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Abstract

A standardmeasurementuncertaintymethodology has been
adoptedby the SAE,”

2
’
3

, ASME,
4

’
5

’
6

and AIAA
7

’
5

’
9

. The same
standardhasbeen recognizedand adoptedby ISA’°”, ISO

12
,

USAF’
3

and JANNAF’
4

. This is remarkableafter decadesof
striving to reachagreement.The objective of this paperis to
documentsomeof thehistory, statisticalevaluationandsignifi-
cant contributionsthat led to this nationaland international
consensus.The statisticalMonth Carlo simulationsthat led to
selectingthismethodologywill hedescrihed.It is hopedthat the
novicemeasurementuncertaintyanalystwill gainsomeunder-
standingof thereasoningthatsupportsthestandard.

StandardMethodology

The ICRPG Handbook was presented at the 1969
SAE-ASME-AIAA PropulsionConference

8
and received wide-

spread acceptance.The propulsion community successfully
appliedthe rocketmethodologyto gasturbineswhich inspireda
contract from the USAF Applied Propulsion Laboratory to
produceasimilar handbookforjet engines.Thisdocument’

3
was

givenworldwide distributionby theUSAF afterintroduction at
the 1972 SAE-AIAA-ASME Propulsion Conference

9
.It was

widely usedwithin the aerospaceindustry.
21

’
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’
43
In 1980 the

InstrumentSociety of America reprintedit as an ISA Hand-
book

10
. However, the fifth problem,the dispute over how to

combinerandomandsystematicerrorsto obtainanuncertainty
continuedto

6
ge throughthe seventiesand even the authors

were pessimisticaboutthe prospectsof settling theissue.The
“greatcompromise”providedthesolution.

It is not thepurposeof thepaperto detail the methodologyas
that is available in the above references,particularly”

45
”
2

.
However,a brief summarymay he helpful and is provided in
AppendixA.

History

One organization, the National Bureau of Standards,has
provided leadershipin the field dating all the way back to
Mayo Hershey’

5
in 1911. Dr. Harry Ku, Dr. JoanRosenblatt,

Mr. J. Cameron, Churchill Eisenhart, Mary Natrella, Dr.
Clifford Spiegelmanand others have provided a wealth of
noteworthypapersandreports.
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In addition, Drs. Ku,
RosenblattandMr. Cameronprovidedinvaluableguidanceend
consultation during the two decadesof developmentof this
methodology.

The hallmark paper by Professor Kline and McClintock
2

°
publishedin 1953 wasusedby manyengineerswithin ASME for
guidance.Starting in the fifties A.S.M.E.’s PerformanceTest
CodesCommitteesmadeattemptsto write astandardmeasure-
ment uncertaintydocumentwhich finally reachedsuccessin
1985g. In 1965, JANNAF, thencalled the ICRPG (Interagency
ChemicalRocketPropulsionGroup) organizeda Performance.
StandardizationCommitteeto developstandardsfor therocket
engineindustry. The first meetingproducedargumentsabout
measurementerror.A surveyof the industryshowedthat there
weremanydifferentmethodsin useandacontractwasawarded
to write a standardhandbook.The effort took two yearsand
producedmany heateddisagreements.The ICRPG Committee
underDon Bartz ofJPL (Chairman)rejectedthehandbookand
awardeda secondcontractthat producedan acceptabledocu-
ment’

4
in 1988.

The successof thesecondeffort wasdueto the strongsupport
from NBS and to Monte Carlo simulationof alternativesthat
provided objective comparisons.These comparisons led to
recommendationsproposedto the NBS teamand the ICRPG
Committee.Four of the five final solutions employedin the
standardmethodologyweredevelopedat this time. Thesefive
problemswill bediscussedlaterin thispaper.

* Maflager, PMS Engineering
Associate fe1ica~AIAA

Thefive problemsandsolutiopsfollow:

1. RandomError Uncertainty

Precisionerror, repeatability,samplingerror,andrandomerror
are all synonymsfor the scatterwe see in repeatedmeasure-
mentsof thesamething. We do not expectrepeatedmeasure-
ments to agreeexactly. Fortunately,we have good statistical
methods to estimatethe random error uncertainty. There
seemedto he general agreementthat some multiple of the
standarddeviationshouldbeused’

7
’
20

.
21

.Two or threewerethe
popular choices,or for small samples,Student’s t

95
or t

957
.

Monte Carlosimulationshowedthat threestandarddeviations
whencombinedwith hiss limits producedlarge,very conserva-
tive uncertaintyintervalsthat wereunacceptableto instrumen-
tation engineers.Eventually, two (or t~

1~
for small samples)

standarddeviationsbecamethe consensus.(All Monte Carlo
simulationsdiscussedhereinwereprogrammedhy theauthors.)

However, a problemappearedwhenseveralmeasurementswere
combined to calculate a final test result. How should the
estimatesof measurementprecisionerrors he propagatedor
comhinedto ohtain the precision error estimateof the test
result?For example,let usassumewehaveacompressoron test
to measurethermodynamicefficiency.If wecalculatethesample
standarddeviation(s)for eachtemperatureandpressurein the
inlet andexhaust,how shouldtheyhecombinedor propagated
to obtainthecorrespondingstandarddeviationof efficiency,the
test result? Many engineersoptedfor root-sum-squaringthe
products.
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They reasoned,correctly,that for very largesamples:

/ Z(25)
2

(2S),,.,,,,. = V Lur,men,,

However, this logic falls apartfor small samplesbecausethe
characteristicof a confidence interval is not invariant under
transformation.If 95% small sample confidence intervalsare
root sum squared,the resultant interval will not be a 95%
interval.Thiswas demonstratedwith MonteCarlosimulationin
1967for theICRPGCommittee.(Figure1).

>-
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x
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Fig. 1 Root-sum-squareof (tre x S) does not produce
95% coverage.

Statistically,abettersolutionrequirestwo steps:

(1) ~ =

(2) RandomUncertainty =

If theresultis anaveragetherandomuncertaintyis reducedby

the ,JM whenN pointsareaveraged,Of course,if theresultis a

singlevalue, ,)N = 1 Thissituationcanariseif thetest result

is a singlevalueandthestandarddeviationis basedonprior test
data.

However, the second step contains a formidable problem.
Student’s t~is tabledasa function of degreesof freedom (v).
The usual samplestandard deviation is distributed as the
Chi-Squaredistribution,hut theroot-sum-squareof a numberof
samplestandarddeviationstendstoward a normaldistribution
becauseof the Central Limit Theorem.This was verified by
MonteCarlo Simulationfor SAE CommitteeE33 in 1982. As a
result, there is no known exact solution to the problem of

combiningor propagatingthedegreesof freedomof thesample
standarddeviationsto the degreesof freedomof the endtest
result, but thereareapproximations.The Welch-Satterthwaite
approximation was selectedas best basedon Monte Carlo

(2) simulation~.Unfortunately,it isarathercomplexsolution:

[L 52]’

= 54

Using the Welch-Satterthwaiteequation
24

’
25

producesrandom
uncertaintyconfidenceintervalsthatarewell behavedasshown
by MonteCarlosimulation(Figure2).

U

C

Fig. 2 Welch-Satterthwaitet,~X Jf~produces
95% coverage.

This solution was quite acceptable,although complex. In an
effort to simplify, Ahernethy suggestedthat Student’st and
Welch-Satterthwaiteare only requiredfor small samples.He
recommendedthat shovesamplesizesof 30, t~beapproximated
by 2.0anddegreesof freedommaybe ignored.Examinationof a

(3) Student’st table shows that for a sampleof 30, degreesof
freedomof 29, t~= 2.045 andfor an infinite sample,t~= 1.96,
so 2.0 might be an acceptableapproximation.This suggestion
was acceptedby all of the committeesasit producesa useful
simplification. In most cases,small samplemethodsare not

(4) needed.This simplification hasbeendescribedas“two for t for
simplicity.”

In summary,the recommendedrandomuncertainty(t
55

X 5)

providesa rigorousstatisticalconfidenceinterval (if thesystem-
aticerroris zeroor negligible)fortheunknowntruemeanvalue.
This is preciselywhat Gossett(penname“Student”) intended
when he derivedhis t statistic at the GuiunessBrewery in
Dublin in 1905. Incidentally, healsousedMonte Carlosimula-
tion to verify his work, eventhough the computerhad not yet
beeninvented.

2. SystematicError Uncertainty

Uncertaintyanalysisassumesa carefully controlledmeasure-
ment processwithin which every calibration constantand
correctionhasbeenapplied.Systematicerror is a synonymfor
fixedorbiaserrors.Thesystematicuncertaintyis anestimateof

CasesSimulated

• 35 casessimulated
two times each

• 3 to 9 sources of

precisionerror
• Sample sizes 3 to 30

CasesSimulated

• 35 casessimulated
two times each

• 3 to 9 sourcesof
precision error

• Samplesizes3 to 30
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the upperlimit of the systematicerror. In this country it is
popularlycalled thebias limit, B. As all correctionshavebeen
madethereis usually no data to calculateB. Therefore it is
usually estimatedfrom judgementand experience.Statistical
methodsdonotapply.

Further, the distribution of bias limits is both unknown and
probably unknowable, and therefore, how they should be
combinedis not obvious.

The CentralLimit Theoremof Statisticsleadsus tobelievethat
thesumof thetrue unknownbiaserrorsis normallydistributed
assumingthereare many, say more than ten. Some experts
believe the test result bias limit should also be normally
distributedalthough this is argumentative.If so, it would be
logical to root-sum-squarethebiaslimits andevenif normality
is not assumed,thereareargumentsto RSS,i.e. it is analogous
to calculatingthestandarddeviation.

Some Soviet uncertaintyanalystsbelieve the bias limits are
randomly distributed (rectangulardistribution). If so, the
CentralLimit theoremwould leadus to believe that the test
result bias limit would be normally distributedand the hiss
limits shouldbecombinedby RSSorquadrature.At therequest
of the Sovietdelegation,ISOTC3O SC9RevisedD.P.516812has
anappendixillustratingthisapproach.

Two argumentsagainstthe root-sum-squarecan be found in
literature. If there were only three of four bias limits, the
probability thattheywould havethesamesign is significant,say
onefourth orone eighth.This hasinspiredsometo arguethat
the bins limits should be added together. However,
ProfessorS. Kline arguesand we agree,that this requiresthat
theyall be at their maximumvalue in addition to having the
samesign.Theprobabilityof both theserequirementsbeingmet
is very smalL Forexample,the probability of four biaslimits all
being within 1% of their maximum positive value would be
(o.01)~or i0~,assuminga random(rectangular)distribution.

Also, if a measurementuncertaintyanalysisidentified four or
fewersourcesof bias,thereshouldbeconcernthat somesources
have gone unrecognized.*The analysisshould be redoneand
expert help should be recruitedto ‘examine the calibration
hierarchy,thedataacquisitionprocess,andthedata reduction
procedurefor additionalsources.This commentoriginatedwith
Mr. CameronofNBS.

The secondargumentis that oneor two biaslimits maybe an
orderof magnitudeor more largerthan all the othes~s.If so, it
wouldbeprudentto addthelargeonesto theRSS ofthe small
ones.Thecounterargumentis that sucha situationwould lead
to corrective action to reducethe enormoussource(s)of error
andwouldcontradictthe“controlledmeasurementprocess”that
wehaveassumed.

Therefore, for all the above reasonsthe root-sum-square
54

combinationof biaslimits is widelyusedandrecommended.

• A.T.J. Hayward
26

indicates: “A full breakdownwould probably reveal
severaldozenprimary sourcesof uncertaintyin the measurement...”
p. 10.

““ Hayward’
6
further indicates:“The reel justification for adding uncertain-

ty componentsin quadratureis that it seemsto work. gsperieocebaa
shownthat arithmetic addition of componentsoften leads to a large
overestimateof total uncertainty.”p.19.

3. SignedBias Limits

Sometypesof biaslimits mayhave a know sign.Leakageerrors
in the processof measuringa high pressureor radiationerrors
from athermocouplein ahot combustorwould both benegative
if theyexist. Thebias limits which result arenon-symmetrical,
i.e., not of theform ±B. Theyareof theform zeroto minusB
(or plus B). Table1 lists severalnon-symmetricalbiaslimits for
illustration.

Table 1 Non-symmetricalBias Limits

Bias Limits Ezplanation
0, +10 deg The hiss will rangefrom zero to plus 10 deg
0, +7 psia The bias will rangefrom zero to plus 7 psis
—8, 0 deg The hiss will rangefrom minus 8 to zero

Therefore, the combination of biasesin this casecannot be
handiedby simply root-sum-squaringthem — the upper and
lowerrangesmusthecombinedseparately.

For example,assumethat B
3

andB
7

. arenon-symmetrical,and
designatedby B, B; , B; , andEl. The comhinatinnwith the
symmetricalhisslimits B, , B

3
, B., ,B

5
andB

5
is bandiedas

follows:

and

W =

W = [B~+(B;)’+B~+B~+Bg+B~+(B
7

)’]”

4. DefinedMeasurementProcess

(6)

(7)

Reviewofthemanymethodsusedin thesixtiesshowedthatone
reasonfor the variation was that different measurementpro-
cesseswere involved. For example, Kline assumeda single
sample,(no averaging)while many writers were averagingto
reduce the random uncertainty. Abernethy, Ku, Eisenhart,
Rosenblattandothersrecognizedthatthetestresultuncertainty
dependson the defined measurementprocess.The standard
methodmustbeapplicableto anyandall processes.

The decision on classifyingelementalbias or precisionerrors
dependson thedefinedmeasurementprocess.It shouldbenoted
that this may he an iterativeprocess,redefiningthe measure-
mentprocessuntil an acceptablepretestuncertaintyis estab-
lished.Moffat haschampionedthisconcept. Calibrationerrors
are themost commoninitial error(s)which mayhereclassified
asa resultof the definedmeasurementprocess.Forexample,if
we areconsideringthe measurementof air flow for gasturbine
engines at a test facility over a long period such as many
calibrations,theuncertaintyof thesemeasurementswill contain
errorsdueto variationsin calibrations.Thecalibrationprocess
wouldcontributeboth biasandprecisionerrors.However,if the
same measurementwas taken on a test involving only one
calibration, thenthe precision in the calibrationprocesswould
manifestitself asabias.Classificationof a calibrationprecision
error(s) to a bias error(s) is markedwith an asterisk (~*)to
indicate that it is a fossilizedor fixederrorfor this process(due
to Ascough).

Theuncertaintyanalysisfor theaboveexampleswill bedifferent
from the uncertaintyanalysisfor a comparative,back-to-back
testto measureair flow on asingleteststandfor a singleengine,
which is a differentmeasurementprocess.In a comparativetest,

3



theobjectiveis to measurethechangein thetest resultfrom the
baseline test to the secondtest with the new design change.
Calibration errors (all bias) may be ignored in comparative
testinginthatthesameinstrumentationandequipmentmustbe
usedfor both tests,andbiaserrorscancelout in thecomparison
or differencesincecalibration errorsdo not effect thecompari-
son or difference between one test and another (the test
objectivebeingto determineif a designchangeis beneficial). In
thesethree examples,the definedmeasurementprocessmay
have includedthe sameengine,instrumentation,andteststand;
however, there are differences in uncertaintiesdue to the
differencesin testobjectivesandtestduration.

The plannedinstrmnentation,type andnumber,is also part of
thedefinition of themeasurementprocess.If the endmeasure-
ment is anaverageof (1) a seriesof individual repeatpoints or
(2) a numberof simultaneousreadings,or (3) a combinationof
both, this mustalsobespecified,astheprecisionindexdepends
on this information.Significant reductionsin precisionerrorcan
be obtainedif averagingcanbe usedunder most conditions.
(Averagingcanheused(1) with repeatedsinglemeasurementsif
the measuredvariable is constant,or (2) if redundantinstru-
mentscanberecordedsimultaneously).

In summary,theuncertaintyanalysisdependson a well defined
measurementprocess.Beforethiswas recognized,theclassifica-
tion of elementalerrorswas complexandfrustrating. However,
once it wasrecognizedthat thefinal classificationdependedon
the definedmeasurementprocess,s simplerule for the initial
classificationcouldbeadopted.

“Theelementalerrorof ameasurementshouldbeput intooneof
two categoriesdependingon how theerroris derived.A random
error is derivedby a statisticalanalysisof repeatedmeasure-
mentswhile a systematicerror usually must he estimatedby
nonstatisticalmethods

27
.”

This approachmakesa very complexsituationmanageableand
keepsthe statisticalestimatesandthejudgmentestimateserror
componentsseparateuntil the appropriatetime to combine
them.

Notethat this is consistentwith the~3IPMorCIPMrecommen-
dations

28
.

A step-by-stepmeasurementuncertaintyanalysisprocedureis
givenin AppendixA.

5. UncertaintyIntervals

The questionof how to combinethe randomand systematic
uncertaintieshasbeenthe majorissuein theuncertaintydebate
duringthis century.Eachside,additionversusroot-sum-squar-
ing (RSS),hasattemptedto build logical,objectivecaseswithout
success.The intensityof the argumentswasunbounded.Monte
Carlo simulationsoriginally producedby the authorsin 1967
were later independently reproducedby John Ascough in
England (1978), Robert Benedict(Westinghouse)and George
Kelley (General Electric) in 1980. The simulation results
provided quantitativecomparisonsandwill be describedlater.
However,theresultsdid not settletheargument.

In general,the instrumentationand calibrationpeoplefavored
the optimistic, shorter RSS interval. The data analysts, the
users,preferredthe conservative,larger, addition interval pro-
posedby NBS. Internationally,the British

2
’ leanedtoward the

RSS (sodid Kline and McClintock
20

), even thoughHayward
26

preferredaddition..The Sovietsalsopreferredtheaddition.

By thelateseventies,theauthorsconcludedthatthenation and
world seemedequally divided. No standardwould ever he
possible. At that point, Dr. Joan Rosenblatt wrote to
Abernethy

15
andproposedthe“greatcompromise.”Shesuggest-

ed that undercertainconstraintsit wouldbeacceptableto allow
either addition or RSSor even someother combination.The
constraintswere that (1) the random and systematiccompo-
nentsbeseparatelypropagatedto theendtest result(2) thatthe
two componentsbereportedseparatelyand(3) that thechoiceof
uncertainty formula be stated. Under theseconstraints,the
uncertainty interval is the last calculation and mayeasily be
redoneif desired.

Abernethyeasilyagreedandproposedthiscompromiseto SAE

E33, ASME MFFCC, ASME PTC 19.1 and ISO TC3O SC9
Committees.All agreed(and breatheda sigh of relief). The
argumentsceased.Formal NBS recognitionof thecompromise
may be found in (NBS SpecialPublication644). This led to
standards

t
’
4

’
6

’
13

The simulationcomparisonsof the additionand RSSmethods
areshownin AppendixB.

Areas for FutureResearch

Thereareatleastthreeareaswheremorework is needed:

1. CalibrationCurveFitting
2. WeightingCompetitiveAnswers
3. OutlierMethods

1) Curve fitting is usually basedon leastsquaresregression.
Theapplicationto calibrationproducessomeunusualproblems.
First, boththe test meterandthemastermeterwill have some
precisionerror, which contradictstheleastsquaresassumption
that all the error is in the dependentvariable.Secondly,if the
testmeter is regardedasthe dependent(Y) variablebecauseit
usually hasthe larger error, the equationmust be invertedto
mastermeter(X) as a function of test meter (Y) to be used.

Therehavebeenmany solutionsproposedasto how to bestfit
calibration data considering thesetwo problems.Simulation
studiesby the authors for the linear caseshow theBerkson

3
’

approachto be best, i.e. minimum error. Mandel
32

has also
proposeda method which needsfurther study. However, for
higherorderthereis no knownbestsolutionandtheproblemis
verycomplex.Work is neededin thisarea.

2) Anotherproblemis that of how to bestweightcompetitive
solutions.For example, let us assumetherearethreedifferent
methods for determiningin-flight propulsivethrust in a flight
test program. If the bias errors were negligible, we can use
straightforward leastsquarestheoryto determinetheweighting
factorsasa functionof thepredictedprecisionerrors.However,
in the usualcasethesebiaserrorsare not negligible. Adams

33

has suggestedweighting by uncertainties and the ASME
PTC19.1 committeeadoptedthis suggestion

6
.The authorsof

this paperwrote thesectionin
6

basedon Monte Carlosimula-
tionstudies.This approachneedsto bevalidated,hopefullywith
more rigor. It would be a useful technique in many testing
applications.

4



3) As to the third problem,uncertaintyanalysisassumesa
carefully controlledmeasurementprocesssuchthatthereareno
wild, spuriousobservations.Thedetectionandrejectionof these
outliers is an intriguing statistical problem. Ideally, outlier
detection leadsto engineeringanalysisthat providesa reason
for therejectionof anoutlier.However,sometimesthesheersize
of the data precludessuch an analysisand outlier rejection
methodsareneeded.

Two methodshave gainedwide acceptanceover the years —

Grubbs
34

andThompson’s t
35

andtheir validity hasbeenshown
by MonteCarlosimulationby theauthors.

The first, Grubbs’ method, hasbeen adoptedby the ISO’
2

,
ASME

4
, and others and is usually recommendedfor use in

computerizedoutlier rejection becauseit rejectsfewer points
thanThompson’st.

The second,Thompson’st is recommended
4
for outlier detec-

tion whereconservatismis not as important. Both methods
assumenormalityof thedata,whichis areasonableassumption.
Non-parametricmethodssuchasTchebychev’sinequality are
neededin thoserarecaseswherethedatais non-normal.

If thedatahassomemultivariatefunctionalrelationshipsuchas
a regressioncurve fit, outlier detectionand rejectionis more
difficult. Severalmethodshave beenproposed

36
’
37

.The authors
haveinvestigatedandrecommend

38
for linear relationshipshut

no formal acceptancehasbeengivenby the committeeslisted
herein. For higher order, a simple approachis to use ±1.9
standarderrorsof estimate(SEE) for all but theendpoints. A
smallermultiple of SEEis moreappropriatefor theendpoints.
This is definitelyanareafor furtherresearch.

Summary

A nationalandinternationalconsensusnowsupportsa standard
uncertaintymethodology.The standardmethodis quite consis-
tent with the CIPM or BIPM recommendations

28
if they are

assumedto apply to the calibration portion of the error. The
notationusedin thesestandardsis approximatelythe sameas
the International VIM

28
(even thofigh the standardswere

written before VIM existed). The SAE E33 report repre-
sents the first international agreement to apply
the method to aircraft performance. The ASME
PTC19.l standard is a readable presentation of
•the method which will be applied to all ASME Per-
fornance Test Codes. Internationallyit has been~presented

in the Netherlands,Belgium, France,GreatBritain, USSRand
Israelbytheauthors.
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Appendix A

MeasurementUncertaintyAnalysis Procedure

Theprocedureto follow in performingmeasurementuncertainty
analysesisasfollows.

(a) Analyzethe formula or data reduction by which the fmal
answerwill be obtainedto determinewhich values (mea-
suredorconstant)mustbe investigatedin theuncertainty
analysis.Studythemeasurementsystem.

(h) For eachmeasurement,make an exhaustivelist of every
possibleelementalerror, including calibration errors,data
acquisitionerrors,anddatareductionerrors.

(c) Obtainanestimateofeachelementalerrorandpreliminari-
ly classifyaccordingto thefollowing’~

“The elementalerrorof a measurementshouldbeput into
oneoftwo categoriesdependingon howtheerroris derived.
A random error is derived by a statistical analysisof
repeatedmeasurementswhile a systematicerror usually
mustbeestimatedby nonstatisticalmethods.”

27

(d) Make the fmal classificationof the elementalerrorsinto
bias and precisionbasedon considerationof thedefined
measurementprocess.

(e) Calculatetheprecisionindex S andestimatethebiaslimit
B for eachmeasurement.

(f) Propagatethe precisionindex to the test resultusingthe
Taylorseriesexpansion.

(g) Propagatethe biaslimit for thetest resultusingtheTaylor
seriesexpansion.

5



(h) Evaluatethedegreesof freedomfor thecalculatedparame-
ter usingtheWelch-Satterthwaiteformulaif theprecision
samplestandarddeviationis basedon smallsamples.

(i) Calculatetheuncertaintyof thecalculatedparameterusing
Eq.(8), i.e.,

UAD~± (B + t~ and/orUass= ±V/B2 + (S )2 (8)

(t
95

maybetakenas2.0 for largesampleestimatesof precision)

(j) Report • The bias, precision,and total uncertaintiesof
thecalculatedparameters.

• The equivalentdegreesof freedomif thepreci-
sionis basedonsmall samples.

• Theuncertaintyformulaemployed.

Appendix B

Monte Carlo Comparisonof Alternative

UncertaintyMethods

If the biasand precisionerror estimatesare propagated sepa-
rately to the endtest resultandtheequationusedto combine
them into uncertaintyis stated,either UAJ~IJor U~ can be
used.MonteCarlosimulationwasusedto comparetheadditive
androot-sum-squaredvalues.

Uncertainty Interval Coverage

A rigorouscalculationof confidencelevelorcoverageof thetrue
valueby theinterval is not possiblebecausethe distributionsof
bias limits, basedon judgment, cannotbe determined.Monte
Carlo simulation of the intervals can provide approximate
coverageassumingvariousbiaslimit distributions.

For largesamples(N> 30):

U~D B+~=- (B.1)

Ursa = \~-:(~7~ (B.2)

Forsmallsamples:

U~D = B+tg~
7~~

(B.3)

Up~g= \V/B2 + ~t
9

, S)~ (B.4)

wheret~is determinedfrom the degreesof freedomcalculated
from the Welch-Satterthwaiteapproximations.If thetest result

is anaverageof Npointsthe ~JNaccountsfor theimprovement

in precision.

Astheactualbiaserrorandbiaslimit distributionswill probably
neverbeknown,thesimulationstudieswerebasedonarangeof
assumptions.

Simulation CasesConsidered(102cases)

A number(102) of simulationcaseswere first considered.The
results in Figures B.1 through B-4 are basedon thesecases.
Theseincluded:

• From 3 to5 errorsources,both biasandprecision

• Bias errorsdistributedboth normallyandrectangularly

• Precisiondistributednormally

• Bias limits atboth 95% and 99.7% for both the normal and
therectangular

• Precisionindexesbasedonsamplesizesfrom 3 to 30

• Ratioof precisionto biaserrorsat1/2, 1.0and2.0

Another 102 caseswere simulatedwith errors from up to 19
sourceswith similar results.

Theresultofthestudiescomparingthetwo intervalsare:

• UADD averages99.1% coveragewhile Up~provides 95%
basedon bias limits assumedto be 95% (2a for normally
distributedbiasesand 1.645a for rectangularlydistributed
biases.)(FigureB.1).

2

.

so

60

40

20

Inte~l:ConblnlngTrue Value

4~imi1sumIo.Dperce~i / Be at2o forNormal ~ular
andLM5oforRecta

ll~) 9998.97 96 959493 92919089
Coverage, perceilt

Fig. B-i Coveragedistribution for 95% bias limits.

• ~ averagesapproximately 99.7% coverageand URSS

coverageis 97.5%if thebiaslimits areassumed99.7%(3a for
normaland 1.732~for rectangularbiaslimit.) (FigureB.2.).
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X • 97. 52 percent

Bias Limits Assumed to
Be at3cr for Normal and
L132a for Rectangular
Bias Error Distributions

Intervals Containing True Value
I I I I I I I

ll~ 99 98 97 96 95 94 93 92 91 90 89
Coverage, percent

Fig. B-2 Coveragedistribution for 99.7% bias limits.

• Becauseof thesecoverages,UADD is sometimes called U
99

and
URSS is calledU

95
.

• If the bias error is negligible, both intervals provide 95%
statisticalconfidence.

• If theprecisionerroris negligible,both intervalsprovide95%
to 99.7%dependingon theassumedbiaslimit size.

• Whentheinterval coveragesarecompared,UADD providesa
morepreciseestimateof theinterval size (rangeof 98% to
100%) as opposedto 93% to 100%for Uass(FiguresB.i to
B.4).

95.

96. a
0

RSS a

97
C

a,

A 00

A
A
A

A
A

A
~A

A

a ai a

0 4 8 12 16 20 24 28 32
Sample Size

Fig. B-3 ~ and Uasssensitivity to variation

in samplesize.

NOTES:
1. ~ 0500 ~

2. ———
0

Rss eanq~

Fig. B-4 UADD and URSS sensitivity to bias / precision
error ratio.

• UA~is largerthan URSS. The averageratio of the ~
intervalsizeto URSainterval sizeis 1.35:1.

The Simulation Procedure

1. Measuredvalues,X = b
1

+... +bN +e~+.... +E~were
generated.The b~’sare randomly generatedbias errors
generatedfrom N distributions(rectangularornormal)and
the ci’s are randomly generatedprecisionerrorsfrom the
normaldistribution.Themeansof thedistributionswereall
zero.Theprecisionindiceswereinput asabove.

2. N random samplesof size n
1

,..., ~N were drawn from
normaldistributions,i = 1 N.

3. Thestandarddeviationsof theN distributions,the Welch-
Satterthwaitedegreesof freedom and the U~I~Dand UJ~~
uncertaintyintervalswerecalculated.

4. It wasdeterminedwhether

(X — URSS) � 0 ~ (X + URSS)

(X — UAOD) � 0 � (X + UADD)

The percentof timesthe interval covered0 was calculatedfor
500 cases.The resultsare shownon FiguresB.1, 2, 3 and 4.
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