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Abstract

A standard measurement uncertainty methodology has been
adopted by the SAE,?3, ASME 456 and ATIAA7®°. The same
standard has been recognized and adopted by ISA!% 1SQ!2
USAF® and JANNAF™, This is remarkable after decades of
striving to reach agreement. The objective of this paper is to
document some of the history, statistical evaluation and signifi-
cant contributions that led to this national and international
consensus. The statistical Monte Carlo simulations that led to
selecting this methodology will be described. It is hoped that the
novice measurement uncertainty analyst will gain some under-
standing of the reasoning that supports the standard.

Standard Me ol

It is not the purpose of the paper to detail the methodology as
that is available in the above references, particularlyl4512,
However, a brief summary may be helpful and is provided in
Appendix A.

Histog

One organization, the National Bureau of Standards, has
provided leadership in the field dating all the way back to
Mayo Hershey'® in 1911. Dr. Harry Ku, Dr. Joan Rosenblatt,
Mr. J. Cameron, Churchill Eisenhart, Mary Natrella, Dr.
Clifford Spiegelman and others have provided a wealth of
noteworthy papers and reports.'61%:1839 [n addition, Drs. Ku,
Rosenblatt and Mr. Cameron provided invaluable guidance and
consultation during the two decades of development of this
methodology.

The hallmark paper by Professor Kline and McClintock®®
published in 1953 was used by many engineers within ASME for
guidance. Starting in the fifties A.S.M.E.’s Performance Test
Codes Committees made attempts to write a standard measure-
ment uncertainty document which finally reached success in
1985%. In 1965, JANNATF, then called the ICRPG (Interagency

Chemical Rocket Propulsion Group) organized a Performance

Standardization Committee to develop standards for the rocket
engine industry. The first meeting produced arguments about
measurement error. A survey of the industry showed that there
were many different methods in use and a contract was awarded
to write a standard handbook. The effort took two years and
produced many heated disagreements. The ICRPG Committee
under Don Bartz of JPL (Chairman) rejected the handbook and
awarded a second contract that produced an acceptable docu-
ment!4in 1968.

The success of the second effort was due to the strong support
from NBS and to Monte Carlo simulation of alternatives that
provided objective comparisons. These comparisons led to
recommendations proposed to the NBS team and the ICRPG
Committee. Four of the five final solutions employed in the
standard methodology were developed at this time. These five
problems will be discussed later in this paper.
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The ICRPG Handbook was presented at the 1969
SAE-ASME-AIAA Propulsion Conference® and received wide-
spread acceptance. The propulsion community successfully
applied the rocket methodology to gas turbines which inspired a
contract from the USAF Applied Propulsion Laboratory to
produce a similar handbook for jet engines. This document'® was
given worldwide distribution by the USAF after introduction at
the 1972 SAE-AIAA-ASME Propulsion Conference’. It was
widely used within the aerospace industry.2%2643 Jn 1980 the
Instrument Society of America reprinted it as an ISA Hand-
book®. However, the fifth problem, the dispute over how to
combine random and systematic errors to obtain an uncertainty
continued to age through the seventies and even the authors
were pessimistic about the prospects of settling the issue. The
“great compromise” provided the solution.

The five problems and solutiops follow:
1. Random Error Uncertainty

Precision error, repeatability, sampling error, and random error
are all synonyms for the scatter we see in repeated measure-
ments of the same thing. We do not expect repeated measure-
ments to agree exactly. Fortunately, we have good statistical
methods to estimate the random error uncertainty. There
seemed to be general agreement that some multiple of the
standard deviation should be used!”22!, Two or three were the
popular choices, or for small samples, Student’s to; or tggq.
Monte Carlo simulation showed that three standard deviations
when combined with bias limits produced large, very conserva-
tive uncertainty intervals that were unacceptable to instrumen-
tation engineers. Eventually, two (or ty; for small samples)
standard deviations became the consensus. (All Monte Carlo
simulations discussed herein were programmed by the authors.)

However, a problem appeared when several measurements were
combined to calculate a final test result. How should the
estimates of measurement precision errors be propagated or
combined to obtain the precision error estimate of the test
result? For example, let us assume we have a compressor on test
to measure thermodynamic efficiency. If we calculate the sample
standard deviation(s) for each temperature and pressure in the
inlet and exhaust, how should they be combined or propagated
to obtain the corresponding standard deviation of efficiency, the
test result? Many engineers opted for root-sum-squaring the
products 202122
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They reasoned, correctly, that for very large samples:

> (28)
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However, this logic falls apart for small samples because the
characteristic of a confidence interval is not invariant under
transformation. If 95% small sample confidence intervals are
root sum squared, the resultant interval will not be a 95%
interval. This was demonstrated with Monte Carlo simulation in
1967 for the ICRPG Committee. (Figure 1).
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Fig. 1 Root-sum-square of (tq; X S) does not produce
95% coverage.

Statistically, a better solution requires two steps:
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(2) Random Uncertainty =

If the result is an average the random uncertainty is reduced by
the \/l—\f when N points are averaged. Of course, if the result is a
single value, "N = 1 This situation can arise if the test result

is a single value and the standard deviation is based on prior test
data.

However, the second step contains a formidable problem.
Student’s ty; is tabled as a function of degrees of freedom (v).
The usual sample standard deviation is distributed as the
Chi-Square distribution, but the root-sum-square of a number of
sample standard deviations tends toward a normal distribution
because of the Central Limit Theorem. This was verified by
Monte Carlo Simulation for SAE Committee E33 in 1982. As a
result, there is no known exact solution to the problem of

combining or propagating the degrees of freedom of the sample
standard deviations to the degrees of freedom of the end test
result, but there are approximations. The Welch-Satterthwaite
approximation was selected as best based on Monte Carlo
simulation®. Unfortunately, it is a rather complex solution:
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Using the Welch-Satterthwaite equation®2® produces random
uncertainty confidence intervals that are well behaved as shown
by Monte Carlo simulation (Figure 2).
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Fig. 2 Welch-Satterthwaite ty; X /X S? produces
95% coverage.

This solution was quite acceptable, although complex. In an
effort to simplify, Abernethy suggested that Student’s t and
Welch-Satterthwaite are only required for small samples. He
recommended that above sample sizes of 30, ty; be approximated
by 2.0 and degrees of freedom may be ignored. Examination of a
Student’s t table shows that for a sample of 30, degrees of
freedom of 29, ty; = 2.045 and for an infinite sample, ty; = 1.96,
so 2.0 might be an acceptable approximation. This suggestion
was accepted by all of the committees as it produces a useful
simplification. In most cases, small sample methods are not
needed. This simplification has been described as “two for t for
simplicity.”

In summary, the recommended random uncertainty (ty; X S)
provides a rigorous statistical confidence interval (if the system-
atic error is zero or negligible) for the unknown true mean value,
This is precisely what Gossett (pen name “Student”) intended
when he derived his t statistic at the Guinness Brewery in
Dublin in 1905. Incidentally, he also used Monte Carlo simula-
tion to verify his work, even though the computer had not yet
been invented.

2. Systematic Error Uncertainty

Uncertainty analysis assumes a carefully controlled measure-
ment process within which every calibration constant and
correction has been applied. Systematic error is a synonym for
fixed or bias errors. The systematic uncertainty is an estimate of



the upper limit of the systematic error. In this country it is
popularly called the bias limit, B. As all corrections have been
made there is usually no data to calculate B. Therefore it is
usually estimated from judgement and experience. Statistical
methods do not apply.

Further, the distribution of bias limits is both unknown and
probably unknowable, and therefore, how they should be
combined is not obvious.

The Central Limit Theorem of Statistics leads us to believe that
the sum of the true unknown bias errors is normally distributed
assuming there are many, say more than ten. Some experts
believe the test result bias limit should also be normally
distributed although this is argumentative. If so, it would be
logical to root-sum-square the bias limits and even if normality
is not assumed, there are arguments to RSS, i.e. it is analogous
to calculating the standard deviation.

Some Soviet uncertainty analysts believe the bias limits are
randomly distributed (rectangular distribution). If so, the
Central Limit theorem would lead us to believe that the test
result bias limit would be normally distributed and the bias
limits should be combined by RSS or quadrature. At the request
of the Soviet delegation, ISO T'C30 SC9 Revised D.P. 5168'2 has
an appendix illustrating this approach.

Two arguments against the root-sum-square can be found in
literature. If there were only three of four bias limits, the
probability that they would have the same sign is significant, say
one fourth or one eighth. This has inspired some to argue that
the bias limits should be added together. However,
Professor S. Kline argues and we agree, that this requires that
they all be at their maximum value in addition to having the
same sign. The probability of both these requirements being met
is very small. For example, the probability of four bias limits all
being within 1% of their maximum positive value would be
(0.01)* or 1078, assuming a random (rectangular) distribution.

Also, if a measurement uncertainty analysis identified four or
fewer sources of bias, there should be concern that some sources
have gone unrecognized.* The analysis should be redone and
expert help should be recruited to ’examine the calibration
hierarchy, the data acquisition process, and the data reduction
procedure for additional sources. This comment originated with
Mr. Cameron of NBS.

The second argument is that one or two bias limits may be an
order of magnitude or more larger than all the othegs. If so, it
would be prudent to add the large ones to the RSS of the small
ones. The counter argument is that such a situation would lead
to corrective action to reduce the enormous source(s) of error
and would contradict the “controlled measurement process” that
we have assumed.

Therefore, for all the above reasons the root-sum-square**
combination of bias limits is widely used and recommended.

*  AT.J. Hayward® indicates: “A full breakdown would probably reveal

several dozen primary sources of umcertainty in the measurement...”
p. 10.

** Hayward® further indicates: “The real justification for adding uncertain-
ty components in quadrature is that it seems to work. Experience has
shown that arithmetic addition of components often leads to a large
overestimate of total uncertainty.” p.19.

3. Signed Bias Limits

Some types of bias limits may have a know sign. Leakage errors
in the process of measuring a high pressure or radiation errors
from a thermocouple in a hot combustor would both be negative
if they exist. The bias limits which result are non-symmetrical,
i.e., not of the form + B. They are of the form zero to minus B
(or plus B). Table 1 lists several non-symmetrical bias limits for
illustration.

Table 1 Non-symmetrical Bias Limits

Bias Limits Explanation
0, +10 deg The bias will range from zero to plus 10 deg
0, +7 psia The bias will range from zero to plus 7 psia
—8, 0 deg The bias will range from minus 8 to zero

Therefore, the combination of biases in this case cannot be
handled by simply root-sum-squaring them — the upper and
lower ranges must be combined separately.

For example, assume that B, and B, are non-symmetrical, and
designated by Bj;, B,, B7, and B;. The combination with the
symmetrical bias limits B, , B; , B, , B, , and Bg is handled as
follows:

1/2

B*

[B+ (B )+ B+ By+B5+Bg +(B7 )] (6

and

1/2

B =[Bj+(B;F+B3;+B;+Bl+B; +(B, ] n

4. Defined Measurement Process

Review of the many methods used in the sixties showed that one
reason for the variation was that different measurement pro-
cesses were involved. For example, Kline assumed a single
sample, (no averaging) while many writers were averaging to
reduce the random uncertainty. Abernethy, Ku, Eisenhart,
Rosenblatt and others recognized that the test result uncertainty
depends on the defined measurement process. The standard
method must be applicable to any and all processes.

The decision on classifying elemental bias or precision errors
depends on the defined measurement process. It should be noted
that this may be an iterative process, redefining the measure-
ment process until an acceptable pretest uncertainty is estab-
lished. Moffat has championed this concept. Calibration errors
are the most common initial error(s) which may be reclassified
as a result of the defined measurement process. For example, if
we are considering the measurement of air flow for gas turbine
engines at a test facility over a long period such as many
calibrations, the uncertainty of these measurements will contain
errors due to variations in calibrations. The calibration process
would contribute both bias and precision errors. However, if the
same measurement was taken on a test involving only one
calibration, then the precision in the calibration process would
manifest itself as a bias. Classification of a calibration precision
error(s) to a bias error(s) is marked with an asterisk (s*) to
indicate that it is a fossilized or fixed error for this process (due
to Ascough).

The uncertainty analysis for the above examples will be different
from the uncertainty analysis for a comparative, back-to-back
test to measure air flow on a single test stand for a single engine,
which is a different measurement process. In a comparative test,



the objective is to measure the change in the test result from the
baseline test to the second test with the new design change.
Calibration errors (all bias) may be ignored in comparative
testing in that the same instrumentation and equipment must be
used for both tests, and bias errors cancel out in the comparison
or difference since calibration errors do not affect the compari-
son or difference between one test and another (the test
objective being to determine if a design change is beneficial). In
these three examples, the defined measurement process may
have included the same engine, instrumentation, and test stand;
however, there are differences in uncertainties due to the
differences in test objectives and test duration.

The planned instrumentation, type and number, is also part of
the definition of the measurement process. If the end measure-
ment is an average of (1) a series of individual repeat points or
(2) a number of simultaneous readings, or (3) a combination of
both, this must also be specified, as the precision index depends
on this information. Significant reductions in precision error can
be obtained if averaging can be used under most conditions.
(Averaging can be used (1) with repeated single measurements if
the measured variable is constant, or (2) if redundant instru-
ments can be recorded simultaneously).

In summary, the uncertainty analysis depends on a well defined
measurement process. Before this was recognized, the classifica-
tion of elemental errors was complex and frustrating. However,
once it was recognized that the final classification depended on
the defined measurement process, a simple rule for the initial
classification could be adopted.

“The elemental error of a measurement should be put into one of
two categories depending on how the error is derived. A random
error is derived by a statistical analysis of repeated measure-
ments while a systematic error usually must be estimated by

nonstatistical methods??.”

This approach makes a very complex situation manageable and
keeps the statistical estimates and the judgment estimates error
components separate until the appropriate time to combine
them.

Note that this is consistent with thé %IPM or CIPM recommen-

dations®®.

A step-by-step measurement uncertainty analysis procedure is
given in Appendix A.

5. Uncertainty Intervals

The question of how to combine the random and systematic
uncertainties has been the major issue in the uncertainty debate
during this century. Each side, addition versus root-sum-squar-
ing (RSS), has attempted to build logical, objective cases without
success. The intensity of the arguments was unbounded. Monte
Carlo simulations originally produced by the authors in 1967
were later independently reproduced by John Ascough in
England (1978), Robert Benedict (Westinghouse) and George
Kelley (General Electric) in 1980. The simulation results
provided quantitative comparisons and will be described later.
However, the results did not settle the argument.

In general, the instrumentation and calibration people favored
the optimistic, shorter RSS interval. The data analysts, the
users, preferred the conservative, larger, addition interval pro-
posed by NBS. Internationally, the British?! leaned toward the

RSS (so did Kline and McClintock??), even though Hayward?®
preferred addition.. The Soviets also preferred the addition.

By the late seventies, the authors concluded that the nation and
world seemed equally divided. No standard would ever be
possible. At that point, Dr. Joan Rosenblatt wrote to
Abernethy" and proposed the “great compromise.” She suggest-
ed that under certain constraints it would be acceptable to allow
either addition or RSS or even some other combination. The
constraints were that (1) the random and systematic compo-
nents be separately propagated to the end test result (2) that the
two components be reported separately and (3) that the choice of
uncertainty formula be stated. Under these constraints, the
uncertainty interval is the last calculation and may easily be
redone if desired.

Abernethy easily agreed and proposed this compromise to SAE
E33, ASME MFFCC, ASME PTC 19.1 and ISO TC30 SC9
Committees. All agreed (and breathed a sigh of relief). The
arguments ceased. Formal NBS recognition of the compromise
may be found in (NBS Special Publication 644). This led to
standards!46.12

The simulation comparisons of the addition and RSS methods
are shown in Appendix B.

Areas for Future Research

There are at least three areas where more work is needed:

1. Calibration Curve Fitting
2. Weighting Competitive Answers
3. Outlier Methods

1) Curve fitting is usually based on least squares regression.
The application to calibration produces some unusual problems.
First, both the test meter and the master meter will have some
precision error, which contradicts the least squares assumption
that all the error is in the dependent variable. Secondly, if the
test meter is regarded as the dependent (Y) variable because it
usually has the larger error, the equation must be inverted to
master meter (X) as a function of test meter (Y) to be used.

There have been many solutions proposed as to how to best fit
calibration data considering these two problems. Simulation
studies by the authors for the linear case show the Berkson®!
approach to be best, i.e. minimum error. Mandel®? has also
proposed a method which needs further study. However, for
higher order there is no known best solution and the problem is
very complex. Work is needed in this area.

2) Another problem is that of how to best weight competitive
solutions. For example, let us assume there are three different
methods for determining in-flight propulsive thrust in a flight
test program. If the bias errors were negligible, we can use
straight forward least squares theory to determine the weighting
factors as a function of the predicted precision errors. However,
in the usual case these bias errors are not negligible. Adams®?
has suggested weighting by uncertainties and the ASME
PTC19.1 committee adopted this suggestion®. The authors of
this paper wrote the section in® based on Monte Carlo simula-
tion studies. This approach needs to be validated, hopefully with
more rigor. It would be a useful technique in many testing
applications.



3) As to the third problem, uncertainty analysis assumes a
carefully controlled measurement process such that there are no
wild, spurious observations. The detection and rejection of these
outliers is an intriguing statistical problem. Ideally, outlier
detection leads to engineering analysis that provides a reason
for the rejection of an outlier. However, sometimes the sheer size
of the data precludes such an analysis and outlier rejection
methods are needed.

Two methods have gained wide acceptance over the years —
Grubbs*and Thompson’s 1°°and their validity has been shown
by Monte Carlo simulation by the authors.

The first, Grubbs’ method, has been adopted by the ISO!?,
ASME?, and others and is usually recommended for use in
computerized outlier rejection because it rejects fewer points
than Thompson’s 1.

The second, Thompson’s 1 is recommended? for outlier detec-
tion where conservatism is not as important. Both methods
assume normality of the data, which is a reasonable assumption.
Non-parametric methods such as Tchebychev’s inequality are
needed in those rare cases where the data is non-normal.

If the data has some multivariate functional relationship such as
a regression curve fit, outlier detection and rejection is more
difficult. Several methods have been proposed®®3”. The authors
have investigated and recommend® for linear relationships but
no formal acceptance has been given by the committees listed
herein. For higher order, a simple approach is to use +1.9
standard errors of estimate (SEE) for all but the end points. A
smaller multiple of SEE is more appropriate for the end points.
This is definitely an area for further research.

Summary

A national and international consensus now supports a standard
uncertainty methodology. The standard method is quite consis-
tent with the CIPM or BIPM recommendations®® if they are
assumed to apply to the calibration portion of the error. The
notation used in these standards is approximately the same as
the International VIM?® (even tho%igh the standards were
written before VIM existed). The SAE E33 report repre-
sents the first international agreement to apply
the method to aircraft performance. The ASME
PTC19.1 standard is a readable presentation of
the method which will be applied to all ASME Per-
formance Test Codes. Internationally it has beempresented
in the Netherlands, Belgium, France, Great Britain, USSR and
Israel by the authors.
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Appendix A
Measurement Uncertainty Analysis Procedure

The procedure to follow in performing measurement uncertainty
analyses is as follows.

(a) Analyze the formula or data reduction by which the final
answer will be obtained to determine which values (mea-
sured or constant) must be investigated in the uncertainty
analysis. Study the measurement system.

(b) For each measurement, make an exhaustive list of every
possible elemental error, including calibration errors, data
acquisition errors, and data reduction errors.

(c) Obtain an estimate of each elemental error and preliminari-
ly classify according to the following:

“The elemental error of a measurement should be put into
one of two categories depending on how the error is derived.
A random error is derived by a statistical analysis of
repeated measurements while a systematic error usually
must be estimated by nonstatistical methods.”%’

(d) Make the final classification of the elemental errors into
bias and precision based on consideration of the defined
measurement process.

(e) Calculate the precision index S and estimate the bias limit
B for each measurement.

(f) Propagate the precision index to the test result using the
Taylor series expansion.

(g2) Propagate the bias limit for the test result using the Taylor
series expansion.



(h) Evaluate the degrees of freedom for the calculated parame-
ter using the Welch-Satterthwaite formula if the precision
sample standard deviation is based on small samples.

(i) Calculate the uncertainty of the calculated parameter using
Eq. (8), Le.,

Ui * (B + by %) and/or Upsg= +1 /B* + (t”f—i; )2 ®

(tg5 may be taken as 2.0 for large sample estimates of precision)

(G} Report » The bias, precision, and total uncertainties of
the calculated parameters.

» The equivalent degrees of freedom if the preci-
sion is based on small samples.

* The uncertainty formula employed.

Appendix B

Monte Carlo Comparison of Alternative

Uncertainty Methods

If the bias and precision error estimates are propagated sepa-
rately to the end test result and the equation used to combine
them into uncertainty is stated, either U,pp or Upgg can be
used. Monte Carlo simulation was used to compare the additive
and root-sum-squared values.

Uncertainty Interval Coverage

A rigorous calculation of confidence level or coverage of the true
value by the interval is not possible because the distributions of
bias limits, based on judgment, cannot be determined. Monte
Carlo simulation of the intervals can provide approximate
coverage assuming various bias limit distributions.

For large samples {N > 30):

Uwp = B+ ‘/2% : (B.1)
Upes = 1 /BZ+( ‘;qu_j (B2)

For small samples:

Upop = B+t —% B.3)
S 2
Upes = \/B*+ (t ———) (B.4
RSS % /N )
where tg is determined from the degrees of freedom calculated
from the Welch-Satterthwaite approximations. If the test result

is an average of N points the \/lv accounts for the improvement

in precision.

As the actual bias error and bias limit distributions will probably
never be known, the simulation studies were based on a range of
assumptions.

Simulation Cases Considered (102 cases)

A number (102) of simulation cases were first considered. The
results in Figures B.1 through B-4 are based on these cases.
These included:

» From 3 to 5 error sources, both bias and precision
» Bias errors distributed both normally and rectangularly
« Precision distributed normally

+ Bias limits at both 95% and 99.7% for both the normal and
the rectangular

» Precision indexes based on sample sizes from 3 to 30
= Ratio of precision to bias errors at 1/2, 1.0 and 2.0

Another 102 cases were simulated with errors from up to 19
sources with similar results.

The result of the studies comparing the two intervals are:

e Uupp averages 99.1% coverage while Upgg provides 95%
based on bias limits assumed to be 95% (20 for normally
distributed biases and 1.645¢ for rectangularly distributed
biases.) (Figure B.1).
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Fig. B-1 Coverage distribution for 95% bias limits.

e U,pp averages approximately 99.7% coverage and Upgg
coverage is 97.5% if the bias limits are assumed 99.7% (3o for
normal and 1.7326 for rectangular bias limit.) (Figure B.2.).
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Fig. B-2 Coverage distribution for 99.7% bias limits.

Because of these coverages, U, is sometimes called Ugg and
URSS is called U95.

If the bias error is negligible, both intervals provide 95%
statistical confidence.

If the precision error is negligible, both intervals provide 95%
t0 99.7% depending on the assumed bias limit size.

When the interval coverages are compared, U,pp provides a
more precise estimate of the interval size (range of 98% to
100%) as opposed to 93% to 100% for Uggg (Figures B.1 to
B.4).
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Fig. B-3 U,pp and Uggg sensitivity to variation

in sample size.
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Fig. B-4 U,pp and Upgg sensitivity to bias / precision
error ratio.

U,pp is larger than Upgg. The average ratio of the U,y
interval size to Uggg interval size is 1.35:1.

The Simulation Procedure

Measured values, X = by + ... +hy +e, + .. .. +ey were
generated. The b/’s are randomly generated bias errors
generated from N distributions (rectangular or normal) and
the g’s are randomly generated precision errors from the
normal distribution. The means of the distributions were all
zero. The precision indices were input as above.

N random samples of size n;, . . ., ny were drawn from
normal distributions,i=1,...,N. :

The standard deviations of the N distributions, the Welch-
Satterthwaite degrees of freedom and the U,pyy and Uggg
uncertainty intervals were calculated.

It was determined whether
(X — Uggg) =0 =< (X + Uggg)

(X~ Ugpp) = 0= (X+U,pp)

The percent of times the interval covered 0 was calculated for
500 cases. The results are shown on Figures B.1, 2, 3 and 4.
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