
water can be considered a perfect  fluid. 

The analogy can be seen at once by com- 
paring Ohm's law, which emresses  the flow 
oi ~lx~z.rl:.rlrj L.r?ugr. 3 uriformly ?onducrive 
I!.? i i u ~ r ,  r~.:.:?. I:?r:.i's law, wilch expresses 
the flow of water through a homogeneous 
granular material. 

In performing an electric analogy ex- 
periment, a model is made of the prototype 
s t ructure ,  to scale. s o  that the DrototvDe 
t:slV(::ry c6-.di!:ons ;,re ~roner ly  represer;t'ed 
ky 5011r.Piry cor.diti.>ns i n  e1ectr:cal units. 
!r 1s be:;: to work in terms of notentials, ard 
the method will be better understood fi we 
consider a specific case. Imagine an earth 
dam with cross-section a s  shown in figure 
19. restine on an  imoervious foundation In 
wdrkng z t h  the electric analogy the poten- 
tial function is usually written in the follow- 
ing form. for it is more convenient to work 
in-units such a s  feet of head acting or per- 
cent of head acting: 

where 

Flgure 18 - Membrane Analogy Model. p = the pressure- head , and 

Electric Analogy. The electric analogy i s  y = the vertical coordinate of the 
w e d  to obtain experimental solutions to point. 

Darcy's law 

KAH 
Q=- 

L 

Q = ra te  of flow of water 

K = coefficient of permeability 

A = cross-sectional area  

H = head producing flow 

L = length of path of percolation. 

Ohm's law 

I = K' A' V 
L' 

I = current (rate of flow of electricity) 

K'= conductivity coefficient 

A'= cross-sectional area  

V = voltage producing current  

L' = length of path of current 
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In this case, also, 

B y  use of equation (76) we may establish 
the boundary conditions for the modeL The 
rectangular coordinate system will be taken, 
a s  shown in figure 19, with the origin a t  the 
base of the dam and y positive upward. 
Equation (76) will be used with the '+ sign. 
Now, along the upstream face of the dam 
lb will become equal to a constant (H in this 
case),  because everywhere on this face 

Along the downstream face of the dam 
where p E 0, 

This means that ld varies directly with y. 
The third boundary condition to be met is 
the establishment of a phreatic line. This 
line, a s  mentioned before, is a line of zero 
p r e s su re  and also a streamline. Since 
p = zero along the phreatic line, from equa- 
tion (76) we have again 

Mathematically, the boundary conditions are  
satisfied by equations (76) and (79). These 
can also be satisfied on the electric analogy 
model. The determination of the phreatic 
line is not direct, however, bui is a cut-and- 
try process. It will be discussed in detail 
hereinafter, The base of the dam, in this 
example, is a streamline and may be repre- 
sented by any nonconducting material. 

of the. Electric an- 
alog-are usually prepared from 
pyralin A thin sheet of pyralin is cemented 
to a piece of plate glass by .the use of ace- 
tone. On this plate a r e  erected vertical 
strips cd pyralin along the lines which define, 
to scale ,  the cross-section of the dam. 
These strips a re  cemented with acetone to 
the pyralin plate. In the model the constant- 
potential upstream boundary is represented 
by a stripof brass or copper which is a t  a 
constant electric potential. The base of the 
dam, which is a streamline, is represented 
by the pyralin strip, for it is a nonconductor. 
The downstream face, along which the poten- 

tial varies, is approximated with a ser ies  
of small brass or copper strips connected 
in series with small resistors. The phreatic 
line, which is also a streamline, is made 
of modeling clay so  that there can be no 
flow across it, and also so  as  to facilitate 
rapid change of its location in the cut-and- 
try procedure. The original position of the 
clay boundary representing the phreatic line 
can be determined by approximation. The 
experienced operator can estimate i ts  po- 
sition very closely. 

Once the boundaries of the model a r e  
prepared the tray is filled with a salt  solu- 
tion or ordinary water, to act a s  an elec- 
trolyte. The electrical circuit is shown on 
the accompanying drawing, figure 20. The 
circuit is essentially a Wheatstone bridge, 
with the model connected in parallel with 
the main resistor having the variable-center 
tap. In the cross-circuit the probing needle 
is connected to the variable-center tap 
through a small cathode-ray tube which acts 
a s  a null-indicator. 

. . Determination of the Phreatlc T,,ln . . . 
When the model is prepared and set  in p$- 
sition, a point is selected on the assumed 
phreatic line a distance y above the im- 
pervious foundation and the potential is read 
a t  this point. The potential a t  this point 
must equal y, a s  stated in equation (79), 
since p = 0. Since we are  working in per- 
cent, we may state that if a t  the point in 
question y equals 80 percent of H (where 
H is the depth of water in the reservoir), 
then (d must equal 80 percent If (d a s  read 
on the bridge is not 80 percent, the clay 
boundary is moved until y = lb. Several 
points must be checked in this manner until 
the final determination of the phreatic line 
is made. 

Once the phreatic line is determined, the 
potentials throughout the model may be read 
on the Wheatstone bridge. These are  plotted 
a s  equipotential Lines and are  shown, for the 
case discussed, in figure 19. The experi- 
mental problem is completed when the equi- 
potential lines are  determined. From these 
lines may be computed the lines of equal 
pressure, losses of water due to seepage, 
and pressure gradients. Streamlines, if 
desired, a r e  drawn perpendicular to the 
e4uipotential lines. Lines of equal pressure 
a r e  computed from the equation 

where values of 0 a r e  selected from the 
equipotential net and , y is the percent of 
head, H, a t  the (d point in question , The 
pressure, p, will also be in percent of head. 
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Figure 20 - Electric Analogy D ~ ~ t i c  Layout. 



Figure 21 - Circuit DIS@?&~ O f  Selecting,  h?plifying, aPd Inhi- 
cating Unite o f  the Electr ic  'AnalOff~pparatus. 
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T h e  equa l -p ressure  l ines a r e  shown in ' :m. .. fir, . ., J . ~ : c -  
figure 19. . ....,..- .. ... 

The ;:I :z:ric .,r:;13;:1 is rnosr ?c l i l y  
: l inrcJ 12 ;r-t.l?!:.s in ,.v1::.:ll !he : + ? r e -  

abiiitv coefficient (corresnondini  to the 
elect?: ::l :ontl~~.::ivir;. ir consc.1.: r!u'ol~l;i - 
>ur dl? err:?. soil 7 .  .:.:.. However, i t  (:.n 
be used for nroblems in which the nerme- ... . . . ... r:, cocrii:iert I.? nor a :.-:.:..:;rt ctru::?- . . 
out L?C cr.r:re .- 7:. .., >.:t 1s co!.~rl?t i:. czr -  
tain regions. In problems of this type, the 
depths of solutions in the tray are  made pro- 
portional to the various permeabilities. The 
experimental resul ts  shown on figure 19 
a r e  based upon a dam having a core rnate- 
r i a l  half a s  permeable a s  the material  in 
the outer zones. 

For a schematic diagram of the Wheat- 
stone bridge used by the Bureau of Reclama- 
tion and a photograph of the equipment, see 
f igures 21  and 22. 

An Anproximate Solution of a Ranid- 
Drawdown Problem. In solving a rapid- 
. : . ~ r t : .  by t1.e T: . .IP:C ? n ~ . c ~ :  
rmy, r!:: ~ T P W ~ - ' M I .  is ^ 3 n s i u ~ . ~ e ;  be ic- 
c.anr;~r.r~-.:s 2nd r1111t; t t?  :.e.:,l of w r..r .#itti- 
in the dam remains a t  the full-reservoir 
water surface elevation In other words, the 
point of intersection of the iull-reservoir 
water, surface  with the upstream face of 
the dam i s  the 100-percent potential. The 
surface from this point along the upstream 
iace;to the lowered water surface elevation 
i s  considered to be a f ree  surface. and the 
o i  ? I ? N  tt!e :3.~5re.i wqtcr sll~i? .2 i.: 
:.i .: ?oc~rli LI LO L:.G :-woreJ e l ~ ~ ; l :  n 
:.vise:! t y  rile '111-reserv :r elov,t:.r.. 

Figure 23 - Model for  a Drawdown 
Problem. 

surface and connected to the proper resist- 
ance. The remaining resistance is varied 
uniformly along the upstream face, reaching 
100 percent at the entrance of the phreatic 
line. Wires may be extended from th- - re-  
sistance box used on the downstream face 
to the resistance strips on the upstream face 
(see figure 21). The equipotential lines are  
then surveyed in the usual way. 

With the equipotential lines thus estab- 
lished. the streamlines mav be drawn. use 
cei!.:: 111a-e ?i -:!, f a x  r .  .! !:.e r w i  :;ys::l: :: 

?I:rr z e  onk: :? r::. I .  i: . i t  : 
lines, the pressure net may be dravh by the 
use of equation (80). An example of the flow 
net and pressure net i s  shown in iigure 24. 

. . Ac: :i: !ixs or :ne 'l.:.tri: rir . . .  -,;. A. it.,.;: 
nrd.%ri ::I -?,!I I Ins L: .:-. : .:~e t>.!,:. :.:::.:-, ! :)y 
the electric analow a r e  included here be: 

tions on a ilow problem. 
The phreatic line i s  first established for 

a full reservoir  in the usual manner. The een M Dam tud . This was 
upstream, or 100-percent, electrode i s  then a e- for  the de- cut down b the of the lowered water termination of uplift pressures and the flow 

net existing in the dam. It is included here 

p because it demonstrates that in a zoned darn 

! 
in which one zone is  of relatively impervious 
material, practically all the head losses will 
occur in this material even thouah the water 
has previously passed through 3 relatively 
pervious zone. 

Fiaure  25 shows the flow net and the : ? 
p r e s s i r e  net  that  will exis t  in the dam 
f o r  the section studied. Figure 25 shows 

',T . ., . :.. two photographs of the models used in the 
.:+>-., e x ~ e r i m e n t s .  Salt solutions of different . , . . ... 

, .. cokcentrations were used in  the experiment 
... :" 
::ti::z ,....,, to  represent  different permeability coef- 

ficients. This  procedure was abandoned 
Figure 22 - The Electric Analogg Trsy. later in favor of the method of varying the 
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Figure 24 - Rapid-dtawdm Flov and Preeeure Nete for 1 : l  
Upetreem and 1: 1 Davnetreaaa Slopa,  Homogeneow 
and Ieotropic Wterial. 



Figure 25 - Electric Analogy Study of Green Mountain Dm, 
Colorado-Big Thompeon Project. 



Figure 26 - Green Mountain E l e c t r i c  Analogy Models. (Top: 
Original  Model. Bottom: Af te r  Modification. ) 



depth of solution to represent  different 
permeability. 

The results presented herein a r e  based 
on two separate approaches. In one case, 
the model of which is shown in the upper 
half of figure 26, electrolytes in three sepa- 
rate compartments and of three distinct salt 
concentrations represent the inner zone 
and the two adjacent outer zones. In the pro- 
totype, the permeability coefficients asso- 
ciated with these zones a r e  0.23, 4.1, and 
9.2 for the inner, upstream, and downstream 
zones, respectively. These a re  in terms of 
feet per year per unit gradient. For  each 
zone these permeability coefficients repre- 
sent the average values obtained from soil 
tests made at the damsite. The necessary 
condition that the electric potential at any 
point on the boundary of one solution be 
equal to the electric potential a t  an oppo- 
s i te  point on the boundary of the adjacent 
solution has been approximated by the in- 
stallation of small str ips of sheet copper. 
These were bent over the pyralin sheets 
separating the solutions, and spaced closely 
a s  shown in the upper half of figure 26. 

The boundary conditions were met in 
the usual manner. The upstream boundary 
is a line at constant potential and was made 
of copper. The rock foundation base-line 
is obviously a streamline and was repre- 
sented by means of a str ip of pyralin. I t  
was assumed to be at Elevation 7690 for  
the full length of the cross-section. The 
downstream boundary of the downstream 
Zone 2 (see figure 25) is a line of uniformly 
varying potential, providing that the perme- 
ability coefficient of the next downstream 
zone is quite large by comparison This 
condition is fulfilled in this case. The vary- 
ing electric potential along the boundary was 
obtairied by placing along it 26 equally spaced 
pieces or segments of copper, which were 
connected with a ser ies  arrangement of 25 
one-ohm resistors, as shown in the photo- 
graph. When the top segment, which has 
its centerline at reservoir level, is connected 
to the upstream copper boundary, and the 
Wheatstone bridge is connected across the 
upstream copper boundary and the down- 
s t r e a m  segment at foundation level, the 
necessary electrical  connections a r e  in 
order. This method of approximating the 
varying electric potential boundary by finite 
increments does not give satisfactory results 
unless the current going through the resis- 
to r s  is large relative to the current going 
through the solutions. This will be the case 

. when the aver-all resistance of the solutions 
is large relative to the total resistance of the 
varying potential boundary. 

The remaining boundary condition to be 

installed is  the upper streamline, or phreatic 
line. It i s  both a streamline and a line of 
zero pressure. Its location is unknown and 
must be found by a cut-and-try process. 
I t  i s  formed with modeling clay, and is in 
correct location when the condition of zero 
pressure has been fulfilled. This will be 
when the potential a s  measured with the 
Wheatstone bridge varies linearly with ele- 
vation changes along this line. 

In the process of fixing the phreatic line 
and surveying the equipotential lines, two 
facts became apparent. I t  was obvious that 
there was no detectable voltage drop in the 
upstream salt solution and only a negligible 
drop in the downstream salt solution Also, 
i t  was practically impossible to adjust the 
clay correctly for the phreatic line in the 
downstream sal t  solution. Results of the 
tests showed that the problem could be better 
and more adequately handled by using only 
a single salt solution for the central o r  inner 
zone, and moving the copper boundaries to 
the extremities of this inner zone. This 
change was made on the model as shown in 
the lower photograph of figure 26. The up- 
stream boundary of the inner zone was then 
held a t  constant potential, and the down- 
s t r e a m  boundary a t  uniformly varying 
potential. 

Equipotential lines surveyed on the mod- 
ified model a r e  shown in the upper half of 
figure 25. The streamlines have been drawn 
orthogonal to the equipotential lines. The 
pressure  net has been obtained from the 
equipotential system by subtracting from 
it the elevation component. The nets have 
been continued through the downstream zone. 
The probable position of the f ree  surface 
in this zone has been obtained mathemati- 
cally by assuming that in the major portion 
of this zone the phreatic line is a straight 
line, and by equating the quantity of water 
passing this zone to  the quantity computed 
from the flow net in the inner zone. 

-. This electric 
analogy study is included because i t  demon- 
s t ra tes  the effect of several  materials of 
different permeability on the flow net and 
pore-pressure distribution in a dam and its 
foundation. Two cross-sections of the dam 
and foundation were studied a s  shown in 
figures 27 and 28. Note that the dam has a 
tight, impervious mater ia l  in its center 
zone (K = 1.0 foot per year) flanked up- 
s t r e am and downstream by a relatively 
pervious material (K = 10.0 feet per year) 
with additional rock-fill material  on the 
downstream face of the dam. The down- 
stream rock fill is an excellent filter which 



Figure 27 - Electric Analogy Study of Debenger Gap Dam. 
Section in River Chamel. 
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Figure 28 - Electric Analoe Study of Debenger Gap Dm. 
Section on Left Ab-nt. 



relieves the pore pressure along i ts  bound- 
aries and prevents high exit gradients. The 
zoning of the materials, in general, i s  con- 
sidered very good. By having a pervious 
material upstream a s  well a s  downstream 
in the prototype, the internal pore pressures 
would be almost immediately relieved for 
a rapid drawdown of reservoir. 

The experiment had to be performed 
in two distinct steps due to the great dif- 
ference in the permeability of the founda- 
tion material and the materials within the 
dam. F i r s t ,  the foundation was  treated 
separately and the equipotential net estab- 
lished. The potentials thus established 
were  then imposed upon the base bf the 
dam for use in determining the equipoten- 
t ials  for  the dam itself. The differences 
in permeability of the materials in the dam 
were  provided in the model by h-3ving a 
depth of solution 10 t imes a s  great  in the 
outer zones a s  in the inner zone. 

The results  of the study a r e  shown in 
figures 27 and 28. 

Pavis Dam Study. The purpose of this 
e lec t r ic  analogy study was to determine 
the pore pressures due to the percolating 
water, and the effectiveness of sheet-pile 
cut-offs and a clay upstream-toe blanket in 
reducing the water losses  from seepage. 
The cross-section of the dam, with per- 
meability coefficients for the various mate- 
rials, is shown in  figure 29. Note that the 
general scheme of zoning materials is much 
like tha t  used f o r  Debengef Gap Dam. 

The f i rs t  step in the procedure was to 
study the dam and foundation shown in figure 
30, which has no cut-cbl wall or clay blanket. 
Water losses and pore pressures were then 
computed for this condition and compared 
with resu l t s  obtained for  other assumed 
conditions. 

Conditions assumed and studies made 
were a s  follows: 

1. No cut-off wall--no clay blanket. (See 
figure 30.) 

2. Cut-off wall extending to bedrock, 
with 1/32-inch openings between 16-inch 
sheet-piles. 

3. Cut-off wall extending nine-tenths of 
the depth to bedrock.  (See f igure  31.) 

4. Cut-off wall extending eight-tenths 

of the depth to bedrock. (See figure 32.) 

5. Cut-off wall extending seven-tenths 
of the depth to bedrock. (See f igure 33.) 

6. Cut-off wall extending five-tenths of 
the depth  to bedrock.  (See f igure  34.) 

7. Clay blanket extending 315 feet up- 
stream from core of dam. (See figure 35.) 

8. Clay blanket extending 515 feet  up- 
stream from core of dam. (See figure 36.) 

Table 2 consolidates the information 
obtained. Note that a cut-off wall of depth 
equal to nine-tenths the thickness of the 
foundation material reduces the percolation 
losses by only 23 percent. Also. note that 
if sheet-pilings have joint openings of a s  
little a s  1/32 of a n  inch, they a r e  almost  
totally ineffective in reducing percolation 
losses. 

A 315-foot clay blanket on the upstream 
toe reduces the percolation through the foun- 
dation material by a n  amount equal to the 
reduction caused by an impermeable cut-off 
wall of depth equal to nine-tenths the depth 
of the permeable foundation. In addition, 
the clay blanket without cut-off walls gives 
the mos t  favorable distribution of uplift 
pressures for  stability calculations. 

The amount of percolation through the 
clay core is shown on figure 37. In com- 
parison with percolation through the foun- 
dation material, the percolation through the 
c o r e  is extremely insignificant, and the 
width of the core may therefore be decreased 
if desired. 

Figure 37 indicates a rapid increase of 
the percolation gradient near the downstream 
intersection of the core with the toe blanket. 
This increase in the percolation gradient 
could be effectively reduced by a clay fillet 
between the core  and the downstream-toe 
blanket. 

If the 60-foot deep clay cut-off section 
in the excavation portion of the foundation 
(ABCDA in figure 29) were replaced by a 
clay lens with a n  average depth of 5 feet  
and the s a m e  total length of 645 feet, lo- 
cated at  or  near the original streambed, the 
total underflow would be increased to only 
8.6 second-feet (or 43 percent over Condi- 
tion 1) with a considerable decrease in exca- 
vation and fi l l  requirements. 



Figure 29 - Electric Analom Study of Davie Dam vithout Cut- 
off Wall or C l a y  Blanket. Rete for Dam and 
Foundation Superimpoeed. 
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Figure 37 - Electric Analogy Study of Davie Dam. CLey Core. 
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TABLE 2 

FWUTIE OF DAVIS DAM PERCOIATIOH 8TUDDS 

Bvdraulic Models. Hydraulic models may 
beused to determine the flow p.foperties of 
a hydraulic structure. It is possible to de- 
termine streamlines and equal-pressure 
lines directly, and equipotential lines can 
be located from either pattern. There a r e  
two distinct types of hydraulic experiments 
employed in the study of slow flow through 
granulas materials. One experimental pro- 
cedure  i,s, known a s  the ' Viscous-Fluid 
Method. The  other may be  called the 
"Hydraulic Scale-Model Method." Only the' 
former i s  described herein. 

Average underflow per Total 
Conditions foot width of streambed, underflow, 

second-f eet second-f eet  

1. No obstruction (fig. 30) 10.20 x 10 '~  5.95 

2. Sheet-piling, 1/32-inch 
opening between 16- 
inch piles 10.10 x lo-3 5.90 

3. Cut-off wall, D'/D = 0.9 
(fig. 31) 7.86 x 4.60 

4. Cut-off wall, DO/D = 0.8 
(fig. 32) 8.61 x 1 0 ' ~  5.04 

5. Cut-off wall, Dg/D = 0.7 
(fig. 33) 9.20 x loe3 5.38 

6. Cut-off wall, D' /D = 0.5 
(fig. 34) 9.53 10 '~  5.58 

7. 315-foot clay blanket on 
upstream toe (fig. 35) 8.02 x lom3 4.69 

8. 515-foot clay blanket on 
upstream toe (fig. 36) 6.85 x 4.01 

a material such a s  bakelite, the thickness 
of the model being such that the model fits 
snugly between the glass plates of the tank. 
Before insert ing the model between the 
plates, it i s  greased to insure watertightness. 
Water is then made to flow slowly under the 
model from the upstream to downstream end 
of the structure, and after the flow has be- 
come steady a permanganate solution is 
added. It will flow in distinct streamlines 
within the water, a s  shown for a weir in (a) 
of figure 38. Pressure lines can be deter- 
mined from the streamlines. 

Underflow in percent 
of underflow for  

Condition 1 

100 

99 

77 

85 

90 

94 

79 

67 

U S - F ~ ~  - .  . The Viscous- 
Fluid Method is one that gives very rapid 
results with a minimum of equipment. It is 
best suited for the determination of stream- 
lines under a weir or diversion dam resting 
on a pervious material, in which case  the 
structure itself is considered impervious. 
The effect of cut-off walls extending below 
the structure is clearly shown. 

Experimenters have also used glycerine 
a s  the fluid in place of water in performing 
this type of experiment. In this procedure 
dyed glycerine is introduced a t  specific 
points. This colored glycerine will flow 
along with the plain glycerine in well-defined 
streamlines. A photograph of the apparatus 
under t e s t  is shown in (b) of f igure  38. 

To perform the experiment, a small tank PERMEABILITY O F  
is constructed with parallel sides of glass M ATERLALS 
plate spaced a s m a l l  distance apart. A 
model of the cross-section of the dam with General. In order to determine the seepage 
i ts  protruding cut-off walls is then cut from losses through concrete and earth dams, or 



and 4. 

Concrete Permeability. The Bureau of 
Reclamation has made some extensive tests 
on the permeability of concrete . A sum- 
mary of the results obtained from these tests 
i s  given here with an example showing appll- 
cation of the data. 

Figure 39 shows how the permeability 
of a concre te  specimen v a r i e s  with the 
length of tes t  specimen. Figure 40 gives 
the variation of the uermeabilitv with water- 
cement ratio and mkximum-size aggregate. 
The figures adjacent to the smal l  c i rc les  
indicate the number of cvlinders in each 
se r i e s  of tests. 

The conclus~ons of the tests a r e  enum- 
e r a t e d  in the  e lght  p a r a g r a p h s  below: 

1. Percolat ion of water  through m a s s  
concrete follows the normal laws of viscous 
flo7,~ a s  expressed by an equation of the form 

$= K 5 (Darcy's law) in which K i s  the 
fi L 
permeability coefficient or  the unit rate of 
discharge a t  unit hydraulic gradisnt. F o r  
use in the above the coefficient a s  obtained 
in tests  on laboratory specimens must be 
properly corrected for specimen end-effect 

2. F o r  the concre te  tested, the major  
Figure 38 - Streamlines Obtained by' factors controlling permeability were water- 

Viscoua-Fluid Method. (TOP: cement ratio and maximum size of aggregate. 
Streamlines d e r  a Weir. For water-cement ratio values ranging from 
Bottom: lmder a 0.45 to 0.80 by weight, the corresponding 
Cut-off Wall. range in permeability for mixes containing 

through other earth masses, one must know the same maximum s ize  of aggregate was 
or  be able to determine the permeability 
coeffici-nt of the soil or concrete. The per- 
meability coefficient of concrete and soils Ruettgers, A., Vidal, E., and Wing, S. P., 
cdvers a vide range. Values of K obtained "Permeability of Mass Concrete," Proceed- 
from various sources a re  given in Tables 3 &, ACI, Vol. 31, 1935. 

I- 

LENGTH OF CYLINDER IN INCHES 

F i w e  39 - Variation of Permeability Coefficient with 
Iength of Test Specimen. 



TABLE 3 

TYPICAL PERMEABIUTY COEFFICIENTS FOR VARIOUS MATERIAIS 

(Coefficient represents quantity of water in cubic feet per second, per square foot of su r -  
face exposed to percolation, passing through one foot of material wlth one foot of head 

differential 4 = - .) 
L 

Materials K x 1012 

Granite specimen 2 - 10 
Slate specimen 3 - 7 
CONCRETE and MORTAR, w/c = 0.5 to 0.6 1 - 3 00 
Breccia specimen 20 - 
CONCRETE and MORTAR, w/c = 0.6 to 0.7 10 - 650 
Calcite specimen 20 - 400 
CONCRETE and MORTAR, w/c = 0.7 to 0.8 30 - 1,400 
Limestone specimen 30 - 50,000 
CONCRETE and MORTAR, w/c = 0.8 to 1.0 150 - 2,500 
Dolomite specimen 200 - 500 
CONCRETE and MORTAR, w/c = 1.2 to 2.0 1,000 - 70,000 
Biotite gneiss in place, field test 1,000 - 100,000 
Sandstone specimen 7,000 - 500,000 
Cores for earth dams 1,000 - 1,000,000 
Slate in place, field test  10,000 - 1,000,000 
Face brick 100,000 - 1,000,000 
CONCRETE, unreinforced canal linings, field test 100,000 - 2,000,000 

*Steel sheet-piling, junction open 1/1,000 inch with 1/2 inch 
of contact and 18-inch sections 500,000 - 

'CONCRETE, restrained slabs with 1/4 percent to 
112 percent reinforcing--300 temperature change 1,000,000 - 5,000,000 

Water-bearing sands 1,000,000,000 

*Flow through 1-foot length of crack, 1 foot deep, Q = 30,000 -fl b3, where b repre-  . sents the crack width in f e e t  L 

about 1 to 100. For  a given water-cement 
ratio with aggregate ranging from 114 to 9 
inches maximum size,  the average range 
in permeability was about 1 to 30. In both 
of these comparisons the cement content 
was also a variable. 

3. Analysis of the physical make-up of 
concrete indicates that percolating water 
finds passage mainly through the following: 

(a) Inter-sand voids above the settled 
cement paste,  the s i ze  of the voids in- 
creasing rapidly with water-cement r a -  
tios over 0.4 to 0.5 by weight. 

(b) Relatively minute voids in the ce- 
ment paste, the porosity of the paste and 
the s ize  of the voids depending more on 
the state of chemical reaction than on the 
water -cement ratio. 

( c )  Voids underneath the larger  ag- 

g rega tes ,  caused by the se t t lement  of 
m o r t a r  and pas te ,  the amount of voids 
depending mainly on the s i z e  of the ag- 
g r e g a t e  and the  w a t e r - c e m e n t  ra t io .  

4. Increasing the age of the tes t  speci-  
men, without interruption in curing, to the 
time when the permeability coefficient was 
determined caused a re la t ive  reduction 
in permeability in the ra t io  of 3 to 1 be- 
tween the ages of 20 and 60 days, respec- 
tively, and in the rat io of 2 to 1 between 
the ages of 60 and 180 days, respectively. 
The extent to which percolating water may 
be expected to compensate for interrupted 
moist-curing was not established in the 
tests  completed to date. 

5. Due either to the manner of preparing 
specimens for t3st o r  to other causes, there 
was an end-effect which made short speci- 
mens less permeable per unit of length than 
long specimens. The end-effect was found 
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Figure 40 - Variation of Permeability Coefficient with 
Water-Cement Ratio and Maximum Aggregate. 

to be equivalent to increasing the length of 
the specimen about 6 inches (or 3 inches 
for each end). 

6. Percolation of water through concrete 
gradually removes the chemical compounds 
of the cement through solution The amount 
of percolating water required to bring about 
a given degree of dissolution, dependent on 
the character of the supply water, i s  directly 
proportional to the cement content. On the 
premise that removal of 25 percent of the 
original lime content of the cement i s  ac- 
companied by little strength loss of the con- 
c re te ,  a s  indicated by the relatively few 
tes ts  made to date, i t  i s  estimated that at , 

least 35 cubic feet of water, equivalent to 
distilled water in corrosive properties, must 
percolate per pound of cement before one- 
half of the strength of the concrete i s  sac- 
rificed. 

lining is  to be placed pneumatically using 
a mix with 2-inch maximum aggregate and 
a water-cement ratio of 0.75, with one barrel 
of cement per  cubic yard (14 pounds per 
cubic foot). Compute the leakage. 

From figure 40, K = 350 x 10-12, and 
by figure 39 the value applicable to a 6-inch 
layer of concrete i s  0.8 of this amount, o r  

280 x 10-12. Then leakage per square foot 
of tunnel is 

- - 112'000 second-feet, 
10l2 

7. The reasonably satisfactory correl-  
and the total leakage from the tunnel is 

ation of permeability test data from many 
sources by means of the permeability coef- Q = ( n U L )  x 112,000 
ficient, indicates that permeability i s  a def - 
inite physical property of concrete suscep- 1012 
tible of evaluation. 

,8. Study of the pore structure of concrete 
indicates the possibility of uplift acting on 
85 to 95 percent of the pore area of the con- 
crete penetrated. However, in large grav- 
ity dams the time required to develop up- 
lift through the entire section may be many 
years. 

ExamDle To reduce head loss  and 
lower the leakage, a 6-inch concrete lining 
is  proposed for a 10-foot inside-diameter 
tunnel two mi les  long under a 200-foot 
head, carrying snow water and located in 
volcanic district free of groundwater. The 

4 5 

= 0.04 second-feet, or  3,500 cubic 
feet per day. 

Soils. The determination of 
the coefficient of permeability, K, for soils 
i s  difficult. Experimental methods which do 
not employ undisturbed samples give ques- 
tionable results, for it i s  known that com- 
paction affects the permeability of the soil. 
Laboratory tes ts  on undisturbed samples 
may yield good results, but the method is 
expensive, applies to srr.a.11 regions, and 
sometimes samples a re  difficult to obtain. 



Field permeability tests have obvious 
advantages over laboratory testing, since 
they more nearly approach actual flow con- 
ditions and give average results for a rela- 
tively large  region. The best known and 
probably most reliable field tests a r e  the 
~ h e i m ~  ' and Theis tests. These tests 
employ a. pumping well which fully pene- 
t r a t e s  the  aquifer to bedrock. Radially 
placed observation holes a r e  necessary to 
supply t es t  information. These tests  a r e  
usually expensive and may be impossible 
to run, but, when possible, they yield ex- 
cellent average results for a large region 
They a r e  not suitable for measuring aniso- 
tropy, local effects, or variation in the per- 
meability of successive strata comprising 
the aquifer. In the Theim test, equilibrium 
must be approached; however, the drawdown 
a t  the well may be any percent of the depth 
of the aquifer provided H is treated accord- 
ing to equation (81), which follows. In the 
Theis test, equilibrium need not be achieved; 
here, however, the drawdown should not be 
m o r e  than 10 percent. of the depth of the 
aquifer. 

Theoretical investigations and field ex- 
perience both indicate that field permeabilitg 
tests can and should be chosen for maximum 
simplification of field testing procedure. 
Simplified field permeability tests have been 
developed which a r e  inexpensive and appli- 
cable to either localized or large region test- 
ing. These tes ts  require one uncased or 
partially cased hole per test and measure 
the outflow or  inflow rate from this hole 
under a known constant head. Test proce- 
dure is essentially the same for all physical 
conditions of the material under test, and 
the results a re  obtained simply and used for 
permeability determination 

Use of the simplified test procedure in- 
troduces slight systematic distortion in the 
results as the geometrical applicability Lim- 
its a r e  approached Field experience has 
shown, however, that the magnitude of other 
indeterminate influences such a s  peripheral 
compaction, peripheral silting, local het- 
erogeneity, capillary action, and sometimes 
chemical effects, will usually make this 
geometrical distortion trivial by compar- 
i son 

8 Theim, A., in Forchheimer, op. cit., 
p. 70. 

9 Theis, Charles V., "The Relation be- 
tween the Lowering of the Piezometric Sur- 
face and the Rate and Duration of Discharge 
of a Well Using Ground-Water storage," 
Transactions American Geophysical Union, 
16th Annual Meeting, April, 1935. 

A field permeability test consists  es-  
sentially of an artificially induced seepage 
flow system with known boundary conditions 
and flow quantities. If a flow function 0 can 
be found which satisfies the installed field 
boundary conditions, and equations ( l l ) ,  ( 13), 
or  (16), the soils permeability can be com- 
puted directly. A logical procedure is to 
induce a simple flow system for  which pl 
is known Systems such a s  rectilinear flow, 
radial flow, or spherical flow a r e  simple 
systems to install and are  easily computed. 

These three flow systems will be dis- 
cussed separately to indicate more clearly 
their zones of application. 

. . W e a r  Flow. ~ e c t i l i n e a r  flow, 
equation (I), was used by Darcy in his orig- 
inal observations associated with sand fil- 
t e r  beds. This type of flow resul ts  from 
allowing water to percolate through a vol- 
ume of undisturbed soil surrounded by an 
impervious cylinder. The standard labo- 
ra tory  permeability tes t  uses rectilinear 
flow and should give excellent resul ts  if: 

1. The material is not disturbed. 

2. Leakage or excessive flow a t  the cyl- 
inder -mater ia l  interface is eliminated. 

3. Gradients through the sample  give 
velocities which a r e  within the valid region 
for Darcy's law. 

Rectilinear flow is rarely used in field per- 
meability tests because of the mechanical 
difficulties involved and the limited region 
tested. Its chief application is in the meas- 
urement of anisotropy. 

Two-Dimensional Radial Flow. Equations 
(20) through (26) give the mathematical de- 
velopment for two-dimensional radial flow. 
Equation (24) states that the quantity of flow 
f rom o r  to a well that fully penetrates a 
confined homogeneous pervious stratum i s  
directly proportional to the depth, T = z, of 
the s t ra tum;  the permeability, K,  of the 
stratum; and the differential head, H = pb 
- pa (see figure 2); but is inversely pro- 
portional to the logarithm of the rat io of 
radius b to radius a. It is evident that flow 
to a well which fully penetrates a horizontal 
aquifer is two-dimensional r ad ia l  flow. 
When the  pervious bed has no confinin 
upper impervious stratum (nonartesian?, 
flow to or  from a well will have a n  axial 
component in the vicinity of the well. This 
variation from the idealized flow has a neg- 
ligible effect on the results  if H is small 
relative to T. The percent e r r o r  will be 
of the same order a s  H to T. When H i s  



large relative to T, Muskat l o  has shown 
that equation (24) may be applied to a radial 
gravity flow system if the driving head H is  
modified according to the equation 

Equation (81) defines a modified driving head 
which approaches H/2 as  H approaches T 
and is almost equal to H a s  H becomes 
small relative to T. 

Thus, a two-dimensional radial flow sys- 
tem is readily reproduced and analyzed if 

1. Full penetration of the pervious layer 
by the pumping well can be achieved. 

2. Observation wells a r e  available for  
determining the driving head between suc- 
cessive radii. 

The full penetration requirement makes 
the test  cost  excessive for deep pervious 
strata. However, the tests are  ideally suited 
to relatively thin pervious strata already 
equipped with pumping or drainage wells 
where only the horizontal permeability is 
desired. 

mree-Dimensional Radial Flow. 

a. Equations 
(54) t h r o u g h ~ e m a t i c a l  de- 
velopment for three-dimensional radial flow. 
Equation (57) states that the quantity of flow 
from or  to a spherical  source or sink is 
directly proportional to the driving head, H, 
(h - the permeability of the surround- 
ing material; and the radius of the source or 
sink. It is inversely proportional to one 
minus the ratio between the inner and outer 
radii used in measuring the differential head 
The effect of the ratio of radii in the denom- 
inator is negligible if b is large relative to 
a. In most real cases b will be at least 20a, 
therefore, neglecting this term will change 
the results by about 5 percent or less. For 
determining the field permeability of soils, 
only hemispherical flow need be considered, 
and letting the outer radius b be large com- 
pared to radius a leads to the simplified 
form of equation (57) 

l o  Muskat, op. cit. 

where 

This simplification immediately eliminates 
the need for an observation well if the ground 
water level is known and if no major  ob- 
stacle,  such a s  an impervious l ayer ,  i s  
closer than 5a to the source. 

It i s  not necessary to make the test  well 
for a three-dimensional radial flow syst'em 
fully cased except for a hemispherical open 
end. Most test wells have cylindrical active 
lengths that are  either screened, perforated, 
or uncased. To permit use of this type of 
test well, conductivity coefficients Cs, which 
give the equivalent hemispherical radius 
of a cylindrical well, have been determined. 
These dimensionless coefficients have been 
plotted against the ratio of cylinder length 
LA to radius rl in figure 41. For  a per- 
forated cylindrical well, an effective well 
radius was found to be 

a rea  of perforations 
r l ( e f f e ~ t i ~ e )  = '1 ( cylinder wall area  ) 

In applying this result to a well with closed 
bottom, the effective Cs was that obtained 
from the curve on figure 41 at 

Ls'rl(eff ective). 

For an open bottom well, 

should be added to the above. The effective 
hemispherical radius can be computed di- 
rectly from these coefficients a s  

r Csr  1 = - . . . . . . . (83) 
(effective) 2 K  

The effective radius will always lie nurner- 
ically between the cylinder length and the 
radius length. These conductivity coeffi- 
cients were obtained from experimental 
and analytical results. The experimental 
results include field, sand model, and elec- 
tric analogy values. The analytical results 
include a solution for  part1 penetrating 
cylindrical wells by Muskat and a so- 
lution by F. E. Cornwell (see Appendix A) 
for flow from a cylindrical element to a 
plane potential surface. Cornwell's solution 

" Muskat, op. cit. 



yields a very simple expression for the 
conductivity coefficient 

which fi ts  the curve of figure 41 very well 
for values of LA 2 20rl,and shows that the 
shape of the outer boundary of the system 
is relatively unimportant in most three- 
dimensional flow systems. It should be 
pointed out here that equation (81) may be 
used to modify the head for gravity effects 
in three-dimensional flow a s  well a s  two- 
dimensional flow. 

In some test areas, insufficient geolog- 
ical information may be available to define 
the boundaries of the pervious material. It 
is then impossible to decide whether two or 
three-dimensional radial flow is more nearly 
applicable to the problem Solutions for both 
assumed ideal cases will yield values which 
define the limits between which the average 
permeability must lie. The value based on 
two-dimensional radial flow will always give 
the upper limit and, in horizontally arranged 
layers of material, will usually give con- 
servative adequate results. The ratio of 
limiting permeabilities will be 

b. Unsaturated Material. Three- 
dimensional radial flow from a cylindrical 
well in an unsatwated isotropic~pervious 
bed requires some special treatment R E. 
Glover (see Appendix B) has developed a 
precise solution for the steady-state flow 
from a well into an infinite unsaturated 
medium. This  solution is based on flow 
from an array of point sources in a uniform 
stream. The relation between Q, hl , rl , and 
K was found to be 

where 

hl = the depth of the water in the 
test  well. 

All of the developments given here have 
been applied to partially penetrating wells 
and to partly cased wells. Therefore, dif- 
ferent limits of integration were applied 
to Glover's solution to yield the more gen- 
eral expression 

To reduce the labor involved in solving 
this equation, a set  of coefficients, CU, for 
a wide range of hl/rl and L ~ / h l  ratios 
has been computed and plotted in figure 43. 
These values can be used with the familiar 
three-dimensional radial flow relation given 
by equation (82) with 27la replaced by Curl. 
Thus 

. . m w - e a b i u .  From 
the preceeding discussion it can be seen that 
preliminary permeability investigations can 
be made by very simple, rapid, and inex- 
pensive field tests. The most accurate type 
of investigation employs the two-dimensional 
radial flow systems of Theim and Theis 
tes ts  Both tests require observation wells 
and a pump well which penetrates the aquifer 
by at  least 85 percent of i ts  depth In the 
Theim test steady-state conditions are re- 
quired. However, the drawdown at  the well 
may be any percent of the total depth of 
aquifer. In the Theis type of test steady- 
state conditions need not be established. 
Drawdowns may be measured a s  a function 
of time. However, in the Theis test (often 
referred to a s  the nonequil'ibrium tests) 
the drawdown at  the well should not exceed 
10 percent of the depth of the aquifer. If the 
extra time and expense of these two-dimen- 
sional tests a re  not justified, then the sim- 
ple three-dimensional radial flow test may 
be used, and the systematic error estimated 
by equation (85). 

Examples 6, 7, and 8 give applications 
useful in determining the permeability of 
unsaturated soils, and Examples 9, 10, and 
11 may be used in determining the perme- 
ability of saturated soils under artesian 
effects or where the drawdown a t  the well 
i s  not more than 10 percent of the depth of 



aquifer. Problems a r e  often encountered 
where the drawdown at  the well may exceed 
the permissible 10 percent value. Where 
this occurs gravity flow becomes important 
and Examples 12, 13, and 14 a r e  given to 
demonstrate the effect of combining gravity 
flow with radial  flow in a saturated soil. 

In field permeability tests the depth of 
well penetration into a material  and the 
proximity of the water table or impervious 
boundary to the end of the well affect the 
flow pattern and hence need be considered 
in evaluating K. Figure 54 indicates the 
proper equations to use for determining K 
at successive depths of a well from unsat- 
urated into saturated s t ra tum 

In performing permeability tests near 
the ground surface, rect3ngular shaped test 

pits may be selected rather than circular 
shaped wells. Experiments were made to 
determine the effective radius,  reff., in 
terms d 1/2 the shorter side of the rectangle 
as a function of the aspect ratio of the rec- 
tan le. These results, given in figure 44, 
mafe it possible to use the conductivity co- 
efficients for circular wells given in figures 
41, 42, and 43. 
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Where: 
r, : Well radius ( f t )  
Q = Steady state flow ( f  t3/sec.) 
H : Effective head di f ferent ia l  (ft.) 
L = Active or uncosed length of well ( f t . )  
f= Thickness of saturated stratum (ft.) 
D : Penetration of well in stratum (ft.) 
L,; Spher~caliy active length of  well ( f t  ) 
LS= L,for L A /  T $ 0 2 0  

K P -  0 H.J ,JAN. 1948 ( R E V  MAY 19521 X - P E L -  206 

Figure 41 - Conductivity Coefficients for Semi-spherical Flow 
in Saturated Strata through Partially Penetrating 
Cylindrical Test Welle. 



PERCENT PENETRITION = loo(+), O r  loo(+) 

Where 
T - Thickness of soturated stratum(f1 l  
D: Penetrotlon of well In s t r o t u m l f l )  
LA: Actlve or uncosed length of uel l (fl) 
r , =  Rodtus of w e l l ( f f )  
Lf  Hem~spher~colly o c t ~ v e  well len~gth(fl  

Figure 42 - Permissible HemxLspherical Flaw Length of Partially 
Penetrating Cylindrical Wells in  Saturated Strata. 



K : l L -  
Cur l .  

h l  - Permeabtl i ty coef .  (ft./sec.) 

W h e r e :  
rl = \Nei l  r a d i u s  ( i t . )  
Q : Steady s ta te  f l o w  ( f t .  /set.) 
h,; Head  o n  w e l l  ( i t . )  
LA= Act ive o r  uncased  length of wel l  ( f t . 1  
T = Thickness of unsaturated s t r a t u m  ( f i . )  
D = Penetrat ion of well i n  s t r a t u m  (ft.) 

APPLICABILITY LIMITS. 

K. P - D.H J. .  JAN. 1 9 4 8  ( R E V  M A Y  1 9 5 2 )  X - P E L - 2 0 5  

Figure 43 - Conductivitp Coefficients for Pqrneability Deter- 
mination in Unsaturated Strata with Partly Pene- 
trating Cylindrical Teat Welb. 

KC) 



H O R I Z O N T A L  S E C T I O N  
THRU TEST P IT  

Figure 44 - Effective Cylind.rica1 Radius of Rectan lar Test 
Pit . .  (value to be b e d  w l t h  Figure. e, 42, and 
43 for Permeability Determltmtion. ) 



FORMULA:  

DEFINITIONS:  Q = Well d ischarge - s t e a d y  s t a t e  (ft.'/sec.) 
Cu- F r o m  f i g u r e 4 3 -  Use c u r v e  f o r  -!=A= 1.00 

O t h e r  values as  shown " 1  

N U M E R I C A L  E X A M P L E :  

L e t  T  = 6 0  ft., D= 35  ft., h,= 10 ft., Then T--D= 25 t .  = 2 . 5  h, 

Q = 0.10 ft. '/ sec. rl = 0 . 2 5  f t .  

" ' = 4 0  ... C y = 7 4 . 5  (From f i g u r e 4 3 1  
rl I 0.10 
K = - 

(74.5)(0.25) 10 
= 0.00054 ft. /sec.  

Figure 45 - Example 6: Outflow from an Uncased Cylindrical 
Well in an Unsaturated Stratum, T - D >= 2h 

hl 
1' 

F- 2 10. 
1 

54 



L 

I I 
--a w - - r  

( 0  I 

I Q FORMULA J K = - - 
Cur1 hl 

DEFINITIONS : Q = Well discharge- s teady  s t a t e  (ft.S/sec.) 
'-A G,= .From Figure 43 use curve f o r ' n e a r e s t  - 
hl 

NUMERICAL E X A M P L E ;  

L e t  T = 6 0 f t . ,  D =  3 5 f t . ,  h ,= IOf t . ,  Then T -  D =  2 5 f t . = 2 , 5 h ,  
L A =  5 f t ,  !f=0.5, r , =  0 2 5 f t . ,  h = 4 0 ,  C u =  5 9  r 1 

Q = 0 . 1 0  [ft.'/sec.) 

I = 0 . 0 0 0 6 8  f t . /  sec. = ( 5 9 ) ( 0 . 2 5 )  10 

, 

O.H.J. 1 1 -  28 - 4 7  (REV.  MAY 1952) X - P E L  - 182 

Figure 46 - Example 7: O u t f l o w  frm a Partly Cased wlh- 
drlcel Well in an Unsaturated Stratum, 

hl T - D Z 2h19 -2 l0. 
= 1 



(To Manometer Well) 

r2 - - - - - - - - - -  

f 10 (Steady state) 

DEFINITIONS: 
Q = Steady state well discharge (ft.3/sec.) 

~n-d,ll-28-47( REV. MAY 1952) X-PEL-183 

Figure 47 - Example 8: Outflow from a Cyl..tndfical Well in sn 
Uneaturated Stratum, T - D < 2h1. 



I Q 
FORMULA: K = - - 

Cs r, H 

DEFINITIONS Q = Well discharge - positive into well (ft.?'sec.) 
C S = F r o m  figure 41, H =  h2-ht 
h, = Undisturbed ground water  level ( f t . )  

NUMERICAL EXAMPLE: 

L e t  T = 6 o  f t . ,  ~ = 9  ft., h , = 1 2 f t . ,  h 2 = 1 5 f t .  

Q = 0 .  lo f t .  '/ sec. r, = 0 . 2 5  ft., Then D/T = 0.15<0.2 
0 !&= - = 36 

rl r l  
. '. C,=  5 8  ( F r o m  Figure 41) 

K.P., 11-28-47 (REV. MAY 1952) X -  PEL-187 

Figute 48 - mle 9: Infloy t o  an Uncaeed CyUndrical Well 
in a Saturated Sea* ,DD 2 0.20. 



b- 

r2  
I n  

FORMULA : a .- 
= ~ I T ( D - L ,  I + csrl I n s  H 

r  l 

DEFINITIONS: Q = W e l l  d i s cha rge -  Pos i t ive in to  well(ft.?'sec.) 

CS = F r o m  Figure 41 a n d  42, ti = he- h, ( f t . )  

NUMERICAL EXAMPLE: 

L e t  T = 6 0  ft., D = 3 0 f t . ,  h ,  = 3 5  ft., h , = 4 5 f t .  

Q = -0 .10  f t 3 / s e c . ,  r , = o . 2 5  ft.,r,= 2 5  f t .  

- 1 1 . 7 5  Then D / T =  0 . 5  G ; : : : ,  % =  1 2 0 ,  e -  
C, = 2 7 . 9 0  (F i g . 41 ) ,  D - L s  = 2 7 .  0 6 2 5 ,  H = 10 f t .  

In 100 .-- O." - 0.00023 f t / sec. 
= 2T(27.0625)+(1nlOO)(27.9)(0.25) 10 

K . P . , l l - 2 8 - 4 7  (REV: MAY 1952) X-PEL-I88 

Figure 49 - &ample l0: Inf'low to an Uncased Cylindrical 
Well in a Saturated Stratum, 0.20< D/T< 0.85. 



1 

;-Impervious 

in($) 
K = - . -  

2 l T D  H 

Q = Well d ischarge  - positive in to  w e l l  (ft.)/sec) 

ti = h,- h, ( f t . )  

NUMERICAL E X A M P L E .  

L e t  T = 6 0 f t ,  D =  5 4 f t . ,  h l Z 6 0 f l . ,  h 2 = 6 5 f t .  

= + O I O c u  i? /set: r , :  G 2 5 f t . ,  r, = 2 5 f t .  

T h e n  9/T' : 5.9:20.t35 

H 2 6 5  -- t;Q .: 5 f f , ,  := :ij:J 

In 100 ( (3 .10)  K I = G 30C: . ' , 7  f i i s e c  
2 3 ( 5 4 )  i S i  

K . P . ,  11-28-45 (REV MAY i 952 )  X -?EL - -189  - - 

FORMULA:  

DEFINITIONS 

Figure 50 - Exanrp1.e 11: .Lnl'luw t.6 Lkcaeed Cylindrical 
Well in R S~t.;.~rat.ed. S t r s + ; ? m ~  ,E/T :-I, p.5 - 

. ,  < , % 



' 0  FORMULA: K =  - 
=sr, H 

DEFINITIONS: Q = Well discharge - positive into well(ft. ' /sec.) 
hl =h C,= From figure 41 -use  - 

0'- h: 
"I " I  

H z -  
2 0 

(ft.) 

O t h e r  values as shown 

NUMERICAL EXAMPLE 
3 

L e t  T = I00 f t . ,  D=20 ft., h , =  lo  ft., r,=0.25 f t . ,  Q=o. lo  ft .  /seC. 

Then 2 = 40, C,= 6 3  (From f i g u r e  4 1 ) .  H =  7.5 
I . - '." = o oooe5 f t . /sec = (63) (0.25) 7 5 

0 H.J. , iZ- I  - 47(REV. MAY 1952) X-  PEL-193 

Figure 51 - Example 12: Inf- to a Partly Penetrating 
Cylindrical Yell in a Saturated Stratm under 
Gravity Head, D/T 5 0.20. 

60 



- 

I n ( 2 )  
FORMULA: K = Q - 

2n (D -L,) +c,r, I n ( 3  H 
PI 

DEFINITIONS: Q = Wel l  discharge - positive into w e l l  (ft.'/st?c) 
L,= From Figure 42 

C, =From F igure  41 
he- h e  u 
2 D 6t) 

NUMERICAL EXAMPLE : 
L e t  Q r0.40 ft.?sec., T=100f t . ,  Dm50 ft., h,=30ft., h,= 45ft., 

r,= 0.25 ft., re= 100 f t .  

D L 
Then -= 200, -'= 20.3 (Figure 421, C,= 38 (Figure 411, LC 5, 

r~ rl 

( hl - L,) = 25, H = 12.5. 3 = 400. I nCq= 5.99 
rl rl 

5.99 
K = - 0.40 = o.oo090 f t .  /set. 

2 W(25)+38(0.25)(5.99) 12.5 

D.H. J.. 1 2 -  1-47  (REV MAY 1952) X -PEL- 194 
: 

Figure 52 - Example 13: Inflw to a Part* Penetrating 
Cylindrical Well in a Saturated Stratum under 
Gravity Head, 0.20<~/T<0.85. 
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c I 

.Boundary of f l o w  o a t h  I 

r2 
I NT;) Q 

FORMULA; K = - - 
2 R D  H 

DEFINITIONS: Q = Well d ischarge - pos i t ive  i n t o  w e l l  ( f t? /sec . )  
hz2- h,2 H z -  

2 D 
(f t.) 

O t h e r  values a s  shown 

NUMERICAL EXAMPLE: 

L e t  Q =0.50 f t . 3 / ~ e ~ .  (S teady  s t a t e )  

T = I00  ft., D=90 ft., h l = 7 0  ft., h,=85 ft., r,=o.25 ft., r2=150 ft. 

Then 2 = 600, l n(:~6.397, H = 13.68 f t .  
1 

6.39f 0.50 
K = - -  

(6.2832)(90) 13.68 
- 0 0 0 0 4 1  f t . /sec .  

D.H.J .v I2-1-  4 7  (REV. M A Y  1952) X-PEL- 195 

Figure 53 - &ample 14: Inflow to a Partly Penetrating 
Cylindrical Well in  a Saturated Stratum mder 
Gravity Head, D/T 2 0.85. 



NOTATION: 
K =  Permeabi l i ty coe f f i c i en t  (ft./sec.) 
QzSteady f low in to  well (ft.3/sec.) 
h =Height of water in  wel l  (ft.) 
x-Percent of Tu in z o n e 1  ( S e e f i g u r e  55) 
L,=Length of per forated sect ion (ft.) 

Area of erforations) ( f t .1  reff=Effective radius of well : r,  ( Area of 
CzConductivity coefficient -unsaturated bed (See Figure 43) 
G<Gonductivity coeff icient-soturoted bed (see Figure 41) 

L IMITATIONS:  2- 7 Ts = 5 LA L,= IOreff  
NOV. 1948 (REV. MAY 1952) X-PEL- 314 

Figure 54 - Propoeed Three-zone Progrm of Field Perme- 
abi l i ty  Teeting by Single Cased Yell PlrmpFng- 
in Teet. 
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Figure 55 - location of Zone 1 Iower Boundary for Use in 
Permeability Testing. 



PENDIX A 

-OAT SECTION 
OF TEST-HOJ,E BELOW 
GROUNDWATER LEVET n 

(Development by F. E. Cornwell) 

This development i s  for the determin- 
ation of the permeability coefficient, K, of 
a soil, by drilling a hole in the soil and per- 
mitting flow out of the well into the surround- 
ing soil through the sides of the well only. 
To apply the resul ts  of the mathematical 
derivations to a field problem, the well in 
this instance must be placed in a soil that 
i s  completely saturated. 

The derivation may proceed in the fol- 
lowing manner. Let 

r l  = radius of a spherical surface 
concentric around the point- 
source, 

K = permeability coefficient, 
p = pressure head, and 
Q = quantity of fluid flowing across  

any spherical shell per unit 
of time. 

Place  a s o u r c e  of strength Q a t  y = h ,  
x = 0, and place a sink of strength -Q at 
y = - h ,  x = O .  Then 

Y +  h Then from Darcy's law, . .(?A) 
- 

. . . .  .. Q 4 n r 1 2  * K .(IA) 
a r l  

and 

* = -  Q . . . . . .  (2A) 
arl 4 n K r12 

By integration, 

P = 
Q . . . . . . . .  + Po (3A) - - Q h  . . . .  4 n K r l  (8A) 

Place a point-source a t  y = h and x = 0. 
2 n  K 

Then As a check, the total flow across  the sw- 
face y = 0 is, 

. . . . . . .  '1 = x2 + (y - h12 .(4A) 
- 

and 

P = Q 



Consider a length dh of strength dq. 
Then dq = q dh , and 

which can be simplified and written, 

Now refer to figure 56. For a line-source 
from y = b to y = c and a line-sink from 
y = - b to y = - c, integrate from h = b to + In7 
h = c, where c >b. Then 

+ + ~ ~ 1 .  
y+b+d- 

r F ~ = C  
. Note the following equalities: 

For the f i rs t  integral, let 
2 i n c - y +  V X  + ( C - ~ ) Z  y -  h - z  

dh = - d~ b - y + q x 2  + (b - y)2 

For the cylinder where x = r, let 

x = r  

For the second integral, let c - b = L  

Then Then, 



Figure 56 - Flaw from Teat-hole below Groundwater Ierel. 
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Hence, 

(Approx.) . . . . (15A) 

L K = In - (Approx.) . .(17A) 
2 n L H  r 

In changing from a line-source to the 
approximate  cylindrical  source ,  p was  
taken a s  equal to H at  x = r and y = b + c/2, 
which is not quite t rue over the remainder 
of length L. Also, the formula allows for 
some flow out of each end of the section of 

length L. However, neither of these approx- 
imations should be of any concern where 
the other limitations of application are  ob- 
served; that is, where L (or c - b) is large 
compared with r ,  and c and b a r e  each 
large compared with L. 

Since this development is valid only for 
completely saturated soil, the well must be 
cased from the ground surface to the water 
table. Then H i s  the difference in head be- 
tween water levels inside and outside of the 
casing. Equation (17A) may again be written 
in the form 

where 

Note here that L = c - b. 

Values of C have been computed by 
equation (19A) for various L / r  ratios and 
a r e  shown in Table 5. The table permits  
an immediate determination of K in  the 
field merely by measuring H and the cor- 
responding Q Then by selecting the proper 
value of C, K i s  easily obtained from equa- 
tion (18A). 

2 B L l u  

VALUE3 OF .C 

(3'10~ from Test-Hole Iacated 

helm Groundwater -el) 

Experimental  resul t s  a r k  in almost 
complete agreement with this analysis. Re- 
sults of electric analogy tests show average 
values not grea ter  than 12 percent below 
calculated values for L / r 2 8 .  The approx- 
imate mathematical method has reasonable 
validity for  ~ / r  >5.0, and almost perfect 
agre.ement for  ~ 7 7 2 2 0 .  



APPENDIX B 

FLOW FROM A TEST-HOLE LOCATED 
ABOVE GROUNDWATER LEVEL 

(Development by R. E. Glover) 

T h i s  development applies when the 
groundwater table i s  a considerable dis- 
tance below the drilled hole used for the 
field t e s t  The test i s  made by running water 
into the hole and noting the depth of water 
that  can  b e  maintained in the hole by a 
metered flow of water. 

Since the gravitational potential must be 
treated explicitly here ,  an exact solution 
would require that an expression be found 
which woulZ satisfy Laplace's equation with- 
in a region possessing radial symmetry with 
respect to the axis of the hole. At an inner 
boundary coinciding with the surface of the 
hole, the pressures  would be hydrostatic, 
while a t  the outer boundary the pressures 
would have to be adjusted to zero along some 
streamline with the gravitational potential 
accounted for everywhere. 

It would be very difficult to find a solution 
satisfying these requirements, and i t  will 
therefore be expedient to use an approxi- 
mation. This will be obtained through the 
following procedure. Consider f i r s t  the 
c a s e  where the surface  of the ground is 
kept supplied with water so that i t  remains 
covered to a very small depth. The water 
will then move downward through the ground 
under the influence of gravity and the pres- 
sure will be zero everywhere. The flow will 
be at a ra te  which could be maintained by 
a unit pressure  gradient. Now suppose a 
point-source of s t rength  q second-feet 
(ft.3/sec.) is superimposed on the grav- 
itational flow system. This will give r i s e  
to pressures and new velocities. At a great 
distance below the source,  the velocities 
due to the source will be negligibly small  
and only the velocities due to the gravita- 
tional forces will remain  If a cylindrical 
surface of radius b with i ts  axis vertical 
and passing through the source is construc- 
ted in the bed, all the flow, q. will be con- 
fined within it providing b is chosen large 
enough s o  that the arealTb2 is sufficient 
to t r a n s m i t  the  flow with the velocities 
which can be maintained by t.he gravita- 
tional forces. This  can be demonstrated 
by constructing a streamline passing through 
a point a t  a distance b f rom the axis and 
a t  a great distance below the source. This 
s t reamline  will l ie  on a plane containing 
the axis and will cut the axis at a distance 

b/2 above the source. The plot of such a 
streamline i s  shown in figure 57. A sur -  
face of revolution generated by revolving 
this  s t reamline  about the axis ,  together 

2 with the circular area Ilb , will ~omplet~ely  
enclose the source. Since there can be no 
flow across a streamline, it follows that all 
the flow q must be confined within the sur-  
face of revolution. This being the case,  i t  
would be possible to replace the surface of 
revolution with an impermeable membrane 
and eliminate the flow outside it without in- 
terfering with the flow within. Thus a flow 
pattern for fluid supplied to a bed a t  a point 
and flowing through the bed under the action 
of gravity is obtained. It is now desirable to 
examine this solution to determine i t s  suit- 
ability a s  the basis of an acceptable approxi- 
mation. 

The solution i s  a solution of Laplace's 
equation and the outer boundary is a stream- 
line, s o  that two of the primary require-  
ments a r e  met; but the  outer boundary is 
not f r e e  from pressure  and the p ressure  
conditions around a cylindrical boundary 

Figure 57 - Gravity Flow Boundary in 
Unsaturated Material. 



representing the surface of the test-hole a re  
not met. The difficulty arising from the 
pressures at  the outer boundary i s  not r e -  
garded a s  serious, since the pressures a re  
small everywhere and fade away rapidly with 
increasing distance from the source. The 
probable net effect i s  that the actual envelope 
i s  slightly outside the surface of revolution 
near the source. It i s  considered that the 
surface of revolution i s  a sufficiently close 
approximation to the shape of the actual 
envelope f o r  the present purposes. The 
des i red  p r e s s u r e  distribution along the 
inneF cylindrical boundary can be approxi- 
mately supplied by using a ser ies  of uni- 
formly spaced sources,  starting a t  zero 
strength a t  the top of the water surface in 
the hole and increasing linearly in strength 
to a maximum a t  the bottom. A stream- 
line can be found for this combination also 
which, when rotated about the axis, would 
generate an outer boundary shaped enough 
like the actual boundary to be usable for  
purposes of approximation. 

The development of formulas may now 
proceed. Let 

p = pressure head measured in feet 
of water, 

K = permeability in feet per second, 
and 

q = strength of a source, counted 
positive if the flow i s  outward. 

It should be noted that in a bed where the 
velocity i s  proportional to the p ressure  
gradient the flow patterns a r e  superim- 
posable. The source patterns may there- 
fore be superimposed on the gravitational 
flow, and, since the gravitational flow pro- 
duces no pressures, the pressures will be 
due to the sources only. This means that 
the p ressures  will be the same a s  would 
prevail if the gravitational potential and 
gravitational flow did not exist. The grav- 
itational flow does, however, change the 
course of a particle issuing from the source 
so that instead of traveling radially outward 
it is given a downward component and its 
course  i s  effectively confined within the 
cylinder of radius b. The pressure due to 
a source of strength q at  the point y = h, 
x =  0, is 

To provide a series of point-sources whose. 
strength increases with depth, let 

where H represents the value of y at  the 
lwater surface in the hole. Then, 

and'by integration, 

Now, if the whole flow is represented by Q, 

Then, by substitution for B, 



At y = 0, x = a; this i s  the specification for 
a point at  the boundary of the hole a t  the 
bottom. By substitution in equation (7B), 

H If i s  l a rge  compared with unity, then 
approximately, 

At this point, po = H. 

The above equation may be solved for K 
in the form, 

The radius, b, may be found from the re-  
quirement that 

~ n b ~  = Q . . . . . . . . . . . . .  (11B) 

If this substitution i s  made in equation (lOB), 
the value of b i s  obtained in the form,  

It is  pointed out again that this derivation 
i s  good if the bottom of the drilled hole i s  
an appreciable distance above the original 
groundwater table and if the radius of the 
hole i s  very small compared with the head 
acting. By this arrangement, water would 
flow out of the bottom of the well and also 
the sides of the well. 

In order to make the preceding develop- 
ment more useful, equation (10B) may be 
written in the form, 

Equation (13B) i s  of the form, 

where 

Equation (15B) may be computed for 
various values of the ratio H/r within the 
l imi ts  ordinari ly employed in the field. 
Table 6 ives  values of C to be used in 
equation b4B).  

TABLE 6 

VAWEs OF c 
  low from Test-Hole Located 

above Groundmter W e l )  

A comparison of electric analogy test 
results for conditions similar to those as-  
sumed in the above development shows 
appreciably lower values obtained exper- 
imentally. These deviations vary from 25 
percent at H/r = 6, to 8 percent at  H/r = 20. 
This indicates that the approximate math- 
ematical analysis has reasonable validity 
for  H/r % 10. 
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APPENDIX C 

RADIAL FLOW TO A WELL IN AN 
INFINITE AQUIFER 

(TIME-DRAWDOWN METHOD) 

NOTATION 

h = drawdown a t  observation well 
r = distance from center of dis- 

charging well to observation 
well 

S = coefficient of storage of 
aquifer (volume of water a 
unit drawdown releases from 
a vertical prism of unit 
cross-section and depth D) 

K = coefficient of permeability 
D = depth of aquifer 
t = time measured from begin- 

ning of discharge 
Q = ra te  of discharne 
e = base of ~ a p e r i a n  logarithms 

(e  n 2.718) 
C = Euler's constant (C r 0.5772) 

a,  s, v, 
x, y = quantities employed in least 

square adjustment develop- 
ment. 

Consistent units must be used throughout. 

The differential equation governing the 
unsteady radial flow to a well in a confined 
aquifer i s  

It can be shown l3 that if the bound- 
ary conditions a r e  satisfied and the well is 
pumped at  a steady rate, &, then the draw- 
down is given by the expression 

'2 Jacob, C. E. , "Flow of Ground Water," 
Chapter V of E n a i n e e r i n ~  Hvdraulics by 
Hunter Rouse, John Wiley and Sons, 1950. 

l3 Equations (2C), (3C), (17C), and (1SC) 
follow closely those of W. H. Taylor and 
E. D. Rainville given in an unpublished 
memorandum prepared while they were  
employed a s  engineers by the U. S. Bureau 
of Reclamation, Denver, Colorado. 

The integral, known a s  the exponential in- 
tegral, i s  a function of the lower limit, and 
i s  often abbreviated 

The value of the drawdown can be obtained 
from tfie equivalent series: 

After the test has run for a relatively long 
r zS 

time and the quantity (-=) becomes less 
than, say 0.02, the series may be approxi- 
mated by the asymptotic expression: 

but 

eC 1.781, 

a d  changing to common logarithms gives 



Field data uslxilly involves many drawdown 
readings at several observation wells at 
various ~imc-s. In order to obtain the best 
values for 11 and S, it i s  desirable to adjust 
such data by least squares ir, order to arrive 
at the best drawdown curve for a particular 
time t Since h varies logarithmically, the 
following forms of equation (5C) will be found 
convenient for least squares adjustment when 
computing K and S: 

h = +  An example will demonstrate the pro- 
KD cedure to emplov when using field data On 

the Oahe Unit of the Missouri River Basin, 
tests have been made to determine K, the r2S ] ' ' ' ' . . (7C) coefficient of permeability, and S, the stor- - log 2.246KD 
age coefficient of an artesian aquifer under- 

or lying certain agricultural lands. The data 
will be used in equation (6C), since draw- 

h = -  0.1832Q [,, 5 down observations were made simultaneously 
KD t at observation wells. The results are tab- 

ulated in Table 8. For Pump Test No. 9 

- log 2.2yKD]. . . . . . . . .  (8C) the following data were recorded: 

t = 1,224,000 seconds 
Q = 300 L per minute = 0.668 ft3/sec. 

Equations (6C), (7C), and (8C) are in the form D = 152 g;d eet 

Inserting values of so, s1, 52, vo, and 
y(x) = a. + alx . . . . . . . . . . .  (9C) v1, from Table 8, into equations (10C) and 

(11C) gives 
where y corrensponds to h and x to log r, 8ao + 19.867a1 = 47.42 . . . . .  (12C) 

r4 log t, and log F. respectively. 19.867a0 + 50.658a1 = 112.078 . . (13C) 
Then, according to Milne14, having given n 
pairs of values of x and y, the straight line and we find 
which fits these data best is determined by 
values of a. and a1  from: a, = 16.614 and a1 = -4.3032. 

The s and v values may be systematically 
calculated by arranging the recorded data 
in tabular form and summing the columns as  
indicated in Table 7. 

4 Milne, W. E., Numerical Calculus, 
Princeton University P res s ,  1949, pp. 
242 - 245. 

From equation (9C), we may write 

. . . . .  h = 16.614 - 4.3032 log r (14C) 

and by comparing the coefficients of log r 
in this and equation (6C), it is seen that 

Sicce Q = 0.668 cfs and D = 152 feet, the 
coefficient of permeability, K, may be de- 
termined directly from (15C). This gives 

K = 0.000374 ft. per sec. 



Again, by equating the constant terms of ting this datum, the revised values of K and 
(14C) and (6C), it is seen that S may be determined a s  

0.8230Qt 
K = 0.000349 ft. per sec. 

s = -  - . . . . . (16C) S = 0.00458 
LaO 

al  antilog ( - - 
a 1 

The storage coefficient, 
tained from (16C) by noting 

The method outlined above for the de- 
termination.of K and S i s  excellent for 
resolving field data in an  office. Often, 

S, may be ob- however, the engineer o r  geologist may 
that: wish to analyze his data in part in the field. 

In this case the following equation will be 

2ao useful for determining the coefficient of 
antilog ( -  -) = antilog 7.7217 permeability. 

a, 
When two observations a r e  made a t  the 

same time in adjacent wells, K is given 
approximately by the equation 

so that ' 

S = 0.8230 x 0.668 x 1,224,000_ 
4.3032 x 5.269 x 10 

Having cornput& K and S, a check should h(r,t) is the observed drawdown at time t in 
be made to insure that all observations fall a well a t  distance r from the t es t  well. 

r 2 ~  Equation (17C) is valid where the ratio of 
within the restriction (-)< 0.02. If any 

4KDt 
one of the data is without this limitation, i t  
should be discarded, and K and S recom- l r 2 % g $ ) s  I to )ln (?2 1 
puted. In this instance, for observation 

r 2 ~  well W10, it was found (--4 = 0.03. Omit- is small, say less  than 0.02. 
4KDt 

Observation Well r x0 x = log r x = (log r12 y = h xy = h log r 2 

S2 96 1 1.982 3.928 8.14 16.133 

W2 98 1 1.991 3.964 8.09 16.107 

S4 189 1 2.276 5.180 6.66 15.158 

W4 199 1 2.299 5.285 6.90 15.863 

S6 390 1 2.591 6.713 5.24' 13.577 

W6 400 1 2.602 6.770 5.57 14.493 

S8 790 1 2.898 8.398 3.84 11.128. 

W10 1692 1 3.228 10.420 2.98 9.619 

so S1 S2 vo 1 

8 19.867 50.658 47.42 112.078 



When two observations are  made a t  dif- 2 
ferent times in the same well, K i s  given 
approximately by the equation 

i s  small, say less than 0.02. Equation (18C) 

t2 
may also be used for determining K by not- 

In ing the recovery of water level in a well after 
K = Q. . ( 1 8 ~ )  a period of pumping followed by a period 

of stoppage. In this case  t2 is the total 
4 n D  h(r, t2) '  h(r , t l)  time from the beginning of pumping to the 

time of recovery observation, and tl is the 
time since pumping stopped to the time of 

Equation (18C) i s  valid where the ratio observation. 

7 6 Interlor - Reclamallon - Denver, Colo. 




