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Theory and Problems of Water Percplation
ERRATA

Page 3, figure 1:
The upper coordinate system should bear the subtitle,
a. Cylindrical coordinates (r,0,z).

Page 11, next to last line of right hand column:
Q = 0.006,996.

Page 14, figures 11 and 12, and page 15, figure 13:
Ordinates should be ¢ rather than  k; statement in upper
right of each figure should read "Values of ¢ for values
of ..." rather than "Values of k for values of ..."

Page 52, figure L3: hy h
Ordinates should be simply ==, not "HEAD ON WELL BOTTOM - i
RADII." 1 . ry
Page 54, figure 45: Ly
Values of C, are from figure 43 (not figure I), and -2 = 1.00,
(not 28 - 1.00). hy
hy

Page 62, figure 53:
The phrase, (steady state), should follow Q = 0.50 ft.3/sec.
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Note
This errata page is for the first printing, 1953.  All errata are corrected in this version (May 1957 reprint).


ERRATA~~-ENGINEERING MONOGRAPH No. 8
THEORY AND PROBLEMS OF WATER PERCOLATION

by Carl N. Zangar

p. 68. . . Eq. (14A) should read:

H=—=2_ [In

- 1In

p. 68. . . last paragraph in 2nd column should read:

Experimental results are in almost complete
agreement with this analysis. Results of electric
analogy tests show average values not greater than 12
percent below calculated values for L/r = 8. The
approximate mathematical method has reasonable
validity for L/r Z 5.0, and almost perfect agree-
ment for L/r 2 20.

p. 70. . . Eq. (7B) should reac:

P o7 HZK X

+ (H-y) sinh~1 L - Vi + (H - 5)2

+ A x2 + y2:|
p. 71. . . Eq. (8B) should read:

. Q [H jmh-lg_)-m + {|

27T H2K

_Q__[ (H-y) sinh"l (H-y) =

Po

Interior - Reclamation - Denver, Colo,
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Note
This errata page was included in printings between 1953 and 1957.  All errata are corrected in this version  (May 1957 reprint).
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For incompressible liquids the equation
of continuity holds, so we may write

o]}
N

X Yy /.
5= " 55 + 5 =0 .(10)

and substitution of equations (8) and (9) into
(10) gives

2
3¢

+ + —& = 9¢ =
3x2  ayl 3

Vzp =0 ... 0., (11)

Equation (11) is Laplace’s equation in
three dimensions. Any function p or ¢ that
satisfies Laplace’s equation is a solution
to a flow problem if the boundary conditions
can be satisfied. Equations similar to (11)
govern the steady flow of heat and electricity.
It is for this reason that the electric analogy

may be used to solve problems in the steady

flow of fluids.

The pressure function that satisfies
equation (11) is known as the potential func-
tion. It, of course, must satisfy the boundary
conditions and since it was derived from
Darcy’s law it is subject to the same re-
strictions. The potential function, since it
applies to the steady state, is based on the
assumption that the soil mass contained in
the flow system is completely saturated.

It is possible at this point to state cer-
tain boundary conditions in terms of the @
function. For example:

1. At an impermeable boundary

28 _ 5
an

where n is normal to the boundary.

2. For a constant potential surface

@# = constant.

3. For afree surface (such as the phreatic
line in an earth dam, or a streamline and a
constant-pressure line),

g_2
2 _oandp=cC=-g - o2
an e

4. For a seepage surface (a constant-
pressure surface, but not a streamline),

g Z
@ _ 2z
~

There are many fluid systems that pos-
sess-axial symmetry and for these problems
it is convenient to express Laplace’s equa-
tien, equation (11), in cylindrical coordinates
(r, ©, z), (see figure la). The velocity com-
ponents become

:p:c

E

of
vr =X 3¢
_ kK 3¢
Ve = T 3§ |t (12)
vV :K .92
Z 3z |
Tz
A
N
\\
A
z \\(xly‘z)
1(1,8,2)
]
1
¥
y
L
A
I//
P -

a, Cylindrical coordinates (r, 9, z),

b. Spherical cocrdinates (r,8,7).

Figure 1 - Two Coordinate Systems.
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INTRODUCTION

The flow of water through dams ana their
foundations, and the accompanying pressures
and gradients that exist, have long been rec-
ognized by engineers as important factors
in dam design. This monograph is concerned
with the effects of this ‘“‘percolating’’ water
and the methods for correcting these effects
when they are thought to be detrimental. Al-
So given are several methods for determin-
ing the permeability of soils by field tests.

These problems resolve themselves into
a study of the slow flow of water through
porous media. Slow flow as used here is de-
fined as laminar flow in which the Reynolds
number is 1 or less. If the Reynolds number
becomes larger than 1, it is possible for
turbulence to develop. In this case, Darcy’s
law governing the slow flow of water through
porous media, no longer applies. Darcy’s
law will be treated in detail under the sec-
tion on general theory, which follows; but
briefly, it states that the rate of flow, Q,
of water through a porous medium is di-
rectly proportional to the cross-sectional
area, A, and to the pressure gradient acting.

There are many engineering problems
to which the laws of slow flow of water apply
and which, consequently, affect the design
of the structures involved. Some of these
problems are:

1. Percolation through concrete dams and
their foundations.

2. Percolation through earth dams and
their foundations.

3. Flow into drains embedded in concrete
and soil.

4._ Flow around cut-off walls.

5. Foundation settlement (consolidation).

Most of these problems involve a knowledge
of the permeability of the materials involved.

Percolating water, while not necessarily
dangerous, usually results in one or more of
the following objectionable conditions:

1. Water losses by seepage through the
dam and foundation.

2. Uplift pressures that tend to cause over-
turning of the dam.

3. Flotation gradients (piping) that may
cause local failure or even total failure of
a structure.

4. Application of body forces which affect
stability.

There are several methods which may
be used to assist in solving the problems en-
countered as a result of percolating water.
These methods include pure mathematics,
electric or membrane analogy experiments,
hydraulic model experiments, and field ex-
periments. Solutions to some flow problems
may be obtained by a combination of methods,
as, for example, the combination of an elec-
tric analogy experiment with a hydraulic
model experiment.

GENERAL THEQORY

The movement of water through granular
materials was first investigated by Darcy
in 1856 when he became interested in the flow
characteristics of sand filter beds! In his
experiments he discovered the law govern-
ing the flow of homogeneous fluids through
porous media. Darcy’s law is expressed
by the equation

where

@ = rate of flow,

A = cross-sectional area,

H = head,

K = permeability coefficient, and
L = length of path of percolation.

Many experimenters have worked on the
range of validity of Darcy’s law and their
results are not in complete agreement. But
all have expressed the applicable range in
terms of Reynolds number, which is well
known in hydraulics and hydrodynamics. The
Reynolds number is given by the equation

in which

R = Reynolds number,

d = diameter of the average grain,

v = average velocity of flow,
through the pores,

T = density of water, and

ft = absolute viscosity of water.

1 Darcy, H., Les Fontaines Publiques de la
Ville de Dijon, Dalmont, Paris, 1856.




The diameter of the average grain used in
equation (2) is defined by the relation

3 3
d =\/”_ES_‘ES__ ........ (3)
Ing

in which

dg = arithmetic mean of the open-
ings in any two consecutive
sieves of the Tyler or U. S.
Standard sieves, and

ng = number of grains of diameter
dg found by a sieve analysis.

Physically, d should represent the av-
erage pore diameter rather than the diam-
eter of the average grain. However, the
average pore diameter can be measured
directly only by microscopic examination
of a cross-section of the porous medium
itself. Therefore, in the case of soils, all
attempts to define or use a value of d in
Reynolds number have referred to the diam-
eter of the average grain.

For the above definition of Reynolds num-.

ber, experimenters 2,3 have determined

that Darcy’s law holds only if the relation
R =1 is satisfied.

The general differential equation for the
flow of water through homogeneous porous
media is readily deduced from the general-
ized form of Darcy’s law and the equation
of continuity. ;

_ From Darcy’s law, equation (1), and the
principle of dimensional homogeneity, it can
be shown that

C = a dimensionless constant,

P = pressure,

s = length along path of flow, and

ap _ pressure gradient.

ds

d2, It, and C may be grouped to make one
constant K, the familiar coefficient of per-

2 Fancher, G. H, Lewis, J. A., and Barnes,

" K. B., Bulletin 12, Min. Ind. Exp. Sta., Penn-
sylvania State College, 1933.

3 Muskat, M., Flow of Homogeneous Fluids,
McGraw-Hill, New York, 1937.

meability, if we express the gradient in
terms of pressure head p, instead of pres-
sure P. (K will be constant for any par-
ticular material if the temperature does
not change. Since the viscosity of water
varies appreciably with temperature, any
considerable temperature variation may
warrant a corresponding modification of K,)

We may then write

g8 . 5
v_de (5)

where

%P;. = hydraulic gradient.

Now consider the case of three-dimen-
sional flow and assume that the resultant
fluid viiocity given by equation (5) may be
resolved into three components along the
selected coordinate axes. Then if K has
different values along the coordinate axes,
Darcy’s law may be written as

— a ]
vX_KX 5%
- 9p 6
vy Ky 3y | o (6)
d
vz = Kz 55 i

If the fluid is of specific weight,r, and
there exists a body force of components gy,
By> and g, per unit of volume acting on the

fluid, it will affect the velocity just as the
hydraulic gradients do and equation (6)
becomes

g
vx = Ky (—gf{z+7x)1

o) g
vy=Ky (-—5$+7‘¥)

5] g
vy, =K, (—aEZ3+?Z)

When the positive Z axis is taken up-
ward, K assumed independent of direction,
and gravity the only body force, the potential
function @ may be written as

e~

!

-y
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and so
Vv. = K _a.g
X dx
- g of
Vy = K —5? ......... (9)
az

For incompressible liquids the equation
of continuity holds, so we may write

X Y Z
5% * 35 + 57 =0 .(10)

and substitution or equations (6) and (9) into
(10) gives

a2 , 8% azg_ o2 -

ax? ay4 oz

Equation (11) is Laplace’s equation in
three dimensions, Any function p or @ that
satisfies Laplace’s equation is a solution
to a flow problem if the boundary conditions
can be satisfied. Equations similar to (11)
govern the steady flow of heat and electricity.
It is for this reason that the electric analogy
may be used to solve problems in the steady
flow of fluids.

The pressure function that satisfies
equation (11) is known as the potential func-
tion. It, of course, must satisfy the boundary
cond1t10ns and since it was derived from
Darcy’s law it is subject to the same re-
strictions. The potential function, since it
applies to the steady state, is based on the
assumption that the soil mass contained in
the flow system is completely saturated.

It is possible at this point to state cer-
tain boundary conditions in terms of the @
function. For example:

1. At an impermeable boundary

22 _o

an
where n is normal to the boundary.

2. For a constant potential surface

@ = constant.

3. For a free surface (such as the phreatic
line in an earth dam, or a streamline and a
constant-pressure line),

g, 2
E_Z:O.andp=0=¢-z
an T

4. For a seepage surface (a constant-
pressure surface, but not a streamline),
g, Z
p-2_=-p=cC
o p
There are many fluid systems that pos-
sess axial symmetry and for these problems
it is convenient to express Laplace’s equa-
tion, equation (11), in cylindrical coordinates
(r, 9 eq) (see f1gure la). The velocity com-
ponents become

v=_a.l

r or
-1 a¢
Ve = ? ae .......... (12)
o
Vz = 3z

> I

N

b. Spherical coordinates (r,8,%7).

FPigure 1 - Two Coordinate Systems.




and equation (11) now becomes

2 1 2 KA
v = —— —
g r ar (I‘ ar)+

2 2
1 _%_3 3P _ o 13
;2 20 + az2 .. .( )

If the flow is not a function of 9, equation
{13) may be written

V2¢ = _]'..L(r_ag_)_'_ _agg_

r ar ar azl
198 , 8% 3% _ 0...(14)
r eor ar 322

For spherical coordinates (r, 8, 7) (see
figure 1b), the velocity components become

Vr=ig-
ar
-1 3 15
Ve—r FYS ....( )
z rsin® 88

and equation (11) now becomes
r¢ ar ar

—1 2 sing 22,
résin8 a0 306

2
1 3% _ o...(18)
r sin © aZz

A function can be obtained that defines
the path along which a fluid particle moves
in traveling through a soil mass. This func-
tion is called a stream function and is given
the Greek letter ¥. It is related to the po-
tential function @ through the equations

2 _ 3
ay ax

. (17)
- 2 _ 3¢ 7’
ax ay

The velocities then become, in terms of ¥,

Vx=K?a-1
y oL .(18)

= -K 9¥

vy Kax

ANALYTICAT, SQLUIIONS
(STEADY STATE)

General. In the preceding section it has
been shown that Darcy’s law applies to prob-
lems in steady-state slow flow through po-
rous media, and also what conditions the po-
tential function must satisfy in order to offer
solutions to flow problems. Flow problems
may be solved by analytical or experimental
means or a combination of the two. A few
analytical solutions are presented on the
following pages.

Two=Di jonal Radial Flow (Point-S
or Sink). Here we assume a two-dimensional
flow system (figure 2) in which the velocities
vary only with the distance, r, from the
point-source (line-source from a three-
dimensional point of view), so that

Figure 2 - Two-Dimensional Radial Flow,

- K2p
Vo K 3=
and
- X 8 _
Ve =T 36 0
where
= velocity,

K = permeability coefficient, and
p = pressure head,

and cylindrical coordinates are used.

Equation (6) may now be written

2
v2p =-1“——a£+a—2 = O N (19)
r ar  ard
The function
Pp=Clnr +Cy ...... (20)

will be found to satisfy equation (18). Then

— o~

bl
[l
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we have, for the boundary conditions,
r=2ap-=Dp

..........

r = bp

>

wnere a and b are respective radii from
the point-source to two arbitrary equi-
potential lines (see figure 2).

Using conditions (21) successively in
equation (20),

Py, = Cll.na + C2
p.b = Cl ]Ilb + CZ
and Pp ~ Py
In =
a
p,lnb - Pplna
C2=

In-2
a

Placing the values of Cy and Cq into equa-
tion (20) gives

% " Pa g r 22
p——-—l;r—lna"ﬁpa..( )
a

Then, by differentiation,

v cx 22 KB T Fa) (o5
r

The total flow, Q, is given by the equatién

n
Q =z rvrde

(*]

2akz (P~ Pa) oy

lnﬂ

a

where z is the thickness of the porous me-
dium Equations (22) and (23) may be written
in terms of Q as follows:

- r 25
p ZnKzlna+pa""()

Example 1. In foundation tests for Deer
Creek Dam, Provo River Project, Utah, a
12-inch diameter well was drilled 84 feet
to bedrock, and twenty observation wells
were located symmetrically on 5- to 200-
foot radii from the 12-inch well. After
pumping 210 gallons per minute (0.4679
second-feet) for 87 hours a steady state was
approached and the following data were ob-
served. (The two equipotential lines in fig-
ure 2 were arbitrarily taken at distances
of 10 and 200 feet, respectively.)

At 200-foot radius, average water ele-
vation = 5276.5

At 10-foot radius, average water ele-
vation = 5274.6
= thickness of bed at 10-foot radius
= 78.9 feet.

Inserting these values in equation (24) and
solving for K,

200
(0.4679) mw
2 n (78.9)(52786.5 -~ 5274.6)

= 0.0015 feet per second.

ine- and a Pojnt-Sink.
Images.) This is similar to the problem
of radial flow into a well except that in this
case a linear source rather than a circular
source represents the external boundary
(see.figure 3). This solution also is two
dimensional.

(o'by ~-- Actuol well

A

Line-source O

/-image well

(0,-b) J g

Figure 3 - Flow between a Line-Source
and a Point-Sink.




In this development it will be assumed
that an infinite line-source extends along the
X axis and that at a distance b from the X
axis is a well of radius r = a. For the mo-
ment, it will also be assumed that the pres-
sure along the line-source is maintained at
zero and that the well pressure is Pg- In

two-dimensional problems, one may repre-
sent any well with uniform pressure, p,, at
the periphery by a point-source or sink at
the center of the well. The potential func-
tion for this case will then become

.........

where C is a constant determined by the
boundary conditions, Since there is no sand
or porous medium in the well, equation (27)
does not hold for the well interior (r less
than a).

If there are several wells in a system,
each well will contribute an amount p of
equation (27) to the resultant pressure dis-
tribution. The r to any point, of course,
must in all cases be measured from the
centers of the individual wells.

It will be noted that the streamlines from
the line-source, or boundary, have the same
pattern and direction as though they had come
from a point-source or well at the point
(0, - b). In this discussion, this well will
be called an image well, and, in particular,
a negative image well. It will be substituted
for the line-source to facilitate evaluation
of the pressure distribution. If we add the
pressure contributions of the actual well and
the image well, for any point (X, y), the re-
sultant effect will be

_cmrl ro
p = —af-+pa-Cln-a——pa

or.
r
p=Cln2............ (28)
ra
where r, and r, are the distances to any

point from the centers of the actual and
image wells, respectively. It is to be noted
that when ry = rg, p =0, the condition as-
sumed along the X axis.

We shall now proceed to find the value

.of p over the actual well surface. Itis
assumed that the radius, a, of the well is
small compared with 2b, the distance be-
tween the actual well and the image well
Over the actual well periphery, then, r{ =a

and rg = 2 b, so that equation (28) becomes

™
——

p, = Cln 211;
-
from which _}
P g
C=—2- ... ......... (29) ]
In =— i
2b .
Substituting this value of C into equation
(28) gives j
|
P r
p=—2_m_L ... . ... (30)

5
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It may be more convenient in special
cases to specify the pressure over the line--
source as p, rather than zero, where p

may have any value. In this case, then,

Pg = P r
pza Oln——+po :
In -2 ) |
2b ‘
_ 1 Po = Pg ]nx2+(y—b)2 ]:}
2 1;m2b x2+(y+b)2

+
(o)
[
‘©
c
[::«A -

The total flow irom the line~source to the
well is given by the equation

-

+a

Q = Kz [_aP_].dx
oy
-0 y=0

[ ey

-y
4

0
_2Kb(po-paz dx

mz_tl 1(2+b2
a - T
|
or i _
2nKz - 3
g 2rK2lo m %) g 3

Example 2, In the foundation test for
Deer Creek Dam, Provo River Project,
Utah, water elevations in observation wells




showed that the direction of drainage was
from the ground to the river. If the ground-
water table had been lower so that seepage
from the river alone supplied the well, and
the steady-state discharge of 210 gallons
per minute had caused the observation-well
drawdown used in Example 1, the K could
have been determined from equation (32).

Then, using an infinite line-source 200 feet.

from the well to represent the river, at
Elevation 5276.5, and an average ground-
water elevation of 5274.6 at 10-foot radius
from the well, and solving equation (32) for
K, we would, after substitution, have

(0.4679) In 3-%2090_)

K =
2 n (78.9)(5276.5 ~ 5274.6)

it

0.0018 feet per second.

Thus, if this type of flow had existed,
the data would have shown 20 percent higher
permeability than in Example 1. Converse-
ly, if the K of 0.0015 computed in Example
1 had been retained, and the groundwater
level had been lowered so that equation (32)
applied, then 17 percent less well discharge
would have caused the drawdown noted.

-Dimensiona -

Sink Applied to Flow Beneath Impervious
Dam on a Pervious Foundation. It has been
shown and is generally known that the
streamlines under an impervious dam rest-
ing on a pervious infinite foundation are a
system of confocal ellipses with center at O
(see figure 4). The base of the dam, AR,
is a streamline and is the limiting form of
this family of ellipses.

Water Surtace

---Pressure along base of dom

interms of H

X

Figure 4 - Flow beneath an Imp_erviouﬂ Dam on a Pervious

Foundation.




The stream function, ¥ (which represents
physically the total flow crossing any line
connecting the origin with a point (x, y) in
the flow system) and the potential function,
@, passing through the same point, can be
expressed by the complex function

in which
Z =X + 1y
W=y +if

Placing the expressions for z and w in
equation (33) gives

X + iy =-%COSh(-I’-_‘T* +i'1‘I:I‘ 2)
x+1y=;g_cosh%v&cos%
+ isinh %v& sin%;d

On equating the real and imaginary parts,
we get ‘

= _b L - 34
X 5 cosh " ¥ COs T ] . (34)

= ._b R in L 35
y 5 sinh H ¥ sin T g .. ( )

Solving for cos % # and sin % 2,

... (36)

sint g = —2o+ ... @37

Then squaring and adding,

2 l— inz l = 1 .
cos 5 g + s H @
2 2
= X ) + y 2 (38)
(-12)- cosh % :&) (3— sinh T’;- t)

Similarly, solving for cosh -i’_‘I— ¥ and sinh

% v , we have

2R, _ cinhd Xy o
cosh Hv sinh Hv_l

x2 — Yz
(bfcos %é} 2 (—% Sin'Il-I ¢)2

The uplift pressures along the base of
the dam (y = 0) may be found from equation
234) by substitution of ¥ = 0, Then equation
34) becomes

.(39)

and
= _H -1 2x 41)
p g = - CoS 5> - A

Note that the boimdary conditions are
satisfied in equation (41), with

g

Hat x = -

wojo

and

g

=+ 2
Oatx_+2

The uplift pressures along the base of
the dam are given in figure 4 in terms of
H, the acting head.

Streamlines and equipotential lines may
be plotted by the use of equations (38) and
(39;), respectively. Then with the flow net
established, the seepage losses, Q, may be
determined by use of the relations

v = K %’g
............ (42)
QR = AvV
in which

K = the permeability coefficient,

a2 pressure-head gradient
ds (dimensionless),

v = velocity,

A = cross-sectional area, and
Q = discharge or seepage loss.
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_Dimensiona .
Applied to F' d Sheet-Piling 4.
Consider the function
Zz=bcoshw.......... (43)
Again
Z=x+1y
wW=V+if

Placing these values in equation (43) gives

bcosh (¢ + i §)

X +1iy
b cosh ¥ cos @
+ ibsinh ¥ sing

X +1iy

On equating the real and the imagi.na.ry
parts, we get -

bcoshycos@........ (44)
bsinhy sin@ ........ (45)

X

y

Solving for cos § and sin @, we get

cos @ = . (46)
b cosh ¥

sinf = —L— ..., (47)
b sinh ¥

Then squaring and adding,

2 2
X + Y = 1 .(48)

b? cosh® ¥ —b? sinh® ¥

Similarly, solving for cosh ¥ and sinhy,
we have

x2_ __ ¥ _ 1. u9)

b4 cos? 1) b sin @

From equations (44) and (45) it can be seen
that @ = ™ represents the negative part of
the X- axis beyond x = - b. If equation (49)
is written ‘

% Vetter, C. P., Notes on Hydrodypnamics
{Volume I), Technical Memorandum No, 620,
U. S. Bureau of Reclamation, Denver, Colo-
rado, September 1941, p. 100.

LZ_ - M = cos® ¢
b2 b? sin? @

it can be seen that @ = —2"!- and @ = %ﬁ repre-
sent the line x = 0, or the Y axis.

Now if the coordinate system is drawn
with the X axis positive upward and the Y
axis positive to the left, the function given
in equation (43) is seen to represent the flow
around a sheet-piling wall of depth b, shown
in figure 5. To correctly represent the flow,
the branches of the equipotential lines fall-
ing in the second quadrant only should be
drawn for values of @ between T and 371/2,
and the branches falling in the third quad-
rant only should be drawn for values of @
between /2 andmW.

Note in this development that the up-
stream potential is given as {ZP = 37/2 and
the downstream potential as @ = /2. This
means that the head of water upstream must
correspond to 31/2 and the head downstream
must correspond to T/2. (See figure 5.)
This can better be seen by considering the
potential function with g/v equal to unity, or

.- it is known that on the upstream foundation

line, p = Hy + Hg, and y = 0; hence, by
equation (50), @ = Hy + Hy. The mathemat-
ical solution gives @ = 37/2, so Hy + Hp
= 3m/2. Similarly, along the downstream
foundation line it is known that p = Hg and
y =0, hence @ = Hg. The mathematical
solution gives @ = m/2 along this line, so
Hg = /2. The results of this study are
shown in figure 5.

Three-Dimensional Radial Flow (Point-
Source or Sink). Many problems in the flow
of fluids through porous media can be adapted
to a two-dimensional flow system,but oc-
casionally there are problems that can be
treated only by a three-dimensional solution.

In three-dimensional problems it be-
comes necessary to consider gravity. The
potential function given as equation (8) is

®=p+T—

and Laplace’s equation, equation (11), in
terms of @, is

2 2
g L3 _

vig - 2%y
ay? az2

ax2

+
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Figure 5 - Flow around Sheet-piling.
Spherical Flow, Spherical flow is analogous 1 F . af
to the two-dimensional problem of radial + — (sin 8 =£)

flow, for here the potential and velocity rlsin® 20 a8

distributions will depend only on the radius,

r, of a spherical coordinate system. ILa- 1 2 ’
place’s equation in a spherical coordinate + 3% _ o...(51)
system (r, 8,7 ) will have the general form rsin®e a2

_12 2«2 kI but in the case of spherical flow this

r“ or or reduces to

10
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Lz 2?22y
T ar
It will be found that the potential function,

C1
g = - -
is a solution to equation (52) and that it gives
the potential § throughout a spherical flow
system. The constants Cq{ and Cg can be

determined from the boundary conditions.
In figure 8

........

g, at r = a
........ (54)
g = ;Zlb at r = b
Substitution of equation (54) in equation
(53) gives
C
- - 1
ﬂa = Py + Cz
i/ e
b b 2
o ¢b - ¢a
L1
a b
(ﬂb - ¢a) 1
CZ - ¢a + —l‘ B L _5"
a b
¢b - ¢a 1 1:|
¢ =———1—_-—1—- ‘;"‘E +¢a '(55)
v &

Then the velocity is

.~ o
vy = K ar

11

@ - 0 o
T TTCT - (56)
PR

The total flow through the system is given

by
n n
dx/ r2 sin 6 v, d8
0 0

=4“(¢b fﬁa)K
1 1

a b

[l

Q

L (5T

(UBséi)ng equation (57) with equations (55) and

]

e s RN
and
- @
VI‘ 4,(1.2 ............

Example 3. Equation (57) may be used in
manirﬁ—spes—f&' the determination of the av-
erage coefficient of permeability of a soil
by means of a simple field experiment. At
the Elk Creek Damsite, Conejos River, San
Luis Valley Project, a hole was drilled into
the soil foundation and an open end casing
with an inside diameter of 5.75 inches was
sunk into the bed. All earth material was
cleaned out of the casing down to the level
of the bottom. A measured flow of water .
was supplied to the casing, the inside diam-
eter of the pipe was noted, and also the head
differential between the water level inside
and outside of the casing. In applying equa~
fion (57) to this problem, it is assumed that
hemispherical flow takes place, and that the
outer radius of the sphere, b, becomes in-
finite, Then with @y - @5 equal to H, or
the head differential inside and outside of
the casing, equation (57) becomes

Q=2n%-IK
a
or |
9 |
K = TS R (60)

Data received from tests at the Elk Creek
Damsite showed that at Drillhole No. 3, with
the open end of the casing 25.0 feet beloyv
the ground surface, H = 8.8 feet, @ = 0.008,
996 second-feet, and a = 2.875/12 = (0.240




feet. Then

__0.006,996
T 201 x0.240 X 6.6

527.2 x 10~ feet per second

it

16,630 feet per year.

A second test made with the open end
of the casing 47.0 feet below the ground sur-
face gave H =9.8 feet, Q = 0.001,493 second-
feet, and a = 0.240 feet. Then in this in-
stance

K = 0.001,493
2n x0.240 x 9.8

= 101.2 x 1076 feet per second
= 3,190 feet per year.

Electric anatogy experiments show that
when using a casing with a flat bottom for
the field determination of X in the manner
described above, the equation should be

K Q@

= m ......... (61)

which differs from equation (80) in that the
constant in the denominator is 5,553 rather
than 2X. The difference results from the
fact that the flow is not truly hemispherical.
Equation (61) will give K-values 13 percent
reater than equation {60) for the same
ield data.

Analvtical Det inati f Critical Exit
Gradiepts, Water, in percolating through
a soil mass, has a certain residual force
at each point along its path of flow and in
the direction of flow which is proportional
to the pressure gradient at that point. When
the water emerges from the subsoil, this
force acts in an upward direction and tends
to lift the soil particles. Once the surface
particles are disturbed, the resistance
against the upward pressure of the perco-
lating water is further reduced, tending to
give progressive disruption of the subsoil.
The flow in this case tends to form into
‘““pipes,”’ and it is this concept that has
brought about the commonly accepted term
_of ““piping.”’ This action may also be de-

scribed as a flotation process in which the
pressure upward exceeds the downward
weight of the soil mass. Since the soil is
saturated, it is apparent that the upward
pressure gradient, F, of the percolating

water must be equal to the wet density, W,
of the soil in order to produce the critical
or flotation gradient. The statement may
be proved as follows:

Figure 7 - Element of Soil in
Pervious Foundetion.

Consider the rectangular parallelepiped
shown at the bottom of figure 7, bounded
by streamlines and equipotential lines, with
end area aa and length as. The force at
face A is equal to paa, and at face B is
equal to (p +4p) s2. Then neglecting the
curvature of the streamline, the net force
acting on the element in the direction of the
streamline is given by the equation

poa-(p+ 4ap) ba=-apba..(62)

and since the volume of the element is A sAa,
the force per unit of volume becomes

F . . 4D8a _ _ 4p
4 sAa 4s

If 45 is made to approach zero this gives

) . (63)

in which dp/ds is the pressure gradient
at the point.

Now consider figure B. At each point
along a streamline the two forces, W and F,
will be acting. Their effects can be resolved
into a resultant, R, at that point.

Figure 8 -~ Force Components,

B
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For stability there must be no upward com-
ponent of the resultant. The vertical com-
ponent of R is

Rv = W - Fcosb6

The dangerous region in a structure is
near the point, E, where 8 = 0°. Soil par-
ticles at E will be on the verge of failure
if R =0. This condition will define the limit~
ing case, or

F=W ..... 000, (65)

But equation (63) shows that F was the
pressure gradient at any point. So the crit-
ical gradient becomes

The above equation states that the critical
or flotation gradient is equal to the wet den-
sity of the soil.

A mathematical method® has been
developed for determining the critical gra-
dients, or in particular the exit gradients in
the vicinity of a cut-off wall extending into
the pervious foundation material. The meth-
od is based upon a function of the complex
variable and makes use of the Schwarz-
Christoffel transformation. The derivation
is not given here because of space limita-
tions, but the results that follow give the
findings for the hydraulic exit gradient, GE’
at the critical point for several cases.

. This is for a single pile-line
with no step, and no apron upstream or
downstream. .

T e--
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Figure 9 - Exit Gradients: Case One.

S$Khosla, A. N., Bose, N. K., and Taylor,
E. M, i f Weirs meable -
dati , Publication 12, Central Board o
Irrigation, India, September, 1936.

At Point C
_ H
GE - Wd‘l .............. (67)
Case Two. This is for a single pile-line

with step, and no apron upstream or down-
Stream.
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Figure 10 - Exit Gradients: Case Two.

At Point
d
H 2 c
G_= L ., . .. (68)
where
c = cos®
and
dg
tan9 - 86 =

@ - G

The meaning of all symbols used is
evident from the sketches given above with
the exception of ¢, which is a function in-
volving dy, dg, and X, and is most readily
determined from the curves of figures 11,
12, and 13.

The value of Gg is obtained either by
calculation or by interpolation in Table 1.

VALUES OF Gp (CASE TWD)

(After Khosla, et al, Publicatiom 12,
Central Board of Irrigatiom, India.)

dp
H
c G +
4 - dgy exit 35

1.000 [¢] -
0.645 0.1 0.182
0.518 0.2 0.213
0.437 0.3 0.233
0.380 0.4 0.245
0.335 0.5 0.252
0.302 0.6 0.260
0.275 0.7 0.265
0.254 0.8 0.270
0.233 0.9 0.274
0.217 1.0 0.278
0.129 2.0 0.295
0.091 3.0 0,301
0.071 4.0 0.305
0.058 5.0 0.307
0.049 . 6.0 0.310
0.042 7.0 0.310
0.038 8.0 0.311
0.033 9.0 0.312
0.030 10.0 0.312
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Gradlent.

/

Values of ¢ for values of

St

L
between L5and 3.0

j'f.”. T

Figure 12 - Values of c¢ for Use in Determining Exit
Gredient (Continued).
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Figure 13 - Values of ¢ for Use in Determining Exit
Gradient (Concluded).
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Figure 14 - Forchheimer's Graphical Solution of an Impervious
Dam on a Pervious Foundation,
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Case Three. This is for a dam with no
pile-line.

W.S2y
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Figure 15 - Exit Gradients: Case Three.

At Point B
GE = infinity

Along BC

-~

2H 1

G, = 28 _[2;]_;‘____1..(69)
b .

Example 4. Equations (67) and (68) may
also be used to determine the depth of piles
to give a desired exit gradient. First con-
sider the problem as shown in figure 9.

Assume H = 14 feet and that it is de-
sired to have an exit gradient of 0.2. (This
will give a safety factor of 5.) From equa-
tion (67),

d. = H _ 14
1 n GE n (0.2)
= 22,3 feet.

Now assume the problem to be as shown
in figure 10. From equation (68) with Gg
=0.2 and H = 14 feet, and letting d; - dg
= 14 feet,

. _
- 14 2 _c _
GE‘?z“ 7 T-c = %2

or
€ .02 c = 0.187
1 - ¢

By definition,
cos 8 = 0,187
1.403

c
6

and by definition

16

tan® - 8 =

Therefore

1 do = 4.501
14 2

or

d2 = 20,0 feet.

. Theoretically, a struc-
ture would be safe against piping if the exit
gradients are only slightly smaller than the
wet density of the soil. However, there are
many factors, such as washing of the sur-
face and earthquake effects, that could easily
change such a stable condition into one of
incipient failure. For this reason it is de-
sirable to have a factor of safety so that
the exit gradients are much smaller than
the critical value. Although the question
of amount of factor of safety has not been
settled, values of 4.0 to 6.0 have been pro-
posed, the smaller value for coarse mate-
rial and the larger value for fine sand.

EXPERIMENTAL SOLUTIONS

Geperal. By choosing the appropriate analyt-
ical solutions to the Laplace equation and
combining their effects, many flow problems
can be solved. Solutions other than those
previously mentioned, however, are usually
cumbersome, and the use of experimental
methods is justified. The five commonly
used experimental methods are:

1. Graphical construction of flownets.
2. Membrane analogy.
3. Electric analogy.

4. Hydraulic models (including Viscous-
Fluid Method). :

5. Field experiments on the actual
structure.

Each of these methods has an advantageous
field of application. Of the five methods,
the electric analogy has,in most cases,been
found to give the best accuracy with the least
cost and greatest speed. Where transitory
effects are of major interest, the use of
hydraulic scale models is justified. The
first four methods will be treated separately
in the following paragraphs.
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i i It is
known that streamlines and equipotential
lines are everywhere normal to each other.
Ignoring the effect of gravity, all boundar-
ies of a flow system must also be either
streamlines or equipotential lines. It is
possible then to make a sketch of a flow
system, starting with the known boundary
conditions. Professor Forchheimer® in-
troduced this method some forty years ago.
The method is approximate, but gives re-
sults which are generally sufficiently ac-
curate for practical purposes.

The method can be best demonstrated
by considering the sketch shown in figure 14.
It is assumed here that an impervious dam
rests upon a pervious layer of foundation
material which in turn rests upon an im-
pervious rock foundation. A cut-off wall at
the center of the dam extends approximately:
halfway into the pervious material. The
horizontal upstream line, AB, is a line of
equipotential as is also the line FG., They
are, however, not at the same potential,
but differ in potential by the depth of water
in the reservoir, H. The line BCDEF and
the line LM are immediately known to be
streamlines. Therefore, it is only neces-
sary to insert additional streamlines between
these two limits, All these lines must be
perpendicular to AB and FG. We now
choose an arbitrary number of stream-
lines within the area arranged so that the
seepage passing between any pair is the
same as that passing between any other
pair. The equipotential lines are also spaced
so that the drop in head between any pair
is the same as that between any other pair.
The resulting ‘‘flow net’’ will then possess
the property that the ratio of the sides of
each rectangle, bordered by two stream-
lines and two equipotential lines, is a con-
stant. This means, for example, that some
distance m must be approximately equal
to the distance n, that other distances such
as m, must be approximately equal to such
distances as ni, and that m/n = m;/ng
= a constant. The flow net is usually spoken
of as consisting of a system of ‘“‘curvilinear
squares.’”’ This is a trial-and-error method
in which one must make the streamlines
everywhere intersect the equipotential lines
at right angles and also produce curvilinear
squares. It usually requires more than one
attempt to produce a good net. Once the net
is established it is possible to compute the
quantity of seepage through the medium, the
uplift pressure caused by the percolating
water, and the pressure gradient at any point.

TForchheimer, Philip, Hydraulik (Teubner,
Leipzig), 1930,

The following suggestions are made in
order to assist the beginner in employing
the graphical method:

1. Study the appearance of all available
flow nets regardless of their source.

2. Don’t use too many flow channels in
your first and second trials. If necessary,
additional flow channels can be inserted
later.

3. In your first trial observe the appear-
ance of your entire flow net.

4. Use smooth, rounded curves even when
going around sharp corners.

5. Make detail adjustments only after the
flow net is approximately correct.

Membrane Analogy. The study of flow
through granular material in the steady state
resolves itself into solving Laplace’s dif-
ferential equation for specific boundary
conditions. It can be shown that Laplace’s
equatieon also applies to phenomena which
are entirely unrelated to fluid flow. The
small deflection of a loaded membrane is
one of these phenomena, and, by analogy,
may be used to solve fluid flow problems
experimentally. The Laplace’s equation
also governs the flow of electricity in ho-
mogeneous isotropic media.

Consider a uniformly stretched mem-

brane supported at the edges and subjected
to a uniform pressure, P, as shown in fig-
ure 16. Then, as in the case of a thin-
walled vessel subjected to a unifbrm in-
ternal pressure, the tension in the mem-
brane will be given by the equation,

Figure 16 - Uniformly Stretched Mem-
brane Subjected to a
Uniform Pressure.
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since the tension, T, must be equal in all di-
rections. The curvatures for the membrane,
for small deflections, are given by the equa-
tions,

B - B (71)
L] ax?

2 -
A _ 2 ; ........... (72)
Ty 3y

and substitution of equations (71) and (72)
into equation (70) gives

2 2
22 , 3%z P (73)
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Equation (73) must be made to take the form
of Laplace’s equation,

_afg+%2g.=0=v2¢ .. (74)
X

y

which is comparable with the equation,

. .{75)

2 2
ig- +—a—P-=O=v2p

ax ay?

This can be accomplished by performing
the experiment without applying the pres-
sure, D; that is, if P is made equal to zero,
equations (73) and (74) are of the same form.
The membrane then, since it satisfies La-
place’s equation, can be used for the deter-
mination of streamlines, equipotential lines,
or lines of equal pressure in any flow sys-
tem where the model is subjected to the
proper boundary conditions.

DPreparation of the Model. The tech-
nique described below is that developed by
the Bureaw Other procedures could be used

It will be assumed in the following dis-
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cussion that it is desired to determine the
lines of equal pressure in a pervious earth
dam resting on a foundation of the same
permeability as the dam. A base plate about
1/4 inch in thickness is cut to scale repre-
senting the cross-section of the dam and a
large portion of the foundation. The amount
of foundation to be included should be an
area approximately three times as long as
the base width of the dam and twice as deep
as the reservoir. (See figure 17.)
W.S. K J

Figure 17 - Membrane Analogy Model.

Around the boundaries of the model is
attached a vertical strip of pyralin about
1/186 inch in thickness. Its vertical ordin-
ates are made of a height proportional to
the prototype pressure at every point. Re-
ferring to figure 17, the strip would have
a height of zero along FED. The point D
is at first unknown as is the shape of CD,
but it is kmown that the pressure along CD
is zero and that it is also a streamline.
The exact determination of CD will be dis-
cussed in another paragraph. Along CB
the vertical strip would vary uniformily from
zero height at C, to height H at B. Height
H could be made to any convenient scale,
say 1/2 inch. M this scale were adopted,
the vertical strip along BA would be 1/2
inch higher than along EF or at C. AL
would increase in height from 1/2 inch at
A to 1-1/2 inches at L, and LG would de-
crease to 1 inch at G. Finally, the bound-
ary GF would drop in height from 1 inch
at G back to zero at F. Not= that in this
system of boundary conditions, the pres-
sures due to the gravitational potential have
been added to the boundary conditions.

Next the model is placed on a table,
which is part of a scanning set-up, and
leveled. A rubber membrane which has
been uniformly stretched and fixed to a
frame approximately two feet square, is
placed over the model. Steps must be taken
to insure that the membrane is everywhere
in contact with the boundaries of the model.

It has been found through experimen-
tation that, if the boundary JE is made at
zero pressure and no attempt is made to
force the membrane into contact with the
line KJDE, a line CD automatically de-
velops at zero pressure and the equipotential
lines become perpendicular to it. The line

—y




CD is then the desired phreatic line. The
model now is fully prepared and its surface
can be surveyed. This is done with the de-
vice shown in figure 18, which consists of
two parallel bars supporting a traveling
bar which in turn supports a micrometer
depth-gage. The accuracy of the experi-
ment is increased by painting the membrane
with a thin coat of varnish and dusting the
painted surface with flaked graphite, thus
making the membrane an electrical condue-
tor. A 1/8-watt neon glow-lamp connected in
series with the micrometer needle and
membrane to a 110-volt alternating-current
source makes a very sensitive indicator.
The exact point of contact between the mem-
brane and the descending micrometer depth-
gage point is indicated by the lighting of the
neon lamp.

The membrane analogy does not lend
itself to experiments in which the percola-
tion factor of the material is different in
certain zoneg than others. It is not quite
as accurate nor as rapid an experimental
method as the electric analogy. It is also
difficult to make the boundary ordinates
exactly correct at every point.

ST da .

Figure 18 - Membrane Analogy Model.

Electric Analogy. The electric analogy is

certain problems arising in the field of
hydraulics, particularly in the branch deal-
ing with the slow flow of water through earth
masses, [t may be applied to both two- and
three-dimensional problems. The method
consists essentially of producing and study-
ing an analogous conformation, in which the
actual flow of water in the soil is replaced
with a similar flow of electricity through
an electrolyte in a tank or tray that has the
same relative dimensions as the earth em-
bankment. This is permissible since La-
place’s equation governs both the flow of
electricity and the flow of water, where
water can be considered a perfect fluid.

The analogy can be seen at once by com-
paring Chm’s law, which expresses the flow
of electricity through a uniformly conductive
medium, with Darcy’s law, which expresses
the flow of water through a homogeneous
granular material.

In performing an electric analogy ex-
periment, a model is made of the prototype
structure, to scale, so that the prototype
boundary conditions are properly represented
by boundary conditions in electrical units.
It is best to work in terms of potentials, and
the method will be better understood if we
consider a specific case. Imagine an earth
dam with cross-section as shown in figure
19, resting on an impervious foundation. In
working with the electric analogy the poten-
tial function is usually written in the follow-
ing form, for it is more convenient to work
in units such as feet of head acting or per-
cent of head acting:

BBk F comamsassasus (76)
where
= the pressure- head , and
y = the vertical coordinate of the

used to obtain experimental solutions to point.
Darcy’s law Chm’s law
_KAH K'A VY
C Ll AN

@ = rate of flow of water

K = coefficient of permeability
A = cross-sectional area

H = head producing flow

L = length of path of percolation.

I = current (rate of flow of electricity)
K'= conductivity coefficient

A'= cross-sectional area

V = voltage preducing current

L' = length of path of current

19
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In this case, also,

ag
V = ——

N 77)
Q@ = Av

By use of equation (76) we may establish
the boundary conditions for the model. The
rectangular coordinate system will be taken,
as shown in figure 19, with the origin at the
base of the dam and y positive upward.
Equation (76) will be used with the + sign.
Now, along the upstream face of the dam

§ will become equal to a constant (H in this-

case), because everywhere on this face
g=p+y=H ...... ... (78)

Along the downstream face of the dam
where p =0,

B o=t ¥ e, (79)

This means that @ varies directly with y.
The third boundary condition to be met is
the establishment of a phreatic line. This

line, as mentioned before, is a line of zero -

pressure and also a streamline. Since
p = zero along the phreatic line, from equa-
tion (76) we have again

Mathematically, the boundary conditions are
satisfied by equations (78) and (79). These.
can also be satisfied on the electric analogy
model. The determination of the phreatic
line is not direct, however, but is a cut-and-
try process. It will be discussed in detail
hereinafter. The base of the dam, in this
example, is a streamline and may be repre-
sented by any nonconducting material.

Preparation of the Model. Electric an-
alogy models are usually prepared from

pyralin A thin sheet of pyralin is cemented -

1o a piece of plate glass by the use of ace~
tone. On this plate are erected vertical

strips of pyralin along the lines which define, .

to scale, the cross-section of the dam.
These strips are cemented with acetone to
the pyralin plate. In the model the constant-

potential upstream boundary is represented -

by a strip of brass or copper which is at a
constant electric potential. The base of the

dam, which is a streamline, is represented .

by the pyralin strip, for it is a nonconductor.
The downstream face, along which the poten-

© tial varies, is approximated with a series

of small brass or copper strips connected
in series with small resistors. The phreatic
line, which is also a streamline, is made
of modeling clay so that there can be no
flow across it, and also so as to facilitate
‘rapid change of its location in the cut-and-
try procedure. The original position of the
clay boundary representing the phreatic line
can be determined by approximation. The
experienced operator ¢an estimate its po-
sition very closely.

Once the boundaries of the model are
prepared the tray is filled with a salt solu-
tion or ordinary water, to act as an elec-
trolyte. The electrical circuit is shown on
the accompanying drawing, figure-20. The
circuit is essentially a Wheatstone bridge,
with the model connected in parallel with
the main resistor having the variable~center
‘tap. In the cross-circuit the probing needle
is connected to the variable-center tap
through a small cathode-ray tube which acts
as a null-indicator.

When the model is prepared and set in po-
sition, a point is selected on the assumed
phreatic line a distance y above the im-
pervious foundation and the potential is read
at this point. The potential at this point
must equal y, as stated in equation (79),
since p =0. Since we are working in per-
cent, we may state that if at the point in
question y equals 80 percent of H (where
H is the depth of water in the reservdir),
then # must equal 80 percent. X @ as read
on the bridge is not 80 percent, the clay

- boundary is moved until y = . Several

21

points must be checked in this manner until
the final determination of the phreatic line
is made.

Once the phreatic line is determined, the
potentials throughout the model may be read
on the Wheatstone bridge. These are plotted
as equipotential lines and are shown, for the
case discussed, in figure 19. The experi-

"mental problem is completed when the equi-

potential lines are determined. From these
lines may be computed the lines of equal
pressure, losses of water due to seepage,

~and pressure gradients. Streamlines, if

desired, are drawn perpendicular to the
equipotential lines. Lines of equal pressure
are computed from the equation

P=@ -y ... ... (80)

where values of § are selected from the
equipotential net and y is the percent of
head, H, at the § point in question. The
pressure, p, will also be in percent of head.
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The equal-pressure lines are shown in
figure 19.

The electric analogy is most readily
adapted to problems in which the perme-
ability coefficient (corresponding to the
electrical conductivity) is constant through-
out the entire soil mass. However, it can
be used for problems in which the perme-
ability coefficient is not a constant through-
out the entire mass, but is constant in cer-
tain regions. In problems of this type, the
depths of solutions in the tray are made pro-
portional to the various permeabilities. The
experimental results shown on figure 19
are based upon a dam having a core mate-
rial half as permeable as the material in
the outer zones.

For a schematic diagram of the Wheat-
stone bridge used by the Bureau of Reclama-
tion and a photograph of the equipment, see
figures 21 and 22,

An Approximate Solution of 4 Rapid-
Drawdown Problem. In solving a rapid-
drawdown problem by the electric analogy
tray, the drawdown is considered to be in-
stantaneous and thus the head of water with-
in the dam remains at the full-reservoir
water surface elevation. In other words, the
point of intersection of the full- reservow
water/surface with the upstream face of
the dam is the 100-percent potential. The
surface from this point along the upstream
face/to the lowered water surface elevation
is considered to be a free surface, and the
portion below the lowered water surface is
of a potential equal to the lowered elevation
divided by the full-reservoir elevation.

The phreatic line is first established for
a full reservoir in the usual manner. The
upstream, or 100-percent, electrode is then
cut down to the elevation of the lowered water

Figure 22 - The Electric Analogy Tray.

Figure 23 - Model for a Drawdown
Problem.

surface and connected to the proper resist-
ance. The remaining resistance is varied
uniformly along the upstream face, reaching
100 percent at the entrance of the phreatic
line. Wires may be extended from the re-
sistance box used on the downstream face
to the resistance strips on the upstream face
(see figure 23). The equipotential lines are
then surveyed in the usual way.

With the equipotential lines thus estab-
lished, the streamlines may be drawn, use
being made of the fact that the two systems
must be orthogonal. Using the equipotentizal
lines, the pressure net may be drawn by the
use of equation (80). An example of the flow
net and pressure net is shown in figure 24.

Applications of the Flectric Analogy. A few
practical problems that have been solved by

the electric analogy are included here be-
cause of their general applicability or be-
cause they show the effect of certain condi-
tions on a flow problem.

M in Dam 3tudy. This was
an electric analogy study made for the de-
termination of uplift pressures and the flow
net existing in the dam. It is included here
because it demonstrates that in a zoned dam
in which one zone is of relatively impervious
material, practically all the head losses will
occur in this material even though the water
has previously passed through a relatively
pervious zone,

Figure 25 shows the flow net and the
pressure net that will exist in the dam
for the section studied. Figure 26 shows
two photographs of the models used in the
experiments. Salt solutions of different
concentrations were used in the experiment
to represent different permeability coef-
ficients. This procedure was abandoned
later in favor of the method of varying the
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Figure 26 - Green Mountain Electric Analogy Models. (Top:
Original Model. Bottom: After Modification.)
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depth of solution to represent different
permeability.

The results presented herein are based
on two separate approaches. In one case,
the model of which is shown in the upper
half of figure 26, electrolytes in three sepa-
rate compartments and of three distinct salt
concentrations represent the inner zone
and the two adjacent outer zones. In the pro-
totype, the permeability coefficients asso-
ciated with these zones are 0.23, 4.1, and
9.2 for the inner, upstream, and downstream
zones, respectively. These are in terms of
feet per year per unit gradient. For each
zone these permeability coefficients repre-

sent the average values obtained from soil’

tests made at the damsite. The necessary
condition that the electric potential at any
point on the boundary of one solution be
equal to the electric potential at an oppo-
site point on the boundary of the adjacent
solution has been approximated by the in-
stallation of small strips of sheet copper.
These were bent over the pyralin sheets
separating the solutions, and spaced closely
as shown in the upper half of figure 26.

~ The boundary conditions were met in
the usual manner. The upstream boundary
is a line at constant potential and was made
of copper. The rock foundation base-line
is obviously a streamline and was repre-
sented by means of a strip of pyralin. It
was assumed to be at Elevation 7690 for
the full length of the cross-section. The
downstream boundary of the downstream
Zone 2 (see figure 25) is a line of uniformly
varying potential, providing that the perme-
ability coefficient of the next downstream
zone is quite large by comparison. This
condition is fulfilled in this case. The vary-
ing electric potential along the boundary was
obtained by placing along it 26 equally spaced
pieces or segments of copper, which were
connected with a series arrangement of 25
one-ohm resistors, as shown in the photo-
graph. When the top segment, which has
its centerline at reservoir level, is connected
to the upstream copper boundary, and the
Wheatstone bridge is connected across the
upstream copper boundary and the down-
stream segment at foundation level, the
necessary electrical connections are in
order. This method of approximating the
varying electric potential boundary by finite
increments does not give satisfactory results
unless the current going through the resis-
tors is large relative to the current going
through the solutions. This will be the case
- when the over-all resistance of the solutions
is large relative to the total resistance of the
varying potential boundary.

The remaining boundary condition to be

28

installed is the upper streamline, or phreatic
line. It is both a streamline and a line of
zero pressure. Its location is unknown and
must be found by a cut-and-try process.
It is formed with modeling clay, and is in
correct location when the condition of zero
pressure has been fulfilled. This will be
when the potential as measured with the
Wheatstone bridge varies linearly with ele-
vation changes along this line.

In the process of fixing the phreatic line
and surveying the equipotential lines, two
facts became apparent. It was obvious that
there was no detectable voltage drop in the
upstream salt solution and only a negligible
drop in the downstream salt solution. Also,
it was practically impossible to-adjust the
clay correctly for the phreatic line in the
downstream salt solution. Results of the
tests showed that the problem could be better
and more adequately handled by using only
a single salt solution for the central or inner
zone, and moving the copper boundaries to
the extremities of this inner zone. This
change was made on the model as shown in
the lower photograph of figure 26, The up-
stream boundary of the inner zone was then
held at constant potential, and the down-
stream boundary at uniformly varying
potential.

Equipotential lines surveyed on the mod-
ified model are shown in the upper half of
figure 25. The streamlines have been drawn
orthogonal to the equipotential lines. The
pressure net has been obtained from the
equipotential system by subtracting from
it the elevation component. The nets have
been continued through the downstream zone.
The probable position of the free surface
in this zone has been obtained mathemati-
cally by assuming that in the major portion
of this zone the phreatic line is a straight
line, and by equating the quantity of water
passing this zone to the quantify computed
from the flow net in the inner zone.

Debenger Gap Dam Study. This electric
analogy study is included because it demon-
strates the effect of several materials of
different permeability on the flow net and
pore-pressure distribution in a dam and its
foundation. Two cross-~sections of the dam
and foundation were studied as shown in
figures 27 and 28. Note that the dam has a
tight, impervious material in its center
zone (K = 1.0 foot per year) flanked up-
stream and downstream by a relatively
pervious material (K = 10.0 feet per year)
with additional rock-fill material on the
downstream face of the dam. The down-
stream rock fill is an excellent filter which
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relieves the pore pressure along its bound-
aries and prevents high exit gradients. The
zoning of the materials, in general, is con-
sidered very good. By having a pervious
material upstream as well as downstream
in the prototype, the internal pore pressures
would be almost immediately relieved for
a rapid drawdown of reservoir.

The experiment had to be performed
in two distinct steps due to the great dif-
ference in the permeability of the founda-
tion material and the materials within the
dam. First, the foundation was treated
separately and the equipotential net estab-
lished. The potentials thus established
were then imposed upon the base df the
dam for use in determining the equipoten-
tials for the dam itself. The differences
in permeability of the materials in the dam
were provided in the model by having a
depth of solution 10 times as great in the
outer zones as in the inner zone.

The results of the study are shown in
figures 27 and 28.

i . The purpose of this
electric analogy study was to determine
the pore pressures due to the percolating
water, and the effectiveness of sheet-pile
cut-offs and a clay upstream-toe blanket in
reducing the water losses from seepage.
The cross-section of the dam, with per-
meability coefficients for the various mate-
rials, is shown in figure 29. Note that the
general scheme of zoning materials is much
like that used for Debenger Gap Dam.

The first step in the procedure was to
study the dam and foundation shown in figure
30, which has no cut-off wall or clay blanket.
Water losses and pore pressures were then
computed for this condition and compared
with results obtained for other assumed
conditions.

Conditions assumed and studies made
were as follows:

1. No cut-off wall--no clay blanket. (See
figure 30.)

2. Cut-off wall extending to bedrock,
with 1/32-inch openings between 16-inch
sheet-piles.

3. Cut-off wall extending nine-tenths of
the depth to bedrock. (See figure 31.)

4. Cut-off wall extending eight-tenths
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of the depth to bedrock. (See figure 32.)

5. Cut-off wall extending seven-tenths
of the depth to bedrock. (See figure 33.)

6. Cut-off wall extending five-tenths of
the depth to bedrock. (See figure 34.)

7. Clay blanket extending 315 feet up-
stream from core of dam. (See figure 35.)

8. Clay blanket extending 515 feet up-
stream from core of dam. (See figure 36.)

Table 2 consolidates the information
obtained. Note that a cut-off wall of depth
equal to nine-tenths the thickness of the
foundation material reduces the percolation
losses by only 23 percent. Also note that
if sheet-pilings have joint openings of as
little as 1/32 of an inch, they are almost
totally ineffective in reducing percolation
losses.

A 315-foot clay blanket on the upstream
toe reduces the percolation through the foun-
dation material by an amount equal to the
reduction caused by an impermeable cut-off
wall of depth equal to nine-tenths the depth
of the permeable foundation. In addition,
the clay blanket without cut-off walls gives
the most favorable distribution of uplift
pressures for stability calculations.

The amount of percolation through the
clay core is shown on figure 37. In com-
parison with percolation through the foun-
dation material, the percolation through the
core is extremely insignificant, and the
width of the core may therefore be decreased

if desired.

Figure 37 indicates a rapid increase of
the percolation gradient near the downstream
intersection of the core with the toe blanket.
This increase in the percolation gradient
could be effectively reduced by a clay fillet
between the core and the downstream-toe
blanket.

If the 60-foot deep clay cut-off section
in the excavation portion of the foundation
(ABCDA in figure 29) were replaced by a
clay lens with an average depth of 5 feet
and the same total length of 645 feet, lo-
cated at or near the original streambed, the
total underflow would be increased to only
8.6 second-feet (or 43 percent over Condi-
tion 1) with a considerable decrease in exca-
vation and fill requirements.
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- Electric Analogy Study of Davis Dan.
Clay Blanket on Upstream Toe.

Figure 35
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.cedure is known as the

TABLE 2

RESULTS OF DAVIS DAM PERCOIATION STUDIES

Average underflow per Total Underflow in percent
Conditions foot width of streambed,| underflow, of underflow for
second-feet second-feet Condition 1
1. No obstruction (fig. 30) 10.20 x 1073 ‘ 5.95 100
2. Sheet-piling, 1/32-inch
opening between 16-
inch piles 10.10 x 1073 5,90 99
3. Cut-off wall, D'/D =0.9 3 S
(fig. 31) 7.86 x 107 4.60 77
4. Cut-~off wall, D'/D =0.8 -3 -
(fig. 32) 8.61x 10 5.04 85
5. Cut-off wall, D'/D = 0.7 3
(fig. 33) 9.20 x 10~ 5.38 20
6. Cut-off wall, D'/D =0.5{ - :
(fig. 34) 9.53 x 10™3 5.58" 94
7. 315-foot clay blanket on ’ 3
upstream toe (fig. 35) 8.02 x 10~ 4.69 79
8. 515-foot clay blanket on - -3 : . ;
upstream toe (fig. 36) 6.80x 10 4.01 67

Hydraulic Models. Hydraulic models may
be -used to determine the flow properties of
a hydraulic structure. It is possible to de-
termine streamlines and equal-pressure
lines directly, and equipotential lines can
be located from either pattern. There are
two distinct types of hydraulic experiments
employed in the study of slow flow through
granular materials. One e:gperimental pro-

‘“Viscous-Fluid

Method.’’ The other may be called the
‘‘Hydraulic Scale-Model Method.”’ Only the

former is described herein. :

The Viscous-.

Fluid Method is one that gives very rapid

results with a minimum of equipment. Itis

best suited for the determination of stream-
lines under a weir or diversion dam resting
on a pervious material, in which case the
structure itself is considered impervious.
The effect of cut-off walls extending below
the structure is clearly shown.

To perform the experiment, a small tank
is constructed with parallel sides of glass
plate spaced a small distance apart. A
model of the cross-section of the dam with
its protruding cut-off walls is then cut from

41

a material such as bakelite, the thickness
of the model being such that the model fits
snugly between the glass plates of the tank.
Before inserting the model between the
plates, it is greased to insure watertightness.
Water is then made to flow slowly under the
model from the upstream to downstream end
of the structure, and after the flow has be-
come steady a permanganate solution is
added. It will flow in distinct streamlines
within the water, as shown for a weir in (a)
of figure 38. Pressure lines can be deter-
mined from the streamlines.

Experimenters have also used glycerine
as the fluid in place of water in performing
this type of experiment. In this procedure
dyed glycerine is introduced at specific
points. This colored glycerine will flow
along with the plain glycerine in well-defined
streamlines. A photograph of the apparatus
under test is shown in (b) of figure 38.

PERMEABILITY OF
MATERIALS

General. In order to determine the seepage
losses through concrete and earth dams, or




Figure 38 - Streamlines Obtained by
Viscous-Fluid Methed.
Streamlines under a Weir.

(Top:

Bottom: Streamlines under a
Cut-off Wall.

through other earth masses, one must know
or be able to determine the permeability
coefficient of the soil or concrete. The per-
meability coefficient of concrete and soils
covers a wide range. Values of K obtained
from various sources are given in Tables 3

and 4.

meability. The Bureau of
Reclamation has made some extensive tests
on the permeability of concrete 7 . A sum-
mary of the results obtained from these tests
is given here with an example showing appli-
cation of the data.

Figure 39 shows how the permeability
of a concrete specimen varies with the
length of test specimen. Figure 40 gives
the variation of the permeability with water-
cement ratio and maximum-size aggregate.
The figures adjacent to the small circles
indicate the number of cylinders in each
series of tests.

The conclusions of the tests are enum-
erated in the eight paragraphs below:

1. Percolation of water through mass
concrete follows the normal laws of viscous
flow as expressed by an equation of the form

%: K % (Darcy’s law) in which K is the

permeability coefficient or the unit rate of
discharge at unit hydraulic gradient. For
use in the above the coefficient as obtained
in tests on laboratory specimens must be
properly corrected for specimen end-effect.

2. For the concrete tested, the major
factors controlling permeability were water-
cement ratio and maximum size of aggrepgate.
For water-cement ratio values ranging from
0.45 to 0.80 by weight, the corresponding
range in permeability for mixes containing
the same maximum size of aggregate was

7 Ruettgers, A., Vidal, E., and Wing, S. P.,
“‘Permeability of Mass Concrete,” Proceed-
ings, ACI, Vol. 31, 1933,

-
Z 5 200
gé Cl'rdldi‘ffldI
o — _ . —+ 6" Computed end-effect as determined —|
5 3"End-effect as determined .
L8 150 by comparing 4 normal with from the trend of 5 series (5:4)—1‘??5.,
S 4 broken ended cylinders of il
tg —— equal length.s,
ST 100 L
@O
Sa
-
E:N 50 ///
L
St o/
& ) 3 6 ) 12

15 18 21 24 27

LENGTH OF CYLINDER IN INCHES

Figure 39 - Variation of Permeability Coefficient with
Length of Test Specimen.
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TABLE 3

TYPICAL PERMEABILITY COEFFICIENTS FOR VARIOUS MATERTALS

(Coefficient represents quantity of water in cubic feet per second, per square foot of sur-
face exposed to percolation, passing through one foot of material with one foot of head

Water-bearing sands

differential @ = % )
Materials K x 1012
Granite specimen 2 - 10
Slate specimen 3 - 7
CONCRETE and MORTAR, w/c = 0.5 to 0.6 1- 300
Breccia specimen 20 -
CONCRETE and MORTAR, w/c = 0.6 to 0.7 10 - 650
Calcite specimen 20 - 400
CONCRETE and MORTAR, w/c = 0.7 to 0.8 30 - 1,400
Limestone specimen 30 - 50,000
CONCRETE and MORTAR, w/c = 0.8 to 1.0 150 - 2,500
Dolomite specimen 200 - 500
CONCRETE and MORTAR, w/c = 1.2 to 2.0 1,000 - 70,000
Biotite gneiss in place, field test 1,000 - 100,000
Sandstone specimen 7,000 - 500,000
Cores for earth dams 1,000 - 1,000,000
Slate in place, field test 10,000 - 1,000,000
Face brick 100,000 - 1,000,000
CONCRKRETE, unreinforced canal linings, field test 100,000 - 2,000,000
*Steel sheet-piling, junction open 1/1,000 inch with 1/2 inch
of contact and 18-inch sections 500,000 -
*CONCRETE, restrained slabs with 1/4 percent to
1/2 percent reinforcing--300 temperature change 1,000,000 - 5,000,000

1,000,000,00¢

*Flow through 1-foot length of crack, 1 foot deep, Q@ = 30,000 % b3, where b repre-

sents the crack width in feet.

about 1 to 100. For a given water-cement
ratio with aggregate ranging from 1/4 to 9
inches maximum size, the average range
in permeability was about 1 to 30. In both
of these comparisons the cement content
was also a variable.

3. Analysis of the physical make-up of
concrete indicates that percolating water
finds passage mainly through the following:

(a) Inter-sand voids above the settled
cement paste, the size of the voids in-
creasing rapidly with water-cement ra-
tios over 0.4 to 0.5 by weight.

(b) Relatively minute voids in the ce-
ment paste, the porosity of the paste and
the size of the voids depending more on
the state of chemical reaction than on the
water-cement ratio.

(c) Voids underneath the larger ag-

43

gregates, caused by the settlement of
mortar and paste, the amount of voids
depending mainly on the size of the ag-
gregate and the water-cement ratio.

4. Increasing the age of the test speci-
men, without interruption in curing, to the
time when the permeability coefficient was
determined caused a relative reduction
in permeability in the ratio of 3 to 1 be-
tween the ages of 20 and 60 days, respec-
tively, and in the ratio of 2 to 1 between
the ages of 60 and 180 days, respectively.
The extent to which percolating water may
be expected to compensate for interrupted
moist-curing was not established in the
tests completed to date.

5. Due either to the manner of preparing
specimens for tast or to other causes, there
was an end-effect which made short speci-
mens less permeable per unit of length than
long specimens. The end-effect was found
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Figure 40 - Variation of Permeability Coefficient with
Water-Cement Ratioc and Maximum Aggregate.

to be equivalent to increasing the length of
the specimen about 8 inches (or 3 inches
for each end). ‘

6. Percolation of water through concrete
gradually removes the chemical compounds
of the cement through solution. The amount
of percolating water required to bring about
a given degree of dissolution, dependent on
the character of the supply water, is directly
proportional to the cement content. On the
premise that removal of 25 percent of the
original lime content of the cement is ac-
companied by little strength loss of the con-
crete, as indicated by the relatively few
tests made to date, it is estimated that at
least 35 cubic feet of water, equivalent to
distilled water in corrosive properties, must
percolate per pound of cement before one-
half of the strength of the concrete is sac-
rificed.

7. The reasonably satisfactory correl-
ation of permeability test data from many
sources by means of the permeability coef-
ficient, indicates that permeability is a def-
inite physical property of concrete suscep-
tible of evaluation.

8. Study of the pore structure of concrete
indicates the possibility of uplift acting on
85 to 95 percent of the pore area of the con-
crete penetrated. However, in large grav-
ity dams the time required to develop up-
lift through the entire section may be many
years.

To reduce head loss and
lower the leakage, a 6-inch concrete lining
is proposed for a 10-foot inside-diameter
tunnel two miles long under a 200-foot
head, carrying snow water and located in
volcanic district free of groundwater. The

lining is to be placed pneumatically using
a mix with 2-inch maximum aggregate and
a water-cement ratio of 0.75, with one barrel
of cement per cubic yard (14 pounds per
cubic foot). Compute the leakage.

From figure 40, K = 350 x 10~12, and
by figure 39 the value applicable to a 6-inch
layer of concrete is 0.8 of this amount, or

980 x 10°*2. Then leakage per square foot
of tunnel is

H _ 280 _ 200

d L 1012 0.5
= M second-feet,

and the total leakage from the tunnel is

112,000

Q
1012

(nDL) x

0.04 second-feet, or 3,500 cubic
feet per day.

The determination of

Soils Permeability
the coefficient of permeability, K, for soils

is difficult. Experimental methods which do
not employ undisturbed samples give ques-
tionable results, for it is known that com-
paction affects the permeability of the soil.
Laboratory tests on undisturbed samples
may yield good results, but the method is
expensive, applies to small regions, and
sometimes samples are difficult to obtain.




Field permeability tests have obvious
advantages over laboratory testing, since
they more nearly approach actual flow con-
ditions and give average results for a rela-
tively large region. The best known and
probably most reliable field tests are the
Theim® and Theis® tests. These tests

employ a pumping well which fully pene-

trates the aquifer to bedrock. Radially
placed observation holes are necessary to
supply test information. These tests are
usually expensive and may be impossible
to run, but, when possible, they yield ex-
cellent average results for a large region
They are not suitable for measuring aniso-
tropy, local effects, or variation in the per-
meability of successive strata comprising
the aquifer. In the Theim test, equilibrium
must be approached; however, the drawdown
at the well may be any percent of the depth
of the aguifer prov1ded H is treated accord-
ing to equation (81), which follows. In the
Theis test, equ.111br1um need not be achieved;
here, however, the drawdown should not be
more than 10 percent of the depth of the
aquifer.

Theoretical investigations and field ex-
perience both indicate that field permeability
tests can and should be chosen for maximum
simplification of field testing procedure.
Simplified field permeability tests have been
developed which are inexpensive and appli-
cable to either localized or large region test-
ing. These tests require one uncased or
partially cased hole per test and measure
the outflow or inflow rate from this hole
under a known constant head. Test proce-
dure is essentially the same for all physical
conditions of the material under test, and
the results are obtained simply and used for
permeability determination.

Use of the simplified test procedure in-
troduces slight systematic distortion in the
results as the geometrical applicability lim-
its are approached. Field experience has
shown, however, that the magnitude of other
indeterminate influences such as peripheral
compaction, peripheral silting, local het-
erogeneity, capillary action, and sometimes
chemical effects, will usually make this
geometrical distortion trivial by compar-
ison.

8  Theim, A., in Forchheimer, op. cit.,
p. 70.

9 Theis, Charles V., ‘““The Relation be-
* tween the Lowering of the Piezometric Sur-
face and the Rate and Duration of Dlscharge
of a Well Using Ground-Water Storage,’
Transactions American Geophysical Umon
16th Annual Meeting, April, 19835.
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A field permeability test consists es-
sentially of an artificially induced seepage
flow system with known boundary conditions
and flow quantities. If a flow function @ can
be found which satisfies the installed field
boundary conditions, and equations (11), (13),
or (16), the soils permeab111ty can be com-
puted directly. A iogical procedure is to
induce a simple flow system for which #
is known. Systems such as rectilinear flow,
radial flow, or spherical flow are simple
systems to install and are easily computed.

These three flow systems will be dis-
cussed separately to indicate more clearly
their zones of application.

Rectilinear Flow. Rectilinear flow,
equation (1), was used by Darcy in his orig-
inal observations associated with sand fil-
ter beds. This type of flow results from
allowing water to percolate through a vol-
ume of undisturbed scil surrounded by an
impervious cylinder. The standard labo-
ratory permeability test uses rectilinear
flow and should give excellent results if:

1. The material is not disturbed.

2. Leakage or excessive flow at the cyl-
inder-material interface is eliminated.

3. Gradients through the sample give
velocities which are within the valid region
for Darcy’s law.

Rectilinear flow is rarely used in field per-
meability tests because of the mechanical
difficulties involved and the limited region
tested. Its chief application is in the meas-
urement of anisotropy.

TIwo-Dimensional Radial Flow. Equations
(20) through (26) give the mathematical de-
velopment for two-dimensional radial flow.
Equation (24) states that the quantity of flow
from or to a well that fully penetrates a
confined homogeneous pervious stratum is
directly proportional to the depth, T = 2, of
the stratum; the permeability, K, of the
stratum; and the differential head, H = py,
- p, (see figure 2); but is inversely pro-
portional to the logarithm of the ratio of
radius b to radius a. It is evident that flow
to a well which fully penetrates a horizontal
aquifer is two-dimensional radial flow.
When the pervious bed has no confinin
upper impervious stratum (nonartesian),
flow to or from a well will have an ax1a1
component in the vicinity of the well. This
variation from the idealized flow has a neg-
ligible effect on the results if H is small
relative to T. The percent error will be
of the same order as H to T. When H is

-
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large relative to T, Muskat '® has shown
that equation (24) may be applied to a radial
gravity flow system if the driving head H is
modified according to the equation

9TH - H2
Heravity) = —g7— — - (81

Equation (81) defines a modified driving head
which approaches H/2 as H approaches T
and is almost equal to H as H becomes
small relative to T.

Thus, a two-dimensional radial flow sys-
tem is readily reproduced and analyzed if

1. Full penetration of the pervious layer
by the pumping well can be achieved.

2. Observation wells are available for
determining the driving head between suc-~
cessive radii.

The full penetration requirement makes
the test cost excessive for deep pervious
strata. However, the tests are ideally suited
to relatively thin pervious strata already
equipped with pumping or drainage wells
where only the horizontal permeability is
desired.

Three-Dimensjonal Radjal Flow.

a. Sajurated Material, Equations
(54) through (57) give the mathematical de-
velopment for three-dimensional radial flow.
Equation (57) states that the quantity of flow
from or to a spherical source or sink is
directly proportional to the driving head, H,
(B, - @,); the permeability of the surround-
ing material; and the radius of the source or
sink. It is inversely proportional to one
minus the ratio between the inner and outer
radii used in measuring the differential head
The effect of the ratio of radii in the denom-
inator is negligible if b is large relative to
a. In most real cases b will be at least 20a,
therefore, neglecting this term will change
the results by about 5 percent or less. For
determining the field permeability of soils,
only hemispherical flow need be considered,
and letting the outer radius b be large com-
pared to radius a leads to the simplified
form of equation (57)

o Muskat, op. cit.
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where

H =0y - 0,

This simplification immediately eliminates
the need for an observation well if the ground
water level is known and if no major ob-
stacle, such as an impervious layer, is
closer than 5a to the source.

It is not necessary to make the test well
for a three-dimensional radial flow system
fully cased except for a hemispherical open
end. Most test wells have cylindrical active
lengths that are either screened, perforated,
or uncased. To permit use of this type of
test well, conductivity coefficients Cg, which
give the equivalent hemispherical radius
of a cylindrical well have been determined.
These dimensioniess coefficients have been
plotted against the ratio of cylinder length
Lp toradius ry infigure 41. For a per-
forated cylindrical well, an effective well
radius was found to be

r . -r (area of perforations
1(effective) = “1 \"cylinder wall area )

In applying this result to a well with closed
bottom, the effective Cg was that obtained
from the curve on figure 41 at

Ls/ r 1(effective).

For an open bottom well,

4 [rl / N (ef.fective)]

should be added to the above. The effective
hemispherical radius can be computed di-
rectly from these coefficients as

Csry

r(effective) = 27(_ ....... (83)

The effective radius will always lie numer-
ically between the cylinder length and the
radius length. These conductivity coeffi-
cients were obtained from experimental
and analytical results. The experimental
results include field, sand model, and elec-
tric analogy values. The analytical results
include a solution for partly penetrating
cylindrical wells by Muskat!!  and a so-
lution by F. E. Cornwell (see Appendix A)
for flow from a cylindrical element to a
plane potential surface. Cornwell’s solution

" Muskat, op. cit.




yields a very simple expression for the
conductivity coefficient

L
A 27
C == S° ... ... ... 84
o, I o
1 ]_n-r—

which fits the curve of figure 41 very well
for values of L, 2 20r,and shows that the
shape of the outer boundary of the system
is relatively unimportant in most three-
dimensional flow systems. It should be
pointed out here that equation (81) may be
used to modify the head for gravity effects
in three-dimensional flow as well as two-
dimensional flow.

In some test areas, insufficient geolog-
ical information may be available to define
the boundaries of the pervious material. It
is then impossible to decide whether two or
three-dimensional radial flow is more nearly
applicable to the problem. Solutions for both
assumed ideal cases will yield values which
define the limits between which the average
permeability must lie. The value based on
iwo-dimensional radial flow will always give
the upper limit and, in horizontally arranged
layers of material, will usually give con-
servative adequate results. The ratio of
limiting permeabilities will be

Ty

K In—=
(2-dim) _ i S (85)

K(3-dim) 1aLA

r

b. Unsaturated Material. Three-
dimensional radial flow from a cylindrical

well in an unsaturated isotropic pervious
bed requires some special treatment. R. E.
Glover (see Appendix B) has developed a
precise solution for the steady-state flow
from a well into an infinite unsaturated
medium. This solution is based on flow
from an array of point sources in a uniform
stream. The relation between Q, hy, r{, and
K was found to be

h
K = ‘9“2 I:sinh'l (;l) - ﬂ . (86)
1

2nh,

where

hy = the depth of the water in the
test well.
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All of the developments given here have
been applied to partially penetrating wells
and to partly cased wells. Therefore, dif-
ferent limits of integration were applied
to Glover’s solution to yield the more gen-
eral expression

L
K = @ sinh~1(—4)
2M(2Ah, - A2) ry
- &ﬂ ............ (87)
by

To reduce the labor involved in solving
this equation, a set of coefficients, Cyy for

a wide range of hl/r1 and LA/h1 ratios

has been computed and plotted in figure 43.

These values can be used with the familiar

three-dimensional radial flow relation given

}%};1 equation (82) with 2ma replaced by Cyr'1-
us

Applications to Soils Permeability. From
the preceeding discussion it can be seen that
preliminary permeability investigations can
be made by very simple, rapid, and inex-
pensive field tests. The most accurate type
of investigation employs the two-dimensional
radial flow systems of Theim and Theis
tests. Both tests require observation wells
and a pump well which penetrates the aquifer
by at least 85 percent of its depth. In the
Theim test steady-state conditions are re-
quired. However, the drawdown at the well
may be any percent of the total depth of
aquifer. In the Theis type of test steady-
state conditions need not be established.
Drawdowns may be measured as a function
of time. However, in the Theis test (often
referred to as the nonequilibrium tests)
the drawdown at the well should not exceed
10 percent of the depth of the aquifer. If the
extra time and expense of these two-dimen-
sional tests are not justified, then the sim-
ple three~dimensional radial flow test may
be used, and the systematic error estimated
by equation (85).

Examples 6, 7, and 8 give applications
useful in determining the permeability of
unsaturated soils, and Examples 9, 10, and
11 may be used in determining the perme-
ability of saturated soils under artesian
effects or where the drawdown at the well
is not more than 10 percent of the depth of
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aquifer. Problems are often encountered
where the drawdown at the well may exceed
the permissible 10 percent value. Where
this occurs gravity flow becomes important
and Examples 12, 13, and 14 are given to
demonstrate the effect of combining gravity
flow with radial flow in a saturated soil.

In field permeability tests the depth of
well penetration into a material and the
proximity of the water table or impervious
boundary to the end of the well affect the
flow pattern and hence need be considered
in evaluating K. Figure 54 indicates the
proper equations to use for determining K
at successive depths of a well from unsat-
urated into saturated stratum.

In performing permeability tests near
the ground surface, rectangular shaped test

pits may be selected rather than circular
shaped wells. Experiments were made to
determine the effective radius, re¢f , in

terms of 1/2 the shorter side of the rectangle
as a function of the aspect ratio of the rec-
tangle. These results, given in figure 44,
make it possible to use the conductivity co-
efficients for circular wells given in figures
41, 42, and 43.
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FORMULA: K TQ"
|

DEFINITIONS: Q= Well discharge — steady state (ft.¥sec)

Cu- From figure43- Use curve for
Other values as shown

NUMERICAL EXAMPLE:

La-
h 1.00

Let T=s60 ft.,D=35ft, h=i0 ft. Then T—D=25 t.=2.5h,

Q= 0.10 ft ¥sec. n=o0.25 f1.

hi . .

;. =40 .. Cy=74.5 (From figure 43)
a | 0.0 _

K————(74.5)<o425) Yo 0.00054 ft /sec.

H-26-47 (REV. MAY 1952)

X —PEL~-T8I

Figure 45 - Exsmple 6: Outflow from an Uncased Cylindrical

Well in an Unsaturated Stratum, T - D Z

B
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—impervigus layer or ground water level
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FORMULA: K =

| Q

Cur, b,

DEFINITIONS : Q = Well discharge- steady state (ft. ¥sec.)
Cu= From Figure 43 use curve for nearest —hi‘
|

NUMERICAL EXAMPLE:

Let T=60ft, D= 3_5f1’., h.=|0f1‘., Then T—D=25ft=2.5h,
Ly=5ft, %A=O.5, r,=0.25ft,, '-”’-I'=4o' Cy=59

i
Q =0.10 {(ft.¥sec)

K (59)(0.25) 10 = 0.00068 ft./sec.
D.H.J. 11— 28 - 47 (REV. MAY 1952) X —PEL — 182

Figure 46 - Exsmple 7: Outflow from a Partly Cased Cylin-
drical Well in an Uneaturated Stratum,
h
T-DET Zhp —£Z 10
1
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FORMULA: (2)
K= In Q
A 1 (hz-h%)
DEFINITIONS:

Q= Steady state well discharge (ft.¥sec)

QHd,11-28-47( REV. MAY 1952) X-PEL—-183

Figure 47 - Example 8: Outflow from & Cylindrical Well in sn
Unssturated Stratum, T- D< 2]11.
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FORMULA: K=

DEFINITIONS  Q = Well discharge - positive into well (ft¥sec.)
Cs= From figure 4t, H = hpa-h
h, = Undisturbed ground water level (ft.)

NUMERICAL EXAMPLE:
Let T=e60 ft., D=9 ft, h=12ft, h,=15 ft.

Q=o0.10 ft ¥sec. r=0.25 ft, Then D/T=015<0.2
D ) .

,':—'= 7 =36 .. Cs=58 (From Figure 4

H= 15-12 =3 o

K= ! ©19 _ 4 0023 ft/sec.

581029 (3

.p., -28-47 (REV. MAY 1952) X-PEL-187

Figure 48 - Example 9: Inflow to en Uncased Cylindrical Well
in a Saturated Stratum ,D/T £ 0.20,
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FORMULA: K = TRy 7 |n:_2'T
1

DEFINITIONS: Q = Well discharge — Positive into well (ft. ¥sec.)
Cs= From Figure 41 and 42, H = hy- h, (ft.)

NUMERIGAL EXAMPLE:
Let T = 60 ft, D= 30 f+., h, = 35 ft., h, = 45 f+.

Q =-0.10 ft. */sec., r,=0.25 ft., ry = 25 ft.
- N 0.20 o _ Ls _
Then D/ T = 0.5 5 g5 » v 120, 0 c .75

Cs = 27.90 (Fig.41), D-Lg=27.0625, H =10 ft.

K = in 100 .00
2TM(27.0625)+(In100)(27.9)(0.25) 10

= 0.00023 ft./ sec.

x.P.,11-28-47 (REV - MAY 1952) X-PEL-188

Figure 49 - Example 10: Inflow to an Uncased Cylindrical
Well in a Saturated Stratum, 0.20<D/T< 0.85.
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X
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NUMERICAL EXAMPLE:

Let T = 60ft D= 54tt, h,= 60ft, h,: 65ft

Q = +0.10¢cuy

Then D/T =

H = 65-50 =5 it
_ InicO

K = 2TT(54)

K.P,11-28-47 (REV MAY i352)

h,— h,(ft)

fr/sec, r = C.25f%t, ry= 25t

$5.9>0.85

010}

(S

X-PEL—189

Figure 50 - Example 11:

Inflow to an Uncased Cylindrical

Well in s Seturated Stratwm I/T 2 0,75,
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FORMULA: Ks — —
© Cgry H

DEFINITIONS: Q = Well dischorge - positive into well(ft.slsec.)

Cez From figure 4! -use = Ls
D2-h? oo
H= —5 (ft)

QOther volues as shown

NUMERICAL EXAMPLE:
Let T=100 ft., D=20ft h =10 ft, r=025 ft., Q=0.10 ft*/sec.
Then LIS 40, Cs= 63 (From figure 41}, H= 175

n
! 0.10  _ v
K= &2 7.5 0.00085 ft./sec.

D.H.0.,12-1- 4T (REV. MAY 1952) X-PEL-193

o CJ 2

Figure 51 - Example 12: Inflow to a Partly Penetrating
Cylindrical Well in a Saturated Stratum under
Gravity Bead, D/T £ 0,20.
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FORMULA: K = 21 (D-Lg) +C,T, |n(LI¢) H

r

DEFINITIONS: Q = Well discharge - positive into well (ft ¥sec)
Lg= From Figure 42
Cg=From Figure 4l

2 2
_h.

h
= _2 1
H= =D (1)

NUMERICAL EXAMPLE:
Let Q=040 ft¥sec, T=100Ft, D=50 ft., h=30ft, h= 457t,

r,= 025 ft, r,=100 ft.
D L . .
Then 7:=200. —ﬁs= 20.3 (Figure 42), C,=38(Figure 4t), L& 5,

!

K = 559 0.40 = 0.00090 ft. /sec.
2 11(25)+38(0.25)(5.99) 12.5

(h-L =25, H=12.5 +F=400, InA=599
t

D.H.J., 12-1~-47 (REV. MAY 1952) X -PEL-194

Figure 52 - Example 13: Inflow to a Partly Pemetrating
Cylindrical Well in & Saturated Stratum under
Gravity Head, 0.20<D/T<0.65.
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Saturated pervious<layer ’ X
PSRN

I
M ><><

re
I n(53)
FORMULA; K= —' @

DEFINITIONS: Q= Well discharge - positive into well (Ft¥sec.)
hZ-h?
=2 1 (ft)
H 2D (

Other values as shown

NUMERICAL EXAMPLE!

Let Q =0.50ft¥sec. (Steady state)

- T=100 ft., D=90 ft., h =70 ft., h=85 ft r=0.25 ft,r=150 ft.
Then =600, In(#=6.397, H = 1368 f1.
_ 6.397 050 _ ‘
K (6.2632)(50) 13.68 0.0004i ft./sec.

D.H.J.,12-1- 47 (REV. MAY 1952) X-PEL-195

Figure 53 - Example 1k4:

Inflow to a Partly Penetrating
Cylindrical Well in a Saturated Stratum umder
Gravity Head, D/T 2 0.85.
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NOTATION:

K=Permeability coefficient (ft./sec.)
Q=Steady flow into well (ft3/sec.)
h=Height of water in well {ft)

x=Percent of T, in zone I [SeeFigure 55)
L=Length of perforated section (ft)

A

refi=Effective radius of well = r, (-Arec.of petforations) (f+t)
G Conductivity coefficient - -unsoturated bed (See Figure 43)
C-Conduchvrry coefficient-saturoted bed {see Figure 41)

LIMITATIONS: ¢ =g L Z10reft

NOV. 1948 (REYV. MAY 1952) X-PEL - 314

Figure 54 - Proposed Three-zone Program of Field Perme-
ability Testing by Single Cased Well Pumping-
in Test.
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APPENDIX A

FLOW FROM A SHORT SECTION
- E BELOW
GROUNDWATER LEVEL

(Development by F. E. Cornwell)

This development is for the determin-
ation of the permeability coefficient, K, of
a soil, by drilling a hole in the soil and per-
mitting flow out of the well into the surround-
ing soil through the sides of the well only.
To apply the results of the mathematical
derivations to a field problem, the well in
this instance must be placed in a soil that
is completely saturated.

The derivation may proceed in the fol-
lowing manner. Let

r+ = radius of a spherical surface
concentric around the point-
source,

K = permeability coefficient,

p = pressure head, and

Q = quantity of fluid flowing across
any spherical shell per unit
of time.

Then from Darcy’s law,

Q=-4nr2 2B K ... (14)
61'1
and
ap_ . Q_ ... (24)
arl 4 n K I'12

By integration,

S N S <P {3A)
P 4nKr1 0 '

Place a point-source at y= h and x=0.

Then

Place a source of strength Q at y = h,
x = 0, and place a sink of strength -Q at
y=-h,x=0. Then

p = Q
4n K l/x2+ (y—h')2
- Q . . (BA)
4nK Vx2+ (y+h)2
d Q y - h

(sz + (y+ h)2>3 ) .(TA)’

' (l/xz + h2)3

- Qh .. .. (8A)

———\3
ZnK( x2+ hz)

As a check, the total flow across the sur-
face y =0 is,

3/2
° (x2+ hz)/




N
=-Qh|:(xz+ hz) ]o

=Q ... (90)

Consider a length dh of strength dq.
Then dq = g dh, and

dp. = -3 ____gh_—
4nK \/xz+(y--h)2

dh

- :l....(wA)
$§ + (y+ hD§

Now refer to figure 56. For a line-source
from y=b to y = ¢ and a line-sink from
y=-b to y =-c, integrate from h =b to
h =c, where c¢>b. Then

h=c

p=-4-—g..i m—(.i-};]—————
® h=bV§ + (v - h)

.(114)

h=c
h=b 1/4:2 + (y+ h)f

For the first integral, let
y - h=2=2
dh = - dz
h = b,z

y - b

h =c¢,z=y - ¢

For the second integral, let
y+h =w
dh = dw

h =b,w y+b

h=c¢,w=y+c¢c

Then

86

z=y-C

p=-—d ! |in(z+ V22 + 29

40K

zZ=y=b

w=y+C

2 2

+ |In(w +Yx°+ w°) .{124)

w=y+b

which can be simplified and written,

2

4 |jp¥-c+ x2+(y-c)

P =-
4K 2+(:1—b)2

y-b+

+ pYtet Vz2 + (y + c)z_
y+b+‘\/x2+ (y+b)2

Note the following equalities:

- @mY-c+ Vx§+(y-c)2
y-b+ Vx2+(y—b)2

\/;;2+(y-b)2
y-c+ V2 + (y - ¢)?

. (13A)

[
5
g
|
o
+

= InS =Y+ Vx2+(c-y)2
b-y+ \/x2+(b—y)2

For the cylinder where x =r, let

Then,

S

{3

{1

3 3 13 I

La g

L]

|

]

(2
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Figure 56 - Flow from Test-hole below Groundwater Ievel.
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-1In 2 2
c+3b 2, /¢ + 3b\2
s+ r+(——2—-——>—

.. (144)
Hence,
- Q
4L H

(Approx.) .... (154)

or

K= —2 ]11(—%>2(Approx.) (164)

4nLH

or

% - 9

- Lt . (174
= 2nLH]'n = (Approx.) . .(17A)

In changing from a line-source to the
approximate cylindrical source, p was
taken as equalto H at x =r and y =b + ¢/2,
which is not quite true over the remainder
of length L. Also, the formula allows for
some flow out of each end of the section of

}ength L. However, neither of these approx-
imations should be of any concern where
the other limitations of application are ob-
served; that is, where L (or ¢ - b) is large
compared with r, and ¢ and b are each
large compared with L.

Since this development is valid only for
completely saturated soil, the well must be
cased from the ground surface to the water
table. Then H is the difference in head be-
twegan water levels inside and outside of the
casing. Equation (17A) may again be written
in the form

K =9 .1
R P (184)
where
c-2rL (194)
r ].n—r-

Note here that L. = ¢ - b.

Values of C have been computed by
equation (18A) for various L/r ratios and
are shown in Table 5. The table permits
an immediate determination of K in the
field merely by measuring H and the cor-
responding Q. Then by selecting the proper
value of C, K is easily obtained from equa-
tion (18A).

TABIE 5
VAIUES OF C

(Flow from Test-Hole Located -
) ‘below Groundwater Level)

L L L

r c r ¢ r C

5 $19.520 11 (28.823 17 1.37.701
6 |21.040 12 ] 30.342 18 (39,129
7 122.602 131 31.846 19 |{40.5638
8 (24.173 | 14 33.331 20 | 41.945
9 125.736 | 16| 34.803 21 143.339
10 J 27.287 ,16J 36,269 22 | 44.720

Experimental results are in almost
complete agreement with this analysis. Re-
sults of electric analogy tests show average
values not greater than 12 percent below
calculated values for I/r=8. The approx-
imate mathematical method has reasonable
validity for L/r=5.0, and almost perfect
agreement for L/r=20.
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APPENDIX B

FLOW FROM A TEST-HOLE LOCATED

ABQVE GROUNDWATER LEVEL

(Development by R. E. Glover)

This development applies when the
groundwater table is a considerable dis-
tance below the drilled hole used for the
field test, The test is made by running water
into the hole and noting the depth of water
that can be maintained in the hole by a
metered flow of water,

Since the gravitational potential must be
treated explicitly here, an exact solution
would require that an expression be found
which woulc atisfy Laplace’s equation with-
in a region possessing radial symmetry with
respect to the axis of the hole. At an inner
boundary coinciding with the surface of the
hole, the pressures would be hydrostatic,
while at the outer boundary the pressures
would have to be adjusted to zero along some
streamline with the gravitational potential
accounted for everywhere.

It would be very difficult to find a solution
satisfying these requirements, and it will
therefore be expedient to use an approxi-
mation. This will be obtained through the
following procedure. Consider first the
case where the surface of the ground is
kept supplied with water so that it remains
covered to a very small depth. The water
will then move downward through the ground
under the influence of gravity and the pres-
sure will be zero everywhere. The flow will
be at a rate which could be maintained by
a unit pressure gradient. Now suppose a
point-source of strength q second-feet
(ft.3 /sec.) is superimposed on the grav-
itational flow system. This will give rise
to pressures and new velocities. At a great
distance below the source, the velocities
due to the source will be negligibly small
and only the velocities due to the gravita-
tional forces will remain. If a cylindrical
surface of radius b with its axis vertical
and passing through the source is construc-
ted in the bed, all the flow, q, will be con-
fined within it providing b is chosen large

enough so that the area b2 is sufficient
to transmit the flow with the velocities
which can be maintained by the gravita-
tional forces. This can be demonstrated
by constructing a streamline passing through
a point at a distance b from the axis and
at a great distance below the source. This
streamline will lie on a plane containing
the axis and will cut the axis at a distance

b/2 above the source. The plot of such a
streamline is shown in figure 57. A sur-
face of revolution generated by revolving
this streamline about the axis, together

with the circular area Mb“, will completely
enclose the source. Since there can be no
flow across a streamline, it follows that all
the flow q must be confined within the sur-
face of revolution. This being the case, it
would be possible to replace the surface of
revolution with an impermeable membrane
and eliminate the flow outside it without in-
terfering with the flow within. Thus a flow
pattern for fluid supplied to a bed at a point
and flowing through the bed under the action
of gravity is obtained. It is now desirable to
examine this solution to determine its suit-
ability as the basis of an acceptable approxi-
mation.

The solution is a solution of Laplace’s
equation and the outer boundary is a stream-
line, so that two of the primary require-
ments are met; but the outer boundary is
not free from pressure and the pressure
conditions around a cylindrical boundary

ol«

o
o

-0

o>

=20

Figure 57 - Gravity Flow Boundary in
Unsaturated Material.




representing the surface of the test-hole are
hot met. The difficulty arising from the
pressures at the outer boundary is not re-
garded as serious, since the pressures are
small everywhere and fade away rapidly with
increasing distance from the source. The
probable net effect is that the actual envelope
is slightly outside the surface of revolution
near the source. It is considered that the
surface of revolution is a sufficiently close
approximation to the shape of the actual
envelope for the present purposes. The
desired pressure distribution along the
inner cylindrical boundary can be approxi-
mately supplied by using a series of uni-
formly spaced sources, starting at zero
strength at the top of the water surface in
the hole and increasing linearly in strength
to & maximum at the bottom. A stream-
line can be found for this combination also
which, when rotated about the axis, would
generate an outer boundary shaped enough
like the actual boundary to be usable for
purposes of approximation.

The development of formulas may now
proceed. Let

p = pressure head measured in feet
of water,

K = permeability in feet per second,
and

q = strength of a source, counted
positive if the flow is qutward.

It should be noted that in a bed where the
velocity is proportional to the pressure
gradient the flow patterns are superim-
posable. The source patterns may there-
fore be superimposed on the gravitational
flow, and, since the gravitational flow pro-
duces no pressures, the pressures will be
due to the sources only. This means that
the pressures will be the same as would
prevail if the gravitational potential and
gravitational flow did not exist. The grav-
itational flow does, however, change the
course of a particle issuing from the source
so that instead of traveling radially outward

it is given a downward component and its

course is effectively confined within the
cylinder of radius b. The pressure due to
a source of strength q -at the point y = h,
x=0,1is

q 1 ..(1B)
4 K
x2+(y—m2

To provide a series of point-sources whose.
strength increases with depth, let

[
o
Eil
i
oA
B

dq

70

where H represents the value of y at the
Jfwater surface in the hole. Then,

B
dp =
41K
(H - h) an .. (3B)
x2 + (y—-h)2
and by integration,
B . =1 (y ~ h)
P = — (H - y) sinh A = I
4a XK X
h=H
- W y-n?| (4B)
h=0
or
B -l (y = H)
= - (H - sinh o
P 41K [ ( y) X

+H -~y sinh‘l—}y{—— // 2 + {y - H)2

Now, if the whole flow is represented by Q,

H g1 H
- _ —-n|(H=h
Q = 4 B(H - h) dh B|:————-——2 ]o
9
- B lﬂz_ .............. (6B)

Then, by substitution for B,

p = —-—Q—-[m—y) sinh 'UH—X‘—Yl

9n H2 K

+H~y) sinh‘l—%—llxz + (H - y)z




At ¥ =0, x = a; this is the specification for
a point at the boundary of the hole at the
bottom. By substitution in equation (7B)

H

o = —% [H sinh -1(5)
2n HZK 2

- 32 + H2 + a:l ...... (8B)

H .
bid & is large compared with unity, then
approximately,

QH . =1/H |
Py = —==— =]-
T [sm.h (a) l:l..(QB)

At this point, Py = H.

The above equation may be solved for K
in the form,

K = ?%ﬁ-[sinh'l(%)— 1:[.. (10B)

The radius, b, may be found from the re-
quirement that

Knb? = Q

If this substitution is made in equation (10B),
the value of b is obtained in the form,

b =H '\/ 2 .. {12B)
. sinh‘l(-li) -1
a

It is pointed out again that this derivation
is good if the bottom of the drilled hole is
an appreciable distance above the original
groundwater table and if the radius of the
hole is very small compared with the head
acting. By this arrangement, water would
flow out of the bottom of the well and also
the sides of the well.

In order w0 make the preceding develop-
ment more useful, equation (10B) may be
written in the form, '

_ Q r l: ~1/H :l
K= =. - L0 N T
—eg | simh (r) 1| (13B)

Equation (13B) is of the form,

rH C

1 r | H
- = lsnh = —'_,,158
C 2nH 1 (r) 1 ( )

Equation (15B) may be computed for
various values of the ratio H/r within the
limits ordinarily employed in the field.
Table 6 gives values of C to be used in
equation (14B).

TABLE ¢
VAIUES OF_C

(Flow from Test-Hole Located
above Groundweter Level)

H C H C -E C
r by ‘ r

5.0 | 23.93 |- 8.5 29.07 | 14.0 | 37.70
5.5 | 24.42 9.0 | 29.87 | 15.0 | 39.24
8.0 [ 25.27 9.5 | 30.66 | 18.0 | 40.75
8.5 | 26.00 || 10.0| 31.45 [ 17.0 | 42.27
7.0 | 26.7¢ | 11.0 | 33.02 | 18.0 | 43.77
7.5 ] 27,51 || 12.0] 34.59 | 19.0 | 45.25
8.0 | 28.30 || 13.0| 36.14 | 20.0 | 46.71

A comparison of electric analogy test
results for conditions similar to those as-
sumed in the above development shows
appreciably lower values obtained exper-
imentally. These deviations vary from 25
percent at H/r = 8, to 8 percent at H/r = 20.
This indicates that the approximate math-
ematical analysis has reasonable validity
for H/r = 10.

71




Page 72 is intentionally blank



—/ C

—1 I X 3

C C3 C3 3 3

C 31 o Ca 31 .3

D R

APPENDIX C

RADIAL FI1.OW TO A WELT IN AN
INFINITE AQUIFER

(TIME-DRAWDOWN METHOD)

NOTATION

h = drawdown at observation well

r = distance from center of dis-
charging well to observation
well

S = coefficient of storage of
aquifer (volume of water a
unit drawdown releases from
a vertical prism of unit
eross-section and depth D)

K = coefficient of permeability

D = depth of aquifer

t = time measured irom begin-
ning of discharge

R = rate of discharge

e = base of Naperian logarithms
(e =2.718)

C = Euler’s constant (C = 0.5772)

a, s, v,
X, y = quantities employed in least

square adjustment develop-
ment,

Consistent units must be used throughout.

The differential equation governing the
unsteady radial flow to a well in a confined
aquifer is

It can be shown ‘2,/3  that if the bound-
ary conditions are satisfied and the well is
pumped at a steady rate, Q, then the draw-
down is given by the expression

12 " Jacob, C. E., “Flow of Ground Water,”

Chapter V of Engineering Hydraulics by
Hunter Rouse, John Wiley and Sons, 1950.

3 Equations (2C), (3C), (17C), and (18C)
follow closely those of W. H. Taylor and
E. D. Rainville given in an unpublished
memorandum prepared while they were
employed as engineers by the U. S. Bureau
of Reclamation, Denver, Colorado.

7R

w
-u
h = ‘ﬁ{_ﬁ 9u— du ..... (2C)
rZS
4KDt

The integral, known as the exponential in-
tegral, is a function of the lower limit, and
is often abbreviated
2
_p:_ IS

Bl - 7zpp
The value of the drawdown can be obtained
from the equivalent series:

.9 Lol
b = %D [ C - In (Zzpy
+ ( r28 ) _ 1 ( r2S 2
4KDt 2:21 4KDt
25 3 |
1 S -
+_3_'§(E{—DT) .]..(30)

After the test has run for a relatively long

2
time and the quantity ('AIEK]—%? becomes less

than, say 0.02, the series may be approxi-
mated by the asymptotic expression:

. —
(__I_'__S_.) + %
4KDt

or
2a.C
. _Q r~Se
h D | ¢ )

h = - __.@u_—E_n
4MKD
. . (4C)

4KDt

but
eC = 1,781,

and changing to common logarithms gives

0.1832Q 2.246KDt
h = === 222080t (BC)
o) log rgs
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Field data usually involves many drawdown
readings at several observation wells at
various times. In order to obtain the best
values for K and 8, it is desirable to adjust
such data by least squares in order to arrive
at the best drawdown curve for a particular
time t. Since h varies logarithmically, the
following forms of equation (5C) will be found
convenient for least squares adjustment when
computing K and S:

h = - —-——&0'31?35 I:log r

- 1/2log &f@] ...... (6C)

or

=2
"
+

0.1832Q
D log t

2
- S " S IO 7C
18 5518RD ()

or

2
_ _ 0.1832Q [ r
B kD |16 T
- ]_og &486_—1:] ......... (BC)

Equations (6C), (7C), and (8C) are in the form
y(x) = a, + aix

where y correés,ponds to hand x tologr,

log t, and logl-'i— . respectively.

Then, according to Milne14, having given n
pairs of values of x and y, the straight line
which fits these data best is determined by
values of a4 and ay from:

Sg8p + 5181 = Vg ... (10C)

The s and v values may be systematically
calculated by arranging the recorded data
in tabular form and summing the columns as
indicated in Table 7.

4 Milne, W. E., Numerical Calculus,

Princeton University Press, 1949, pp.
242 - 245.
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TABIE T
CAICUIATION OF g AND v VAIUES
Observation | 0 2
Number X X X y Xy
1 1 Xy x% Y1 | ¥1¥3
2 L% |5 | vy %y,
2
n 1 xn xn yn xnyn
2 SO Sl Sz Vo ' Vl

An example will demonstrate the pro-
cedure to emplov when using field data. On
the Oahe Unit of the Missouri River Basin,
tests have been made to determine K, the
coefficient of permeability, and S, the stor-
age coefficient of an artesian aquifer under-
lying certain agricultural lands. The data
will be used in equation (6C), since draw-
down observations were made simultaneously
at observation wells. The results are tab-
ulated in Table 8. For Pump Test No. 9
the following data were recorded:

t = 1,224,000 seconds 3
Q = 300 gal. per minute = 0.668 ft.” /sec.
D = 152 feet

Inserting values of s, s1, S9, Vo, and
vy, from Table 8, into equations (10C) and
(11C) gives

Ba, +19.867a1 =47.42 . . . . . (12C)
19.867a, + 50.658a, = 112.078 . . (13C)
and solving, we find
ay = 16.614 and a; = -4.3032.
From equation (9C), we may write
h=16.614 -4.30321ogr . .. . . (14C)

and by comparing the coefficients of log r
in this and eguation (6C), it is seen that

_0.3665Q _ 0.3665Q

K=-"3D 43032

Since Q = 0.668 cfs and D = 152 feet, the
coefficient of permeability, K, may be de-
termined directly from (15C). This gives

K = 0.000374 ft. per sec.
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Again, by equating the constant terms of
(14C) and (6C), it is seen that

0.8230Qt

2a
a; antilog (- 'E'c'l)')

The storage coefficient, S, may be ob-
tained from (16C) by noting that:

23
antilog (- -E—)
1

antilog 7.7217

5.260 x 107

so that
5 - 0.8230 x 0.668 x 1,224,000_
4,3032 x 5.269 x 107

= 0.00297.

Having computed K and S, a check should
be made to insure that all observations fall

2
ears s gs rosy
within the restriction ( 4KDt)< 0.02. If any

one of the data is without this limitation, it
should be discarded, and K and S recom-
puted. In this instance, for observation

5
well W10, it was found (é—c%) =0.03. Omit-

ting this datum, the revised values of X and
S may be determined as

K = 0.000349 ft. per sec.
S = 0.00458

The method outlined above for the de-
termination of X and S is excellent for
resolving field data in an office. Often,
however, the engineer or geologist may
wish to analyze his data in part in the field.
In this case the following equation will be
useful for determining the coefficient of
permeability.

When two observations are made at the
same time in adjacent wells, X is given
approximately by the equation

Ty 2
ln(—g
K = -2 Il

. ... (17C)
4D h(rl,t) ) h(rz,t)

h rit is the observed drawdown at time t in

a well at distance r from the test well.
Equation (17C) is valid where the ratio of

2% 1%, | T2
4KDt r1

is small, say less than 0,02,

TABIE 8

CAICUIATION OF s AND v _ (EXAMPIE)

Observation Well r x° |x=logr X2 = (log r)2 y=h |xy=hlogr

S2 96 1 1.982 3.928 8.14 16.133
w2 98 1 1.991 3.964 8.09 16.107
S4 189 1 2.276 5.180 6.66 15.158
W4 199 1 2.299 5.285 6.90 15.8863
36 390 1 2.591 8.713 5.24 13.577
W86 400 1 2.602 6.770 5.57 14.493
S8 790 1 2.888 8.398 3.84 11.128
W10 1692 1 3.228 10.420 2.98 9.619

So S1 Sq v, vy
8 19.867 50.658 47.42 112.078
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When two observations are made at dif-
ferent times in the same well, K is given
approximately by the equation

n ()
Y ... (18C)

4D b 4oy ™ Be,ty)

Equation (18C) is valid where the ratio

2 2 t
Sr Sr to [In (_t_z_)

4KDty; 4KDt, 1

is small, say less than 0.02. Equation (18C)
may also be used for determining K by not-
ing the recovery of water level in a well after
a period of pumping followed by a period
of stoppage. In this case tg is the total
time from the beginning of pumping to the
{ime of recovery observation, and {; is the
time since pumping stopped to the time of
observation.
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