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ABSTRACT

Submerged Flow at an Open Channel Gate

by

Glen O. Ames, Master of Science
Utah State University, 1999
Major Professor: Dr. Roland W. Jeppson
Department: Civil and Environmental Engineering

Two types of flow may exist at an open channel gate: free and submerged. In
free flow, the gate creates a subcritical upstream depth, a supercritical jet depth, and, if
the channel continues with a mild slope, a tailwater depth that is preceded by a hydraulic
Jjump. In submerged flow, the momentum function associated with the tailwater depth
becomes greater than the momentum function associated with the jet. which causes the jet
to become submerged under a swirling roller. Submerged flow is controlled by the
upstream depth, the gate opening, and the downstream submergence depth, whereas free
flow is only controlled by the upstream depth and the gate opening.

The focus of this study is limited to submerged flow. Free flow is examined, but
only as a precursor to submerged flow. For example, the special energy and momentum
equations are developed for free flow, then modified for submerged flow.

The special specific energy equation is used to predict submerged flow. The

development of the equation consists of equating the upstream specific energy to the
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downstream "special” specific energy. The upstream specific energy is the sum of the
upstream depth and the upstream velocity head. The downstream special specific energy
is the sum of the downstream submergence depth (consisting of the jet depth and the
overlying roller) and the velocity head for the jet. Comparison of computed and
measured flows shows agreement to within 1.6%, without a correction coefficient.

The special momentum equation is used to model the flow downstream of the
gate, where the jet dissipates and the water surface rises from the submergence depth to
the tailwater depth. This development of the special momentum equation is
accomplished by equating the special momentum function (submergence depth in the
hydrostatic term and jet depth in the dynamic term) to the momentum function associated
with the tailwater depth. A coefficient of momentum multiplies the tailwater depth,
which accounts for two- and three-dimensional flow effects. Using the value of 1.0 for
the coefficient gives agreement to within 2.1%, between computed and measured depths.
With a coefficient equal to 1.015, the difference between computed and measured depths
is lowered to 1.2%.

(80 pages)
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CHAPTERI

INTRODUCTION

Water is critical to the well-being of mankind because of its large scope of use.
Food production, animal habitat, municipal and industrial use, recreation and lemonade
are only a few of its benefits. Water is as important as the sun itself for the sustenance of
life on earth. As the human population grows, demand for water grows with it, and local
demand often exceeds local supply. Therefore, it is important to measure water
accurately for fair allocation.

Man-made water distribution systems utilize pipes and open channels, and the
flow may be measured in either case. Open channel measurement has been performed in
a variety of ways. as shown in Table 1. Methods range from floating soda cans to
ultrasonic metering, and there is a large range of costs and accuracies. Some of the
methods employ portable devices and others use permanent structures. Some may be left
alone for a period of time, as they take continuous readings. while others require that an

operator be present to take the readings manually.

Table 1. Measurements methods for open channel flow

Observation Pitot Tube Flume

Floating Object | Propeller Meter Weir

Dye Injection | Ultrasonic Meter| Salt Dilution
Radioisotope  |Deflection Meter| Salt Velocity
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Gates are the structures which control flow and depth in open channel distribution
systems, while the flow is typically measured separately with weirs, flumes, etc. Cost
may be reduced, however, if the gate is used for both control and measurement. The
trade-off may be lower accuracy in flow data. To use a gate for flow measurement, it is
typically calibrated using hydraulic theory coupled with field data analysis specific to
each gate. This study seeks standard equations that accurately model submerged flow
and key depths, without the need for calibration.

Often in water delivery, a series of gates is used to control flows and keep depths
large enough to divert water into the turnout structures between these gates. When this
occurs, the downstream flow will probably submerge the gate bottom. causing
"submerged flow". In this case, a jet of water flowing from under the gate is submerged
by a depth of water which has a near zero net movement, because it is swirling. Another
condition. which may exist immediately downstream from the gate, is called "free flow."
This is where the jet of water has a free surface. Therefore, there are two types of flow
that may occur at an open channel gate: free and submerged. If the gate bottom is above

the water surface, the flow is unaffected. These conditions are shown in Figure 1.

unaffected

Figure 1. Submerged flow, free flow, and unaffected flow.
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Table 2 and Figure 2 show the depths involved in both flow types. The depth

upstream of the gate is Yu. The gate opening, Yg, is related to the jet, Y], through the
gate contraction coefficient, or Yj=CcYg. For submerged flow, the submergence depth,
Yd, overrides the jet. For free flow, the downstream depth increases along an 'M3'
gradually varied flow profile to the depth, Y2, immediately upstream from a hydraulic
jump. The downstream tailwater depth, Yt, is controlled by downstream conditions.

This study focuses on submerged flow, although it is helpful to understand free
flow. because it has some characteristics similar to submerged flow. Both flow
conditions have an upstream depth, a jet depth, and a tailwater depth. Free flow is
controlled by Yu and Yg, whereas submerged flow is also affected by Yd. The visual

difference between the two flow types is that the jet is submerged for submerged flow.

Table 2. Free flow vs. submerged flow

Free Flow Submerged Flow
Depths: Yu, Yg, Yj, Y2, Yt Depths: Yu, Yg, Yj, Yd. Yt
Yj has a free surface Yj is submerged under Yd
Flow controlled by Yu and Y] Flow controlled by Yu, Yj and Yd
-
_
Yu
t 1 XYd ¥t
va| | K
Yj Y2 Yg Vi
Free Flow Submerged Flow

Figure 2. Free flow vs. submerged flow.
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The flow will change from free to submerged when the downstream momentum
function is larger than the special momentum function, which is computed from the jet
depth and the submergence depth (Jeppson, 1994).

Flow past the gate is accelerated rapidly, and the curvature of the streamlines is
too large to ignore; therefore, the classification of both flows is "rapidly varied flow"
(RVF). The methods of one-dimensional hydraulics have usually been complemented
with experimentally determined coefficients to cormrect for two- and three-dimensional
effects on RVF flow patterns. Better theory can be developed using two-dimensional, or
three-dimensional formulations (Jeppson, 1994).

The purpose of this thesis is to develop a set of one-dimensional equations that are
accurate enough to calculate submerged flow and depth to within 5% accuracy. This will
be accomplished by examining the control volume of fluid in the vicinity of the gate, and
developing the necessary equations using one-dimensional conservation of energy,

momentum. and mass.



CHAPTERII

OPEN CHANNEL GATES

Open channel gates may be classified as: overflow, underflow, or both over and
underflow. The most common underflow gates are: vertical (sluice), radial (Tainter), and
drum.

Both overflow and underflow gates control flow and depth. However, the
upstream depth is more closely related to the height of an overflow gate while underflow
gates are best for flow control. Both types serve a variety of purposes. They appear at
channel entrances from reservoirs, at crests of overflow spillways, and in the channels
themselves. as in-line or turnout structures.

The choice of gate depends on many factors, and each gate has its own
advantages. The vertical gate, for example, requires a roller and track assembly which
transmits thrust to the sidewalls. The Tainter gate requires structural strength where the

thrust is concentrated at the hinge (Henderson. 1966).

Figure 3. Open channel gate types.
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Variations of these gates exist, and have been developed for such purposes as to
automatically adjust their positions to keep constant upstream depths or constant
downstream depths, by the use of floats attached to the gate. Three of these gates are the
AMIL, AVIS, and AVIO gates, which were developed by French engineers from the
NEYRTEC company. The AMIL gate is designed to maintain a constant upstream
depth, and uses a float on the upstream face of the gate leaf to adjust the gate's height.
The AVIS and AVIO gates are designed to maintain a constant downstream depth by
means of a float attached downstream from the gate's axis of rotation (Jeppson, 1994).
These gates are shown in Figure 4.

The treatments in the following chapters deal specifically with flow past vertical
gates because they are most common. However, when the conditions are similar to those
described for other gates, then these results can be used for other gate types. These basic
conditions are that the fluid exits the gate as a jet that flows under the downstream flow
with an overriding roller, and that submergence depth immediatelv downstream from the
gate is less than the tailwater depth further downstream. This difference is caused by the

dissipation of the jet (Jeppson, 1994).

Mé

Figure 4. Depth-controlling french gates.



CHAPTER III

DEVELOPMENT OF THE EQUATIONS

Background

The mathematical equations which model fluid flow are developed through the
use of principles of fluid mechanics. The three fundamental principles are: conservation
of mass, conservation of energy, and conservation of momentum. Another important
principle is Newton's second law of motion, as applied in fluid mechanics. This chapter
shows the development of the special specific energy and special momentum equations
through the use of these principles. In addition, this chapter shows the equation which
represents the combination of these equations, and the equation which describes the

contraction of the jet.
Energy

The energy contained in fluid flow at an open channel gate will now be examined.
First, it is assumed that the flow is incompressible, i.e., the fluid density does not change.
Second, the flow is assumed to be steady-state (unchanging with time). Third, the energy
loss at the gate is assumed to be negligible.

The analysis begins with the Euler equation, ;%(P +yZ)+pas =0, where
P=pressure, y=specific weight, Z=elevation, p=density. a=acceleration in the 's' direction.
Assuming steady flow, the equation becomes: E%(P+yZ) + pv% =0, where v=velocity. If
this equation is integrated with respect to direction, the Bernoulli equation is obtained:

P+yZ+ipv2=C.or §+Z+%=C, where C=constant.
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All units in the Bernoulli equation are in terms of length, which is equivalent to

energy per unit weight. This dimensional analysis is shown below.

2
.2 LZ
Kinetic Energy %massxVeloctty V2 _a -
Weight ~~  massxgravity ~ 2g % = length
t
£
Energy _ PressurexAreaxDistance _ P_ 12 — length
Weight — Weight —y T E "l

'Z' is already in terms of length because it represents potential energy due to elevation.

Assume that C = H (total head), or -;3 +z+ % =H.

Applying this equation across the gate, assuming no energy loss gives:

j2]
Py V%_PI ;l
FHzut =7z o

Now, let fluid depth = piezometric head, ¥ =$+Z. This results in the following

"specific” energy equation:

Since V= %, and Q. = ¥, (conservation of mass, or continuity), then:

2 _y @
Y,,+2gA5—Yj+2gA}.

For a trapezoidal cross section (see Figure 5), where 4 = bY + mY? the specific
energy equation becomes:

0’ %5

Yy +———————=Y;+——
Y 2geremyt)2 T T 2g(be Y)Y’

where bg is the gate width.
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For a rectangular cross section (see Figure 6), where 4 = bY and g = Q/b (flow

per unit width), the equation becomes:

2
Yo+ ==Y+
“ogrz T agp?

Rearranging the equation to isolate flow yields Equation 3.1.

V.Y, 28(Tu-1,)
q= —
VYt G.1)

Equation 3.1 applies to free flow at an open channel gate. [t represents

conservation of energy between positions | and 2. [t is assumed that the energy loss
across the gate is negligible. Figure 7 shows the free flow diagram. Yu is the upstream
depth. Yg is the height of the gate opening, Yj is the jet depth measured at the lowest
point. M3 is the gradually varied profile (GVF) curve which leads to the alternate depth,

Y2. and the depth Yt follows the hydraulic jump.

\_ o /

H
N

Figure 5. Trapezoidal cross section.



Figure 6. Rectangular cross section.

]
Yu /
M3 Yt
el |y |y2

Figure 7. Free flow.




11

/ ~ 7 vd Yt
v \ r_/
g Vi '
| 2 3

Figure 8. Submerged flow.

For submerged conditions (see Figure 8), Yd represents the submergence depth

against the downstream side of the gate and Yj represents the jet depth. To modify the
specific energy equation for submerged conditions, Yd remains in the static term, but the

jet depth is placed in the dynamic term. Assuming there is negligible energy loss for the

fluid in the jet, the following "special" specific energy equation is produced:

Static Dynamic Static  Dynamic

2 2
Vi+——==Ys+-1.
“Togr; T 4T 2

Rearranging to isolate flow on one side of the equation yields:

Y.Y; 2g(Y—T2) (3.2)
q =

This equation applies to submerged flow at an open channel gate. It represents
conservation of energy between positions 1 and 2. Yuand Yd may be measured with
staff gauges installed in the channel bank, and Yj is equal to the gate opening multiplied
by Cc. Thus, the most practical application of Equation 3.2 is to calculate flow, q.

Verification of this equation is found in Chapter V.



12
Momentum

Now, we will examine the flow between positions 2 and 3, where the depth Yt is
introduced. If the flow is free, there will be a hydraulic jump downstream, but in the case
of submerged flow, the jet from under the gate causes a modest increase in depth to
occur. The downstream tailwater depth, Yt, is larger than the depth, Yd, which overrides
the jet.

In the field, it is more practical to measure Yt than Yd. Therefore, there are now
two unknowns: q and Yd. Since there are two unknowns, there must be two independent
equations to solve the problem. However, another energy equation may not be used
between positions 2 and 3 because there is an unknown energy loss at this portion of the
flow. The use of momentum theory is valuable when there is energy loss, forces control
the direction or conditions associated with fluid motions, or when it is not possible to
explain what is happening to the fluid on a microscopic level, but a large control volume
of fluid is possible (Jeppson, 1994).

Since this is a case where there is energy loss, a momentum equation will be used
to describe the flow between positions 2 and 3. Let m represent the momentum function
per unit width, M/b. The momentum function is obtained by examining a hydraulic jump
between positions 2 and 3. Move a short distance downstream and upstream of the jump,
remove the fluid outside the boundary, and replace it with equivalent forces, as shown in

Figure 9.
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bt
pQVI — ,
Qvi ¥ v sum W R L
pRY) ” <—WY Y
ThoA >0 ' .

Figure 9. Momentum principle at a control volume.

The hydrostatic forces equal yhcA, where hc is the depth to the centroid of the
cross sectional area, The momentum fluxes equal pQV, where p is the density of the
fluid. The difference in hydrostatic forces (upstream minus downstream) must equal the
difference in the momentum fluxes (downstream minus upstream), which gives:

Yhgd; —Yhad, =pQV:-V}).

Dividing by y and substituting V=Q/A gives:

Assuming the bed width does not change, the equation becomes:

Static Dynamic
2 2
_Fn_ q_z.(L L
2 2 g\Y, ¥;

Assuming there is no net motion in the fluid above Y], the equation is modified
for submerged flow by replacing Yj with Yd in the static term. This results in the

following "special" momentum equation:
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Equation 3.3 applies to the section between positions 2 and 3, in a rectangular
channel with constant bed width. Rearranging the equation to solve for flow yields a

simplified form.

_ ghrari-ry)
9= 4 2r1) (3.3)

Transition from Free Flow to Submerged Flow

A transition from free flow to submerged flow occurs when the momentum

2 2
function associated with the tailwater depth, %- + q—y, becomes equal to or greater than
gl
. R i 2
the momentum function of the jet, - + -"7 (Jeppson, 1994). Therefore, for a rectangular
s g fi

channel, submerged flow will exist at the gate if:

The momentum function for a trapezoidal channel is defined as the following:

2 3 2
M= +25) + 5.

In this case of a trapezoidal channel, the momentum function for the jet contains
both trapezoidal and rectangular geometry because the upstream section is trapezoidal
and the jet assumes the rectangular shape of the gate opening, as shown in the equation
below. The flow will become submerged if the left side of the equation becomes equal to
or greater than the right side of the equation.

< 2
bi¥] | omi¥ls QP beli @2 | ) :
(—+5)+5( Y,Z) 2 ==+ < ( baT, ), where bg is the gate width.

b I3 Y,+m T
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Boiten (1992, p. 8) wrote, "The limit at which the hydraulic jump will submerge
the free jet is called the modular limit." He uses the following equation to describe the

limit mathematically:

Y, C. Yu
E=TH1+16(%—1) -1}.

This equation is useful since only depths are involved, which allows for any cross

section. Figure 10 shows the graphical representation of the equation. The value of
Cc=0.611 is used for a sharp-edged gate, where the edge diameter is zero (d=0). The

value of Cc=0.990 is used for a rounded edge, where d > 4.7*Yg .

: 10
-, / -
: - Q
i Back Flow / Submerged Flow =97
f 8 i
? 6
Y]
s
=
; 4
i 3
: 2
1
0 P S S S S S S
0 2 4 6 8 10 12 14 16 18 20 2
Yl/Yg

Figure 10. Modular limit.
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Combination
Since the special specific energy and special momentum equations have the flow
term isolated on the left side, they may be combined into a quadratic equation, which

eliminates flow and gravity in the equation.

Y(Y2-Y; (Y=Y, ?)
av2Y,(Y,~Y))

+Y4—-Y,=0 (3.4)

The variables in Equation 3.4 are the four depths associated with submerged flow.
The equation incorporates the conservation of energy, momentum, and mass. It may be
used to find any of the four depths, although it is more practical to use it for the
calculation of Yu. The depths Yd and Yt may be measured with staff gauges, and Yj is
found by multiplying the gate opening by the coefficient of contraction. Equation 3.4

will be tested for validity in Chapter V.

Contraction

Assuming no energy loss in the fluid at the gate, specific energy will not change
across the gate. Henderson (1966) explains that for a given specific energy and flow,
there are two possible depths in the channel. These are called "alternate” depths, and for
this case they would be Yu and Yj. Since Yj<Yu, the velocity of the jet must be greater
than the upstream velocity for the specific energies to be equal.

As the water flows from the sharp-edged gate opening, the jet contracts to a
minimum section, known as the vena contracta. This occurs at a distance roughly equal

to Yg from the gate (Rajaratnam and Subramanya, 1967). When the cross sectional area
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decreases, the streamlines in the moving fluid get closer together in order to fit through
the gate opening (see Figure 11). The lower streamlines are somewhat parallel with the
direction of flow, while the upper streamlines are at a steeper angle. The angle of these

upper streamlines causes the fluid to contract as it emerges from the opening.

—

Boundary Steamline

/ Vena
Contracta

_\_—

Figure 11. Jet contraction from streamline curvature.

The coefficient of contraction will be defined as a fraction of the gate setting. For
example. if the gate setting is 10 inches, and the coefficient of contraction is 0.6. then the
jet depth is equal to 6 inches. It is convenient to substitute the expression CcYg in lieu of
Yj throughout the flow equations. The value of Cc depends on the orifice through which
the fluid exits. Potential flow theory has produced a value of 0.583 for Cc, for a
two-dimensional slot, and Henderson (1966) shows a range of Cc from 0.611 to 0.598 for
given Yg/Yu ratios.

Cc should not be completely constant for a sharp-edged channel gate. Woycicki

(1934) experimentally determined that Cc equals a constant plus 0.04 multiplied by the
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ratio of gate setting to upstream depth. It makes sense that Cc varies with the ratio
Yg/Yu because the greater the difference between the two depths, the more contraction
there should be. By using 0.583 as the lower limit, and adding the variation due to the

head difference across the gate, the following equation is produced.
Ce =0.583+0.04;% 3.5)

To see how this equation behaves, imagine an infinite depth, Yu. The value of Cc
will be 0.583, as the ratio approaches zero. Because the upper streamlines are coming
down from a steeper angle, the fluid contraction will be strong. On the other hand, if the
upstream depth decreases to the point that it almost equals the gate opening, the
coefficient approaches a value of 0.623. For radial gates, the coefficient of contraction

would also vary with its radius, r (Jeppson, 1994).

General Equations

Equations 3.2, 3.3, and 3.4 may only be used for open channels which have a
rectangular cross section, but most channels actually have a trapezoidal cross section
because there is greater stability on the side slopes. An equation for a trapezoidal
channel may be used for a rectangular channel if the side slope, m, is equal to zero.
Therefore, the general equations will be presented in trapezoidal form. Also, it is

convenient to set the equations equal to zero, when solving for variables.



Special specific energy equation between positions 1 and 2:

2
Y, - v, +2- ! _—L .0
2g (b Yutm, Y2)? (beY))?

Special momentum equation between positions 2 and 3:

e R
g (sz,+mzY,2) (b))

1h2(Yi— Y, )+ 3ma(Vy - YO+

Combination equation between positions 1 and 3:

Y(Yi-¥; (¥, 2-Y4 2
AY2V[(Y,-Y))

CoefTicient of contraction:

Y,
C.=0.583 +o.o47g

u

Jet depth:

Y
Yj = ¥g(0.583 + 0.04Y—g)

19

(3.6)
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CHAPTER IV

LITERATURE REVIEW

There are many authors who have studied submerged flow at an open channel
gate. Some of these include Henry (1950), Dirkzwager (1958), Henderson (1966).
Garbrecht (1980), Kolkman (1989), Boiten (1992), and Jeppson (1994). The flow
equations are as varied as the authors themselves, and this chapter will briefly discuss
some of them.

Boiten claims that the most common equation for submerged flow is:
Q= C2Yb /2gY, , where C2 is found from Figure 12 by Kolkman (1989). Kolkman

computed values of C2 that agree well with measurements by Henry. Values for C2 may
range between 0 and 1.0, depending on the degree of submergence. This equation differs
from Equation 3.2 in that the head difference, Yu-Yd. is neglected in the radical term.
The explanation why Kolkman's equation gives reasonable estimates for Q is that C2

accounts for the head difference, as seen in Figure 12.
Another equation is: @ =Cl1 ng,/2g(Yu —Y,). where Cl is a function of YwYg,

Yt. and the bottom edge shape. Values for C1 may range as follows: 0.8 <C1 < L.5.

Another equation. presented by Garbrecht, is based on experiments with a
sharp-edged gate, and is written as follows: QO =0.635Y,6/2g(Y, —Y,). This equation,

which uses a coefficient of 0.635, may only be used for sharp-edged gates.

The flow equation by Dirkzwager is similar to the equation by Kolkman, and is
written as follows: Q = CsCdYgb [2gY, . Cd is the flow coefficient for free flow, and Cs

is the coefficient of submergence, which depends on YwYg, Yt/Yg and the contraction

coefficient, which equals 0.611.
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is the coefficient of submergence, which depends on YwYg, YV/Yg and the contraction

coefficient, which equals 0.611.

Boiten recommends the equation by Kolkman for three reasons. The equation
agrees well with theoretical expressions and experimental data, all gate bottom shapes are
accommodated, and the measurement of downstream head, Yt, is feasible. (Boiten, 1992).
The approximate error using this equation to calculate flow is 10%, as opposed to the

percent difference of Equation 3.2, which is around 1%.

computed
measured

Figure 12. Flow coefficient for submerged 2-D flow through a sharp-edged gate.
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CHAPTER V

VERIFICATION OF THE EQUATIONS

Equations 3.2, 3.3, 3.4, and 3.5 will be verified by calculating a variable, while
using measured values for the other variables, then checking against the measured value.
The writer's goal is to calculate results that are within 5% of past reported measured
values, before resorting to calibration.

Table 3 shows laboratory data taken from the report by Rajaratnam and
Subramanta (1967). The experiments were conducted in a recirculating flume, 18 inches
wide, 36 inches deep, and 16 feet long. The flume had a smooth aluminum bed and
vertical side walls of Plexiglas. The sluice gate was an aluminum plate, 0.25 in. thick,
with a sharp lower edge. The flow entered a head tank, and the tailwater was controlled
by means of another sluice gate located at the downstream end of the flume. The depths
Yu and Yd were measured on a manometer board, and Yt was measured with a precision
point gage. The flow was measured using a commercial orifice-meter located in the
supply line (Rajaratnam and Subramanya, 1967).

For each gate setting, Yg, there are multiple experiments, which include the
upstream depth, Yu, the downstream depth, Yd, the tailwater depth, Yt, and flow, q.
Notice that for a given flow, there may be multiple sets of depths. This is predicted by
Equation 3.2, which states that submerged flow is controlled by the depth difference. The
experiments in italics show the same difference (Yu-Yd) of 0.367 ft and the same

flowrate of 0.735 cfs/ft.



Table 3. Measured laboratory data (Rajaratnam and Subramanya,1967)

Yg Yu Yd Yt q
ft ft ft ft cfs/ft
0.25 1.217 0.867 0.930 0.735
0.25 1.550 1.183 1214 0.735
0.25 1.808 1.433 1.473 0.735
0.25 2.025 1.650 1.676 0.730
0.25 2.475 2,125 2.140 0.723
0.25 1.200 0.833 0915 0.735
0.25 2.092 1.450 1.535 0.950
0.25 2.608 1.975 2.030 0.937
0.25 1.992 1.354 none 0.945
0.25 1.704 1.071 1.183 0.955
0.25 1.500 0.858 0.996 0.960
0.25 1.308 0.675 0.845 0.960
0.25 1.158 0.529 0.742 0.960
0.25 1.042 0.400 0.675 0.960
0.50 0.650 0.525 0.590 0.965
0.50 0.883 0.742 0.817 0.965
0.50 1.100 0.942 1.008 0.965
0.50 1.425 1.267 1.308 0.965
0.50 1.158 1.000 1.058 0.962
0.50 1.633 1.475 1.490 0.950
0.50 0.725 0.596 0.663 0.965
0.33 1.017 0.600 0.785 1.035
0.33 0.800 0.400 0.620 1.035
0.33 142 0.725 0.878 1.035
0.33 1.592 1.175 1.271 1.025
0.33 1.883 1.438 1.533 1.025
0.17 2,133 1.108 1.248 0.811
0.17 2.608 1.633 1.720 0.805
0.17 1.608 0.558 0.813 0.823
0.17 1.225 0.417 0.685 0.710
0.17 0.583 0.175 0.404 0.523
0.17 0.725 0.242 0.477 0.518
0.08 1.100 0.360 0.496 0.341
0.08 1.508 0.767 0.841 0.341
0.08 1.725 0.850 0.910 0.374
0.08 2.467 1.617 1.642 0.374
0.08 3.508 1.017 1.190 0.640

23



24

(3.2)
[r2-p?
Ce =0.583 +0.04,% 3.5)

Equation 3.2 represents conservation of energy between positions | and 2, and
is used to calculate q as a function of Yu, Yj, and Yd. [t will be verified by comparing
calculated flows with measured flows. Equation 3.5 will be verified at the same time by
replacing Yj with CcYg.

Table 4 shows the results of the verification process. The first three columns
contain original lab data from Table 3. The fourth column, Yu-Yd, is used for Equation
3.2. The fifth column shows Cc, as calculated by Equation 3.5. The sixth column
calculates jet depth by using Yj=CcYg. The seventh column contains the measured
laboratory flows from Table 3. The eighth column shows the calculated flows from
Equation 3.2. Finally, the last column shows the percent difference between calculated
and measured flows.

The calculated flows agree well with the measured flows, as seen in the last
column of Table 4, except for an outlier where the difference was 9.5%. Where q calc is
less than q lab, it is shown as a negative value. To find the average percent difference for
the entire experiment, all values were changed to absolute values, and then the average of
these was found. Table 5 summarizes the information regarding the accuracy of

Equations 3.2 and 3.5. The outlier is excluded from the difference calculations.



Table 4. Verification of equations 3.2 and 3.5
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Yg Yu Yd Yu-Yd Cc Yj qlab qcalc | % difference

ft ft ft ft ft cfs/ft cfs/ft 100(qc-ql)/q!
0.25 1.217 0.867 0.350 0.591 0.148 0.735 0.707 -3.8
0.25 1.550 1.183 0.367 0.590 0.147 0.735 0.720 -2.1
0.25 1.808 1.433 0.375 0.589 0.147 0.735 0.725 -1.3
0.25 2.025 1.650 0375 0.588 0.147 0.730 0.724 -0.8
0.25 2.475 2.125 0.350 0.587 0.147 0.723 0.698 -3.5
0.25 1.200 0.833 0.367 0.591 0.148 0.735 0.724 -1.5
0.25 2.092 1.450 0.642 0.588 0.147 0.950 0.947 -0.3
0.25 2.608 1.975 0.633 0.587 0.147 0.937 0.938 0.1
0.25 1.992 1.354 0.638 0.588 0.147 0.945 0.945 0.0
0.25 1.704 1.071 0.633 0.589 0.147 0.955 0.943 -1.2
0.25 1.500 0.858 0.642 0.590 0.147 0.960 0.952 -0.8
0.25 1.308 0.675 0.633 0.591 0.148 0.960 0.949 -1.2
025 1.158 0.529 0.629 0.592 0.148 0.960 0.949 -1.1
0.25 1.042 0.400 0.642 0.593 0.148 0.960 0.962 0.2
0.50 0.650 0.525 0.125 0.614 0.307 0.965 0.988 24
0.50 0.883 0.742 0.141 0.606 0.303 0.965 0.971 0.7
0.50 1.100 0.942 0.158 0.601 0.301 0.965 0.997 33
0.50 1.425 1.267 0.158 0.597 0.299 0.965 0.974 0.9
0.50 1.158 1.000 0.158 0.600 0.300 0.962 0.991 3.0
0.50 1.633 1.475 0.158 0.595 0.298 0.950 0.966 1.6
0.50 0.725 0.596 0.129 0.611 0.305 0.965 0.970 0.5
0.33 1.017 0.600 0417 0.596 0.197 1.035 i.039 04
033 0.800 0.400 0.400 0.600 0.198 1.035 1.036 0.1
033 1.142 0.725 0417 0.595 0.196 1.035 1.032 -0.3
0.33 1.592 1.175 0417 0.591 0.195 1.025 1.019 -0.6
0.33 1.883 1.458 0.425 0.590 0.195 1.025 1.024 -0.1
0.17 2133 1.108 1.025 0.586 0.100 0.811 0.811 -Q.1
0.17 2.608 1.633 0.975 0.586 0.100 0.805 0.789 -1.9
0.17 1.608 0.558 1.050 0.587 0.100 0.823 0.822 -0.1
0.17 1.225 0417 0.808 0.589 0.100 0.710 0.724 29
0.17 0.583 0.175 0.408 0.595 0.101 0.523 0.526 0.6
0.17 0.725 0.242 0.483 0.592 0.101 0518 0.567 9.5*
0.08 1.100 0.360 0.740 0.590 0.050 0.340 0340 -1.0
0.08 1.510 0.770 0.740 0.590 0.050 0340 0.340 -1.1
0.08 1.730 0.850 0.880 0.580 0.050 0370 0370 -2.1
0.08 2.470 1.620 0.850 0.580 0.050 0.370 0.360 -3.6
0.08 3.510 1.020 2.490 0.580 0.050 0.640 0.620 -3.7

*Qutlier Aveg =1.6%

Max =3.8%
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The percent differences are very small, since other authors claim average
differences of between 5% and 15% for submerged flow calculations (Boiten, 1992;
Rajaratnam and Subramanya, 1967). The accuracy of Equation 3.2 can be seen

graphically by plotting calculated flows against measured flows (see Figure 13).

Table 5. Accuracy summary for equations 3.2 and 3.5

Accuracy Information Eqns 3.2 & 3.5

Average Difference (%) 1.6
Minimum Difference(%) 0.0
Maximum Difference (%) 3.8

Equation 3.2 Accuracy

—
N

=
o
!

o
00

q calc (cfs/ft)

O o
+ 0)

0.4 0.6 0.8 1.0 1.2
q lab (cfs/ft)

©
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Figure 13. Accuracy of equation 3.2.
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The hollow points represent calculated flows, which should fall on the 45-degree

line if they agree perfectly with measured data. Points above the line were overestimated
and points below the line were underestimated. Note that there is good agreement

through the entire range of flows.

2ACn YY) 3.3)

_ J g¥,Cn¥{(Cmi¥,)2=12)

Equation 3.3' represents conservation of momentum between positions 2 and 3,

and is used to calculate tailwater depth as a function of jet depth, downstream depth, and

flow. It is different from Equation 3.3 because a coefficient of momentum multiplies

tailwater depth. The coefficient is assumed to account for two- and three-dimensional

flow effects. Equation 3.3' will be verified by comparing calculated and measured depths
of the tailwater.

Table 6 shows the results of the verification process, using a value of 1.0 for the
coefficient of momentum. The first three columns contain measured laboratory data.
The fourth column shows the coefficient of contraction, as calculated by Equation 3.5.
The fifth column calculates jet depth using Yj=CcYg. The sixth column contains
measured flows. The seventh column shows the measured tailwater depths. The eighth
column shows the calculated values for tailwater depth, using Equation 3.3'. Finally, the

last column shows the percent difference between the calculated and measured tailwater

depths.



Table 6. Verification of equation 3.3' (Cm=1.0)
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Yg Yu Yd Ce Yj q Yt lab Yt cale % error
ft ft ft ft ft cfs/ft ft ft 100(Yte-Ytl)
{Cm=1.0) Yt
0.25 1.217 0.867 0.591 0.148 0.735 0.930 0.957 29
0.25 1.550 1.183 0.590 0.147 0.735 1.214 1.246 2.7
0.25 1.808 1.433 0.589 0.147 0.735 1473 1.481 0.5
0.25 2.025 1.650 0.588 0.147 0.730 1.676 1.686 0.6
0.25 2.475 2.125 0.587 0.147 0.723 2.140 2.141 0.0
0.25 1.200 0.833 0.591 0.148 0.735 0.915 0.927 1.3
0.25 2.092 1.450 0.588 0.147 0.950 1.535 1.542 0.4
0.25 2.608 1.975 0.587 0.147 0.937 2.030 2.030 0.0
0.25 1.704 1.071 0.589 0.147 0.955 1.183 1.201 L3
0.25 1.500 0.858 0.590 0.147 0.960 0.996 1.019 2.3
0.25 1.308 0.675 0.591 0.148 0.960 0.845 0.869 29
0.25 1.158 0.529 0.592 0.148 0.960 0.742 0.758 23
0.25 1.042 0.400 0.593 0.148 0.960 0.675 0.670 -0.8
0.50 0.650 0.525 0.614 0.307 0.965 0.590 0.593 1.4
0.50 0.883 0.742 0.606 0.303 0.965 0.817 0.807 -1.2
0.50 L.100 0.942 0.601 0.301 0.965 1.008 0.996 -1.2
0.50 1.425 1.267 0.597 0.299 0.965 1.308 1.305 -0.2
0.50 1.158 1.000 0.600 0.300 0.962 1.058 1051 -0.7
0.50 1.633 1.475 0.595 0.298 0.950 1.490 1.503 0.9
0.50 0.725 0.596 0.611 0.305 0.965 0.663 0.668 0.8
0.33 1.017 0.600 0.596 0.199 1.035 0.785 0.769 -2.0
0.33 0.800 0.400 0.600 0.200 1.035 0.620 0.612 -1.3
0.33 1.142 0.725 0.595 0.198 1.035 0.878 0.874 -0.5
033 1.592 1.175 0.591 0.197 1.025 1271 1.270 -0.1
0.33 1.883 1.458 0.590 0.197 1.025 1.533 1.531 -0.1
0.17 2133 1.108 0.586 0.098 0.811 1.248 1252 0.3
0.17 2.608 1.633 0.586 0.098 0.805 1.720 1.722 0.1
0.17 1.608 0.558 0.587 0.098 0.823 0.815 0.819 0.5
0.17 1.225 0.417 0.588 0.098 0.710 0.685 0.658 -3.9
0.17 0.583 0.175 0.594 0.099 0.523 0.404 0.394 -2.6
0.17 0.725 0.242 0.592 0.099 0.518 0.477 0.428 -10.2*
0.08 1.100 0.360 0.586 0.049 0.341 0.496 0.506 2.0
0.08 1.508 0.767 0.585 0.049 0341 0.841 0.840 -0.1
0.08 1.725 0.850 0.585 0.049 0374 0.910 0.930 22
0.08 2.467 1.617 0.584 0.049 0.374 1.642 1.645 02
0.08 3.508 1.017 0.584 0.049 0.640 1.190 1.221 26
*Qutlier Avg =2.1%

Max =4.5%
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The calculated depths are slightly higher the measured depths for much of the

data. Where Yt calc is less than Yt lab, it is shown as negative. To find the average
percent difference for the entire experiment, all values were changed to absolute values,
then, the average of these was found. Table 7 summarizes the information regarding the
accuracy of Equation 3.3' with Cm=1.0. The accuracy of Equation 3.3' can be seen

graphically by plotting the measured depths against the calculated depths (see Figure 14).

Table 7. Accuracy summary for equation 3.3' (Cm=1.0)

aa

Accuracy [nformation Equation 3.3
(Cm=1.0)

Average Difference (%)
Minimum Difference (%)
Maximum Difference (%)

=
[ 0 T

Equation 3.3' Accuracy
Cm=1.0
2.5
2
E15s
9
©
Q
- 1 f
-9
0.5
0 0.5 1 1.5 2 2.5
Yt lab (ft)

Figure 14. Accuracy of equation 3.3' (Cm=1.0).
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The points represent calculated depths, and they should fall on the 45° line if there

is perfect agreement with measured depths. Note that the points fall very close to the
line. This means that the equation modeled the depth, Yt, fairly accurately by using a
coefficient equal to unity. Points above the line represent overestimated depths.

Since Equation 3.3' was developed from a basic principle of fluid mechanics
(conservation of momentum), it incorporates enough theory to account for most of the
two- and three-dimensional flow effects at the gate. However, at greater depths, the
calculated depths are slightly overestimated.

To correct for two- and three-dimensional flow effects, the writer decided to seek
the value for the coefficient of momentum, Cm, that would minimize the average percent
difference. This was accomplished through a trial and error method. For a range of 0.97
to 1.06. the average percent difference for all the data was calculated, and then the results

were placed in Figure 15. The average percent difference is defined as:
22 |« 100

Ytc and Ytl are the calculated and measured depths, respectively. The number of
data sets is represented by n.

Figure 15 indicates that Cm should equal 1.015 in order to minimize the percent
difference for this data. It is recommended that other gates, such as drum or radial gates,
be used in laboratory experiments to check the value of 1.015. Table 8 shows the percent
differences using equation 3.3', when Cm=1.015.

By using Cm=1.013, the calculated depths are closer to the measured depths.

Where Yt calc is less than Yt lab, it is shown as a negative value. To find the average
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percent difference for the entire experiment, all of the values were first changed to
absolute values, then the average of these was found. Table 9 summarizes the
information regarding the accuracy of Equation 3.3', using Cm=1.0 and 1.015. The
outlier is excluded from the difference calculations.

Changing the value of Cm from 1.0 to 1.015 reduces the average, minimum, and
maximum differences However, the calibration technique of finding Cm can be

laborious, and the percent difference with Cm=1.0 is only 2.1%.

Cm vs. % Difference

using equation 3.3

% Difference

2 —

0.970 0.985 1.000 1.015 1.030 1.045 1.060
Coefficient of Momentum

Figure 15. Finding the coefficient of momentum.



Table 8. Verification of equation 3.3' (Cm=1.015)
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Yg Yu Yd Cc Yj q Yt lab Yt calc % error
ft ft ft ft ft cfs/ft ft ft 100(Ytc-Ytl)
(Cm=1.015) Yu
0.25 1.217 0.867 0.591 0.148 0.735 0.930 0.957 29
0.25 1.550 1.183 0.590 0.147 0.735 1.214 1.246 27
0.25 1.808 1.433 0.589 0.147 0.735 1.473 1.481 0.5
0.25 2.025 1.650 0.588 0.147 0.730 1.676 1.686 0.6
0.25 2,475 2.125 0.587 0.147 0.723 2.140 2.141 0.0
0.25 1.200 0.833 0.591 0.148 0.735 0915 0.927 1.3
0.25 2.092 1.450 0.588 0.147 0.950 1.535 1.542 0.4
0.25 2.608 1.975 0.587 0.147 0.937 2.030 2.030 0.0
0.25 1.704 1.071 0.589 0.147 0.955 1.183 1.201 1.5
0.25 1.500 0.858 0.590 0.147 0.960 0.996 1.019 23
0.25 1.308 0.675 0.591 0.148 0.960 0.845 0.869 29
0.25 1.158 0.529 0.592 0.148 0.960 0.742 0.758 23
0.25 1.042 0.400 0.593 0.148 0.960 0.675 0.670 -08
0.50 0.650 0.525 0.614 0.307 0.965 0.590 0.598 1.4
0.50 0.883 0.742 0.606 0.303 0.965 0.817 0.807 -1.2
0.50 1.100 0.942 0.601 0.301 0.965 1.008 0.996 -1.2
0.50 1.425 1.267 0.597 0.299 0.965 1.308 1.305 0.2
0.50 1.158 1.000 0.600 0.300 0.962 1.058 1.051 -0.7
0.50 1.633 1.475 0.595 0.298 0.950 1.490 1.503 0.9
0.50 0.725 0.596 0.611 0.305 0.965 0.663 0.668 038
033 1.017 0.600 0.596 0.199 1.035 0.785 0.769 -2.0
033 0.800 0.400 0.600 0.200 1.035 0.620 0.612 -13
0.33 1.142 0.725 0.595 0.198 1.035 0.878 0.874 -0.5
0.33 1.592 1.175 0.591 0.197 1.025 1.271 1.270 -0.1
033 1.883 1.458 0.590 0.197 1.025 1.533 1.531 -0.1
0.17 2.133 1.108 0.586 0.098 0.811 1.248 1.252 03
0.17 2.608 1.633 0.586 0.098 0.805 1.720 1.722 0.1
0.17 1.608 0.558 0.587 0.098 0.823 0.815 0.819 05
0.17 1.225 0.417 0.588 0.098 0.710 0.685 0.658 -39
0.17 0.583 0.175 0.594 0.099 0.523 0.404 0.394 -26
0.17 0.725 0.242 0.592 0.099 0.518 0477 0.428 -10.2*
0.08 1.100 0.360 0.586 0.049 0.341 0.496 0.506 20
0.08 1.508 0.767 0.585 0.049 0.341 0.841 0.840 -0.1
0.08 1.725 0.850 0.585 0.049 0374 0910 0.930 22
0.08 2.467 1.617 0.584 0.049 0374 1.642 1.645 0.2
0.08 3.508 1.017 0.584 0.049 0.640 1.190 1.221 26
*Qutlier Avg =1.2%

Max = 3.9%
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The accuracy of Equation 3.3' with Cm=1.015 can be seen graphically by plotting

the measured depths against the calculated depths (see Figure 16). The points represent
calculated depths, and they should fall directly on the 45° line if there is perfect

agreement with measured depths. The points fall closer to the line, with the new value of

1.015 for the coefficient of momentum.

Table 9. Accuracy summary for equation 3.3' (Cm=1.0, 1.015)

Accuracy Information Equation 3.3' Equation 3.3'
(Cm =1.0) (Cm =1.015)
Average Difference (%) 2.1 1.2
Minimum Difference (%) 0.2 0.0
Maximum Difference (%) 4.5 3.9

Equation 3.3' Accuracy
Cm=1.015
2.5
2
< 1.5
9
<
2
=
0.5
0
0 0.5 1 1.5 2 2.5
Yt lab (ft)

Figure 16. Accuracy of equation 3.3' (Cm=1.015).
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CmY(Y2-Y; 2Y(Cm¥1)?-Y4 ?)
4Y2Y(CmYi-Y))

+Ys—-Y,=0 G4

Equation 3.4' represents the combination of Equations 3.2 and 3.3'. It applies the
principles of conservation of energy, momentum, and mass between positions 1 and 3.
Its most practical application is the calculation of tailwater depth, since the upstream and
downstream depths may be measured with staff gauges, and the jet depth is calculated
from Yj=CcYg. This equation differs from Equation 3.4 because a "coefficient of
momentum" now multiplies the tailwater depth. The coefficient of momentum, Cm, is
assumed to account for two- and three-dimensional flow effects. Equation 3.4' will be
verified by comparing calculated values of tailwater depth to measured values of tailwater
depth.

Table 10 shows the results of the verification test using a value of 1.0 for the
coefficient of momentum, and Table 11 shows the results using 1.015. The first three
columns show laboratory data. The fourth column shows the coefficient of contraction.
The fifth column of Table 11 shows the calculated jet depth using Yj=CcYg. The sixth
column contains measured flows from Table 3. The seventh column shows the measured
tailwater depth from Table 3. The eighth column shows the calculated values for
tailwater depth, using Equation 3.1. The last column shows the percent difference
between the calculated and measured tailwater depths.

The calculated depths agree well with the measured depths in both cases, although
the use of Cm=1.015 helps a little, as in the case of Equation 3.3'. Where Yt calc is less

than Yt lab, it is shown as a negative value. To find the average percent difference for



Table 10. Verification of equation 3.4' (Cm=1.0)

(93

Yg Yu Yd Yu-Yd Ce Yj Yt lab Yt calc % error
ft fi ft ft Eqn. 3.5 ft ft ft 100(Yte-Yul)
(Cm=1.0) Yl
0.25 1.217 0.867 0.350 0.591 0.148 0.930 0.964 37
0.25 1.550 1.183 0.367 0.590 0.147 1.214 1.262 3.9
0.25 1.808 1.433 0.375 0.589 0.147 1.473 1.501 1.9
0.25 2.025 1.650 0.375 0.588 0.147 1.676 1.710 2.1
0.25 2475 2.125 0.350 0.587 0.147 2.140 2.170 1.4
0.25 1.200 0.833 0.367 0.591 0.148 0.915 0.938 25
0.25 2.092 1.450 0.642 0.588 0.147 1.535 1.564 1.9
0.25 2.608 1.975 0.633 0.587 0.147 2.030 2.061 1.5
0.25 1.704 1.071 0.633 0.589 0.147 1.183 1.215 2.7
0.25 1.500 0.858 0.642 0.590 0.147 0.996 1.031 3.6
0.25 1.308 0.675 0.633 0.591 0.148 0.845 0.878 3.9
0.25 1.158 0.529 0.629 0.592 0.148 0.742 0.765 KN
0.25 1.042 0.400 0.642 0.593 0.148 0.675 0.681 0.9
0.50 0.650 0.525 0.125 0.614 0.307 0.590 0.612 3.7
0.50 0.883 0.742 0.141 0.606 0.303 0.817 0.820 0.4
0.50 1.100 0.942 0.158 0.601 0.301 1.008 1.016 0.7
0.50 1.425 1.267 0.158 0.597 0.299 1.308 1.326 1.3
0.50 1.158 1.000 0.158 0.600 0.300 1.058 1.071 1.2
0.50 1.633 1.475 0.158 0.595 0.298 1.490 1.527 25
0.50 0.725 0.596 0.129 0.611 0.305 0.663 0.679 24
0.33 1.017 0.600 0.417 0.596 0.199 0.785 0.786 0.1
0.33 0.800 0.400 0.400 0.600 0.200 0.620 0.626 1.0
033 1.142 0.725 0.417 0.595 0.198 0.8378 0.889 12
0.33 1.592 1.175 0.417 0.591 0.197 1271 1.290 1.5
0.33 1.883 1.458 0.425 0.590 0.197 1.533 1.556 1.5
0.17 2133 1.108 1.025 0.586 0.098 1.248 1.264 1.3
0.17 2.608 1.633 0.975 0.586 0.098 1.720 1.740 1.1
0.17 1.608 0.558 1.050 0.587 0.098 0.815 0.821 0.8
0.17 1.225 0.417 0.808 0.588 0.098 0.685 0.668 225
0.17 0.583 0.175 0.408 0.594 0.099 0.404 0.394 25
0.17 0.725 0.242 0.483 0.592 0.099 0.477 0.459 -3.6*
0.08 1.100 0.360 0.740 0.586 0.049 0.496 0510 30
0.08 1.508 0.767 0.742 0.585 0.049 0.841 0.851 1.2
0.08 1.725 0.850 0.875 0.585 0.049 0910 0.940 33
0.08 2.467 1.617 0.850 0.584 0.049 1.642 1.666 1.5
0.08 3.508 1.017 2492 0.584 0.049 1.190 1.225 2.9
*Qutlier Avg =2.0%

Max = 3.9%

w



Table 11. Verification of equation 3.4' (Cm=1.015)

Yg Yu Yd Yu-Yd Ce Yj Yt lab Yt cale % error
ft ft ft ft ft ft ft 100(Ytc-Ytl)
(Cm=1.015) Yl
0.25 1217 0.867 0.350 0.591 0.148 0.930 0.950 2.1
0.25 1.550 1.183 0.367 0.590 0.147 1.214 1.243 24
0.25 1.808 1.433 0.375 0.589 0.147 1.473 1.479 0.4
0.25 2.025 1.650 0.375 0.588 0.147 1.676 1.685 0.5
0.25 2.475 2125 0.350 0.587 0.147 2.140 2.138 -0.1
0.25 1.200 0.833 0.367 0.591 0.148 0.915 0.924 1.0
0.25 2.092 1.450 0.642 0.588 0.147 1.535 1.541 0.4
0.25 2.608 1.975 0.633 0.587 0.147 2.030 2.030 0.0
0.25 1.704 1.071 0.633 0.589 0.147 1.183 1.197 1.2
0.25 1.500 0.858 0.642 0.590 0.147 0.996 1.016 2.0
0.25 1.308 0.675 0.633 0.591 0.148 0.845 0.865 2.4
0.25 1.158 0.529 0.629 0.592 0.148 0.742 0.754 1.6
0.25 1.042 0.400 0.642 0.593 0.148 0.675 0.671 -0.6
0.50 0.650 0.525 0.125 0.614 0.307 0.590 0.603 2.1
0.50 0.883 0.742 0.141 0.606 0.303 0.817 0.808 -1.1
0.50 1.100 0.942 0.158 0.601 0.301 1.008 1.001 -0.7
0.50 1.425 1.267 0.158 0.597 0.299 1.308 1.306 -0.2
0.50 1.158 1.000 0.158 0.600 0.300 1.058 1.055 -0.3
0.50 1.633 1.475 0.158 0.595 0.298 1.490 1.505 1.0
0.50 0.725 0.596 0.129 0.611 0.305 0.663 0.669 0.9
0.33 1.017 0.600 0.417 0.596 0.199 0.785 0.774 -1.4
0.33 0.800 0.400 0.400 0.600 0.200 0.620 0.617 -0.5
0.33 1.142 0.725 0417 0.595 0.198 0.878 0.876 -0.3
0.33 1.592 1.175 0.417 0.591 0.197 1.271 1.271 0.0
0.33 1.883 1.458 0.425 0.590 0.197 1.533 1.533 0.0
0.17 2133 1.108 1.025 0.586 0.098 1.248 1.245 -0.2
0.17 2.608 1.633 0.975 0.586 0.098 1.720 1.714 -0.4
0.17 1.608 0.558 1.050 0.587 0.098 0.815 0.809 -0.7
0.17 1.225 0.417 0.808 0.588 0.098 0.685 0.658 -39
0.17 0.583 0.175 0.408 0.594 0.099 0.404 0.388 -4.0
0.17 0.725 0.242 0.483 0.592 0.099 0477 0.453 -5.0*
0.08 1.100 0.360 0.740 0.586 0.049 0.496 0.503 1.4
0.08 1.508 0.767 0.742 0.585 0.049 0.841 0.838 -0.3
0.08 1.725 0.850 0.875 0.585 0.049 0.910 0.927 1.8
0.08 2,467 1.617 0.850 0.584 0.049 1.642 1.641 0.0
0.08 3.508 1.017 2492 0.584 0.049 1.190 1.206 14
*Qutlier Avg =1.1%

Max = 4.0%
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both experiments, all values were changed to absolute values, and then the average of
these was calculated.

Table 12 summarizes the accuracy information for Equation 3.4'. It shows how
much Cm reduced the average percent difference when it was changed from 1.0 to 1.015.
The outlier is excluded from the difference calculations. By using Cm=1.015, the percent
difference was reduced. However, the calibration technique of finding Cm can be
laborious, and the percent difference with Cm=1.0 is still only 2.0%.

The accuracy of Equation 3.4' can be seen graphically, by plotting the measured
depths against the calculated depths. Figure 17 shows how well the equation predicts the
depth Yt when a coefficient is not used (or equal to unity). and Figure 18 shows the
increase in accuracy when a coefficient of momentum of 1.015 is used. The points
represent calculated depths, and should fall directly on the 45° lines if they agree perfectly
with measured values. The points fall slightly above the line for Cm=1.0, and closer to
the line for Cm=1.015. This is the same behavior as Equation 3.3, which makes sense
because Equation 3.4' is a combination of Equations 3.2 and 3.3', and Equation 3.2 data
was fairly symmetric around the line.

Since Equation 3.4' was developed from the basic principles of fluid mechanics, it
incorporates enough theory to account for two- and three-dimensional flow effects at the
gate. However, it can be improved slightly by multiplying Yt by the coefficient of
momentum. [t is suggested that the value of 1.015 be verified with another type of gate.

such as the radial or drum.



Table 12. Accuracy summary for equation 3.4' (Cm=1.0, 1.015)

Accuracy Information

Equation 3.4’

Equation 3.4'

(Cm=1.0) (Cm=1.015)
Average Difference (%) 2.0 1.1
Minimum Difference (%) 0.1 0.0
Maximum Difference (%) 3.9 4.0

Yt calc (ft)

Equation 3.4' Accuracy

Cm=1.0
25
2.0
1.5
1.0
0~5 I l:
0.5 1.0 1.5 2.0
Yt lab (f)

2.5

Figure 17. Accuracy of equation 3.4' (Cm=1.0).




Yt calc (ft)

Equation 3.4' Accuracy

Cm=1.015

2.5

20

1.5 &

1.0

0s ; i ;

0.5 1.0 1.5 2.0 235

Yt lab (ft)

Figure 18. Accuracy of equation 3.4' (Cm=1.015).
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CHAPTER VI

EXAMPLE PROBLEMS

Example Problem 1

Determine whether the flow from under the gate is free or submerged.

Solution:
Step 1:  Assuming Yu and q are known, solve for Yj using equation 3.1.
Step2:  Compute the momentum associated with Yj and compare it to the computed

momentum associated with Yt. If the momentum for Yt is greater than the

momentum for Yj, then the condition will be submerged flow.

Example Problem 2

Find the flow at a given Yu, Yg, Y.

Solution:
Step I:  Find Y] from Equation 3.6.
Step2:  Find Yd from Equation 3.4.

Step4:  Find q from Equation 3.2.

Example Problem 3

Find the flow at a given Yu, Yg, Yd.
Solution:
Step 1:  Find Y] from Equation 3.6.

Step2:  Find q from Equation 3.2.
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Example Problem 4

Predict the upstream depth at a given Yg, Yt and q.

Solution:

Step 1: Find Yu, Yj, and Yd simultaneously from Equations 3.2, 3.3, and 3.6.

Example Problem 5

Find the upstream depth at a given q, Yt,Yd
Solution:
Step 1:  Find Yj from Equation 3.3.

Step2:  Find Yu from Equation 3.2 or Equation 3.4.

Example Problem 6

Find the necessary gate opening to pass a certain flow at a given Yu and Yd.
Solution:
Step I:  Find Y] from Equation 3.2.

Step2:  Find Yg from Equation 3.6.

Example Problem 7

Find the necessary gate opening to pass a certain flow at a given Yu and Y.
Solution:
Step 1:  Find Yg, Yj,Yd simultaneously from Equations 3.2, 3.6, and 3.3.
or

Find Yg, Yj,Yd simulitaneously from Equations 3.2, 3.6, and 3 4.
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Example Problem 8

Find the tailwater depth at a given Yu, g, q.
Solution:

Step 1: Find Yj, Yd, Yt simultaneously from Equations 3.2, 3.3, and 3.6.

Example Problem 9

Find the tailwater depth at a given Yu, Yg, Yd.
Solution:
Step I:  Find Yj from Equation 3.6.
Step2:  Find Yd from Equation 3.2.

Step3:  Find Yt from Equation 3.3 or 3.4.
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CHAPTER VII

COMPUTER PROGRAM

Program Overview

To implement the equations discussed in this report, the writer developed a
computer program called SUBGATE, using the FORTRAN computer language. This
program solves three individual problems dealing with submerged flow at a vertical
(sluice) sharp-edged gate. All three problems have a common condition, which is a
reservoir supplying a reach of open channel, with a gate downstream. Downstream of
the gate, there is a second reach which may end in different ways.

The first downstream condition includes a long channel downstream of the gate,
resulting in "normal" flow. The second condition involves a free overfall, which results
in "critical" flow. The third condition involves a downstream reservoir. Throughout the
remainder of this thesis, these problems will be referred to as Norm, Over, and Res,
respectively.

The input file for the program is titled SUBGATE.IN, and it holds the data which
define the unchanging parameters of the system, i.e., length, base width, bed slope, side
slope, Manning's n, acceleration due to gravity, and loss coefficients for the reservoir(s).
These parameters may be different for the two reaches, but cannot vary within a reach.
The output file is titled SUBGATE.OUT, which gives the user a history of all output

during the program run time, which may include several runs.
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Newton-Raphson Method

The computer program SUBGATE.FOR contains 563 lines of code, although the
core is found in 10 lines which implement the Newton method. This algorithm is adapted
to solving systems of non-linear equations, which is ideal for the submerged gate
problem. Variables are solved itteratively by improving and comparing to previous
values. The solution is found when the error criteria has been met. Line 23, in the
program code, sets the error to 0.001. The user may wish to change this value and
recompile the program.

Some methods that solve systems of equations have linear convergence, whereas
the Newton-Raphson method converges quadratically, which enables it to solve more
rapidly. However, since there are usually multiple real roots to nonlinear equations, an
error can occur if the guesses are not somewhat close to the real values. SUBGATE gives
the user the option of estimating the initial guesses for the variables, or allowing the
computer do it. In most cases, the computer does a reasonable job, but if the solver

crashes, the user will have to use intuition to do a better job of estimating.
Problems

The first problem is called NORM, which is an abbreviation of the word normal.
In this case, the downstream condition is a long, undisturbed length of channel enabling
the flow to reach its normal state. This normal flow condition is described by flow and

depth. NORM is the fastest problem to solve for two reasons.
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First, the normal depth, Yt, is calculated from Manning's equation. Second, there

are five unknowns and five equations instead of six unknowns and six equations, as in the
other two problems. Solve time ranges from 1 to 5 seconds depending on computer speed

and accuracy of initial estimates. Figure 19 shows the parameters in the problem.

Hres Yu

M
VF Profile Yd l\

Yt

QV——

N

Y]

Figure 19. Normal flow problem (Norm).

The second problem is called OVER, which is an abbreviation of the word
overfall. In this case, the second reach of channel ends in the critical flow condition
with a Froude number equal to unity. Examples of this would be a waterfall, or a sudden
drop in bed elevation. Under critical conditions, the flow will be a maximum for a given
upstream reservoir head and gate setting. Using the continuity principle, this flow will be
the same through the entire channel. The depth at the overfall is the critical depth, Yc,
which is calculated using the critical flow equation. This equation replaces the Manning's

equation in the previous problem.
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Since there are now six variables instead of five, an additional equation is
introduced. This equation is the ordinary differential equation that describes the GVF
profile. It requires more computer effort so the solve time is greater. Depending on
computer speed and initial estimates, the solution takes 4-15 seconds. Figure 20 shows

the parameters in the problem.

Hres Yu
Yl Yd Yt
GVF Profile
GVF Profi
Q Yc
_—
N
Yj

Figure 20. Overfall problem (OVER).

The third problem is called RES, which is an abbreviation of the word reservoir.
[n this case, the second reach ends with a reservoir. Similar to the previous problem,
Yend is involved. Instead of critical depth, it is the depth in the channel just before the
flow enters the second reservoir. Yend will be slightly lower than H2, the height of the
second reservoir above the channel bottom. This depth is calculated using specific
energy balance from the channel to the second reservoir, with the entire velocity head

being dissipated.
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As in the overfall problem, this depth is tied back to depth Yt through a GVF

profile. This problem is the most unforgiving on bad initial estimates. Solve time ranges

from 4-15 seconds, depending on computer speed and initial estimates. Figure 21 shows

the parameters in the problem.

Hres

Yl

Yu

GVF Profile

Q

_

Yd

Yt

Yend

H2

GVFE Protile

Figure 21. Reservoir problem (RES).

Variables

Y1 is the depth at the beginning of the channel, immediately downstream of the

reservoir. Since depth contributes more to specific energy than does velocity head, the

computer's initial estimate is Y1=0.9H, where H is the reservoir water surface above the

channel bottom. This means that most of the reservoir head, H, is converted into channel

depth and only 10% is converted into velocity head. This assumption is best for mild
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channels, but for steeper slopes the velocity head will increase and the depth will
decrease, changing the energy makeup of the system and the validity of the assumption.

Yu is the depth immediately upstream of the gate. [t should be measured about 5
feet away, before the water surface curves up to a stagnation point on the gate. Yu and
Y1 are at the downstream and upstream ends of a gradually varied flow (GVF) profile,
respectively. In the direction of flow, the water surface will slope up (M1 curve) for
lower gate openings and slope down (M2 curve) for higher gate openings. Since Yu may
be greater or less than Y1, the computer's initial estimate is Yu=Y1.

Yd is the depth immediately downstream of the gate. Under free flow conditions,
this depth would be the jet emerging from beneath the gate; but under submerged
conditions, it is the submergence depth which includes the jet depth and the water
swirling above it. Yd is more difficult to estimate because it can vary widely, ranging
from slightly more than Yj to almost Yu. Since the only certainty is that it is greater than
the jet depth, the computer's initial guess is Yd = 1.5Yj .

Yt is the depth downstream of Yd. It is likely to occur around 10 feet downstream
of the gate, and is preceded by an abrupt rise in the water surface. In the case of free
flow, the jet is in a supercritical state and dissipates through a hydraulic jump, ending in a
subcritical condition with greater depth and lower velocity.

A similar situation occurs during submerged flow, where the submerged jet
dissipates its energy through an increase in depth, downstream of the gate. Since the
downstream submergence depth, Yd, may range between the jet depth and the upstream

depth, the difference between Yd and Yt also has a range of possiblilities.
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Since the only certainty is that Yt is greater than Yd, the program's initial
estimate is Yt = 1.5Yd. In the first problem, involving normal flow, Yt is calculated
using Manning's equation. For the other two problems, it is solved using a GVF profile
from the downstream boundary condition and moving upstream.

Yend is used in the problems RES and OVER. As the name implies, it is the
final depth in the channel. In the problem involving a downstream reservoir, Yend is
calculated using energy balance from the channel to the reservoir, and is tied back to Yt
through a GVF profile. This depth will be slightly less than the depth of the reservoir
above the channel bottom, so assume Yend = .9H2 (90% of the vertical difference
between the reservoir surface elevation and the channel bottom). In the problem
involving a sudden drop in the channel bed, Yend is the critical depth, which is
calculated from the critical flow equation and is tied back to Yt through a GVF curve.
The computer's estimate is that Yend = 1 foot or 0.3 meters.

Q is the steady-state volumetric flow. Because of the continuity principle, it is
constant throughout the entire channel, and is found in every equation. Flow has a much
greater range of values than depth, but is also the most forgiving on bad guesses. A good
initial estimate seems to be Q = 20H (20 times the reservoir head above the channel
bottom). These suggestions for initial guesses are very general, so if the user is familiar
with open channel hydraulics, he/she should be able to supply more reasonable values.
Nevertheless, the above initial estimates may be used in the program by selecting the

computer guess option.
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Equations

Table 13 summarizes the equations used in the SUBGATE computer program. A
description of each equation is followed by the problem(s) it pertains to, and the unknown
variable it solves for. NORM uses five equations to solve for five unknowns, whereas
OVER and RES use six equations to solve for six unknowns. Jet depth is solved from

Equation 3.6 immediately before it is used in the solver routine.

Table 13. Equations used in the computer program

Equation Problem Type | Variable

Energy balance at the reservoir Norm, Over, Res Y1
H-Y,-—Z— =0

2g(b Yy +m Y7)*
Special specific energy between positions | and 2 Norm, Over, Res Yu

% I N
Yu=Ya+3 (by Yotm Y)? (bgl'/)’) =0
Special momentum between positions 2 and 3 Norm, Over, Res Q
lp (V2 2, 1 3 3,9 I S
202(Yq =¥ %) +3ma(Ya-¥)"+ 5 ((b:r,+mzy,2) (b;.'yj)) =0
GVF profile solver upstream of gate Norm, Over, Res Yd
Y[ —Yl(ode—Y,,)=0
GVF profile solver downstream of gate Over, Res Yt
Y —Y(ode —Yena) =0
Manning's formula for the normal flow condition Norm Yt

On  (ba¥rema V)8

C b2ty fmiy®

Energy balance at downstream reservoir Res Yend
o _

Hy = Yend 20062 Yemrtma Vo ) 0

Critical depth energy equation for overfall Over Yend

852 Yera +ma¥2 )3 — 0%(by +2m2¥enq) =0




Example NORM

In this example problem, the downstream reach allows the flow to reach normal
conditions a short distance downstream of the gate. The channel is trapezoidal, with a
bottom width of 10 feet and a side slope of 2 (2H:1V). The gate width is 10 feet, and the
lengths of the upstream and downstream reaches are 2000 feet and 3000 feet,
respectively. Manning's roughness, n, is equal to 0.015 both upstream and downstream.
The upstream and downstream slopes are .0002 and .0004, respectively. The acceleration
of gravity is assumed to be 32.2 ft*/sec. The entrance head loss coefficient from the
upstream reservoir to the channel is equal to .05. The flow and momentum coefficients
are equal to 1. and 1.015, respectively. Figures 22, 23, and 24 show the input file,

program run, and output file, respectively.

10. 10. 10. 2000. 3000. .015 .015 2. 2. .0002 .0004 32.2 1. .05 1. 1.015
INPUT:

Gate Width bg

Bottom Width bl

Bottom Width b2

Length L1

Length L2

Manning's n FN1

Manning's n FN2

Side Slope FM1

Side Slope FM2

Bed Slope Sol

Bed Slope So2

Gravity Accl g

Loss Coeff KL1 (2nd reservoir problem only)
Loss Coeff Kel (Entrance of channel)

Flow Coef Cd

Momentum Coef Cm

Figure 22. Input file for normal flow (NORM) example.
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11

L Q--> 11
\ 11
11
11
11 /
11
H Y1 Yu 11 Yd Yt Yend
1
\
Yg Yj

Input File is SubGate.in
Qutput file is SubGate.out
CTRL-C to quit

What is the downstream condition?
Long channel

Free overfall
2nd reservoir

L) 1D —

Please give reservoir head and gate opening

[—

l: computer guesses
2: user guesses

Yg Cc Q Y1 Yu Y] Yd Yt
1.000 591 71.768 3949 4837 591  2.547 3.257
Upstream M1 profile

Iterations= 4
Error= .00031434

Figure 23. Program run for normal flow (NORM) example.
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H

11

11

11
11

11 /
11
Yl Yu II Yd Yt

Yg Yj

Yend

This solution is for a long channel downstream
Upstream reservoir head is 4.00

Ye¢ C Q Y1 Yu Y] Yd Yt

1.000 591 71.768 3.949 4837 .591 2547  3.257

Figure 24. Output file for normal flow (NORM) example.
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Example OVER

In this problem, there is a sudden drop in the bed elevation, or a complete drop
off, such as a waterfall. To compare how the flow is affected, the same input file will be
used. In other words, the geometry and physical characteristics of the system remain the
same. Gravity acceleration, entrance losses, flow and momentum coefficients are also
assumed to be the same. Notice that the flow increases and the depths decrease, when the
downstream condition changes from normal flow to critical flow. Figures 25, 26, and 27

show the input file, the program run, and the output file, respectively.

10. 10. 10. 2000. 3000. .015 .015 2. 2. .0002 .0004 32.2 1. .05 1. 1.015
INPUT:

Gate Width bg

Bottom Width bl

Bottom Width b2

Length L1

Length L2

Manning's n FNI

Manning's n FN2

Side Slope FMI

Side Slope FM2

Bed Slope Sol

Bed Slope So2

Gravity Accl g

Loss Coeff KL1 (2nd reservoir problem only)
Loss Coeff Kel (Entrance of channel)

Flow Coef Cd

Momentum Coef Cm

Figure 25. Input file for critical flow (OVER) example.
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9§
Q--> 1
11

Y1

11
11

11 /
1
Yu 11 Yd Yt
1
S
Yg Yj

Yend

o

Input File is SubGate.in
Output file is SubGate.out
CTRL-C to quit

What is the downstream condition?
Long channel

Free overfall
2nd reservoir

W D »r—

Please give reservoir head and gate opening

l: computer guesses
2: user guesses

Y§ C Q Yl Yu Y] @ Yd

1.000 591 73715 3946 4.782 591

Upstream M1 profile
Downstream M2 profile

[terations= 14
Error= .00047021

2.366

Yt
3.154

Yend
1.191

Figure 26. Program run for critical flow (OVER) example.
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11

_ Q--> 11
\ 11
11
11
I1 /
11
H Yl Yu 11 Yd Yt Yend
1
\
Yz Yj
This solution is for a free overfall downstream
Upstream reservoir head is 4.00
Yg Cc Q Y1 Yu Yj Yd Yt Yend
1.000 591 73.715 3946 4.782 591 2366 3.154 1.191

Figure 27. Output file for critical flow (OVER) example.
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Example RES

In this problem, the downstream reach discharges into a reservoir. To see how the

flow conditions change based upon boundary condition, the same input file will be used
again. In other words, the geometry and physical characteristics of the system remain the
same. Gravity acceleration, entrance losses, and flow and momentum coefficients are
also assumed to be the same. Notice that if the downstream reservoir head is the same as
the upstream reservoir head, this problem yields the lowest flow and the highest depths of

the three problem types.

10. 10. 10. 2000. 3000. .015 .015 2. 2. .0002 .0004 32.2 1. .05 1. 1.015
INPUT:

Gate Width bg

Bottom Width bl

Bottom Width b2

Length LI

Length L2

Manning's n FN1

Manning's n FN2

Side Slope FM1

Side Slope FM2

Bed Slope Sol

Bed Slope So2

Gravity Accl g

Loss Coeff KL1 (2nd reservoir problem only)
Loss Coeff Kel (Entrance of channel)

Flow Coef Cd

Momentum Coef Cm

Figure 28. Input file for reservoir (RES) example.
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11

_ Q-> 1
\ 11
1
11
1 /
11
H Yl Yu 11 Yd Yt Yend
1
\
Ye  Yj

Input File is SubGate.in
Output file is SubGate.out
CTRL-C to quit

What is the downstream condition?
Long channel

Free overfall
2nd reservoir

W N —

(O3]

Please give reservoir head and gate opening

p—

Give 2nd reservoir head above channel bottom

l: computer guesses
2: user guesses

Yg Cc Q Y1 Yu Y] Yd Yt Yend
1.000  .591 68770 3953 4917 591 2813 3418 3.953

Upstream M1 profile
Downstream M1 profile
[terations= 4

Error= .00008997

Figure 29. Program run for reservoir (RES) example.
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11

— Q--> 11
\ 11
11
11
11 /
11
H Y1 Yu 11 Yd Yt Yend
1
\
Ye Yj
This solution is for a second reservoir downstream
Upstream reservoir head is 4.00
Downstream reservoir head is 4.00
Yg Cc Q Y1 Yu Yj Yd Yt Yend
1.000 .591 68.770 3.953 4917 .591 2.813 3418 3.953

Figure 30. Output file for reservoir (RES) example.
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CHAPTER VIII

SUMMARY AND RECOMMENDATIONS

Two types of flow may exist at an open channel gate: free and submerged. In
free flow, the gate creates a subcritical upstream depth, a supercritical jet depth, and, if
the channel continues with a mild slope, a tailwater depth which is preceded by a
hydraulic jump. In submerged flow, the momentum function associated with the
tailwater depth becomes greater than the momentum function associated with the jet,
which causes the jet to become submerged under a swirling roller. Submerged flow is
controlled by the upstream depth, the gate opening, and the downstream submergence
depth, whereas free flow is only controlled by the upstream depth and the gate opening.

The focus of this study is limited to submerged flow. Free flow is examined, but
only as a precursor to submerged flow. For example, the special energy and momentum
equations were developed for free flow, then modified for submerged flow. For a
comprehensive understanding of free flow and the equations used to solve it, the reader
should find other literature.

Gates may be used for control and measurement in open channel flow. The
equations that predict flow typically contain coefficients that are determined by field
calibration. The use of these coefficients has been necessary since the equations are
simple in their structure and are one-dimensional, which neglects two- and three-

dimensional flow effects.
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This study developed a special specific energy equation and a special momentum
equation which predict flow and depth for submerged flow. When used without
correction coefficients, the results are very reasonable, although a coefficient of
momentum slightly improves the error for the special momentum equation.

The equations were developed from basic principles of fluid mechanics, i.e.,
conservation of energy, momentum, and mass. Instead of reducing the complexity of the
equations (which increases the need for correction coefficients), the mathematics were
carried through to yield sound formulas that are grounded in fundamental principles. The
special energy and momentum equations are easily implemented with a programmable
calculator or computer.

The special specific energy equation can be used to predict submerged flow. The
development of the equation consists of equating the upstream specific energy to the
downstream "special” specific energy. The upstream specific energy is the sum of the
upstream depth and the upstream velocity head. The downstream special specific energy
is the sum of the downstream submergence depth (consisting of the jet depth and the
overlying roller) and the velocity head of the jet. Comparison of computed and measured
flows show agreement to within 1.6%, without a correction coefficient.

The special momentum equation is used to model the flow downstream of the
gate, where the jet dissipates and the water surface rises from the submergence depth to
the tailwater depth. This development of the special momentum equation is
accomplished by equating the special momentum function (with the submergence depth

in the hydrostatic term and jet depth in the dynamic term) to the momentum function
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associated with the tailwater depth. A coefficient of momentum multiplies the tailwater
depth, which accounts for two- and three-dimensional flow effects. Using a value of 1.0
for the coefficient gives agreement to within 2.1% between computed and measured
depths. With a coefficient equal to 1.015, the difference between computed and
measured depths decreases to 1.2%.

The "combination" equation is created when the special specific energy and
special momentum equations are combined, which eliminates flow as a variable.
Therefore, only depths are involved in the combination equation. When the equation is
used to predict tailwater depth, with the other depths known, there is agreement to within
2.0% using a coefficient of 1.0, and to within 1.1% with a coefficient of 1.015. The
coefficient is the same coefficient of momentum that is used in the special momentum
equation.

The equations were developed assuming a rectangular cross section. Then, the
geometry in the equations was modified to allow for trapezoidal or rectangular cross
sections. For a rectangular cross section, the side slope, m, is zero. For a trapezoidal
cross section, the side slope is a value greater than zero.

Although a vertical (sluice) gate is referred to throughout the study, it is expected
that the equations may be used for other types of gates, as long as the conditions are
similar. These conditions are that the fluid emerges from the bottom of the gate as a jet
that flows under the downstream flow with an overriding roller, and that submergence

depth is less than tailwater depth, a short distance downstream (Jeppson, 1994).



63

It is also expected that the format of the contraction coefficient (Cc) equation
(Cc=a+b*gate opening/upstream depth) will be the same for other gate types, where a and
b are experimentally determined constants for each gate type. The constant, a, is the
lower contraction limit which represents the maximum amount of contraction. The
constant, b, is the multiplier of the ratio, and defines the shape of the equation's curve.
For the vertical (sluice) gate, the values for 'a' and 'b' are 0.583 and 0.04, respecively.

How accurate an equation duplicated measured values was investigated by
calculating one variable, while using measured values for the other variables in the
equation. The writer's goal was for agreement within 5% of past reported measured
values. or a "percent difference” of 5%. The special specific energy equation predicted
flow to within 1.6% of measured values without a correction coefficient. The special
momentumn equation calculated tailwater depth to within 2.0% of measured values
without a coefficient. and to within 1.2% using a coefficient of 1.015. The combination
equation calculated tailwater depth to within 2.0% of measured values without a
coefficient, and to within 1.1% using a coefficient of 1.015. Therefore, the goal of
reaching an average difference of 5% was achieved and surpassed.

A FORTRAN computer program called "SUBGATE," was developed to
implement the equations for the case of submerged flow, and it solves three types of
problems. All of the problems have an upstream boundary condition: a reservoir
supplying a reach of open channel. The problems differ because of downstream
boundary conditions: (1) a downstream uniform, or normal depth, (2) an overfall which

produces critical flow, or (3) a downstream reservoir.
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The program reads an input file (SUBGATE.IN) and writes an output file

(SUBGATE.OUT). The physical characteristics of the channel and gate are stored in the
input file, so the user is only prompted for the upstream and downstream reservoir heads
and the gate opening during the program run. The output consists of the description of
three characteristics: the flow, the key depths, and the gradually varied flow (GVF)
profiles. It also displays the number of iterations and error in the final solution.

The core of the computer program contains the code which implements the
Newton-Raphson Method, which solves a system of nonlinear equations. This method
requires that initial estimates be made for all variables in the equations to be solved. The
user has the option of making the estimates or allowing the computer to do it. The
estimates which the computer makes are usually good enough for convergence to occur,
but the user may have to estimate the variables if the program crashes.

Some of the limitations of this research are: (1) The equations are limited to
submerged flow, and do not model free flow. (2) The value for the coefficient of
momentum was found through trial and error with the data referred to in the report. It is
recommended that someone verify the value of 1.015 with other data. The coefficient
may vary depending on the gate type, or some other parameter. (3) The data in this report
are only for a vertical (sluice) sharp-edged gate, and the equations were verified for that
gate type. [t is recommended that someone test these equations with data from other

types of gates.
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SUBGATE.FOR Computer Code

Program SubGate solves flow and depth associated submerged flow.

All options solve energy at channel entrance, GVF upstream and downstream, energy at the gate,
and momentum downstream of the gate. PROBLEM 1 solves a long channel downstream
substituting Manning's equation in place of the downstream GVF.

PROBLEM 2 solves a free overfall downstream. An additional depth Yend occurs at the overfall.
It is the critical depth and is solved by the critical flow eqn. The downstream GVF begins here and
moves upstream. PROBLEM 3 solves a second reservoir downstream. Ancther depth

Yend occurs just before the channel empties into reservoir and CC is solved using energy from the
channel! to the second reservoir.

INTEGER*2 INDX(6)

LOGICAL*2 RES,NORM,OVER,FREE

REAL F(6),D(6,6),X(6),KE1,KL1,XG(6)

COMMON NGOOD,NBAD,KMAX, KOUNT,DXSAVE,NORM,OVER,RES

COMMON /TRAS/H,G.G2,Ye,C,QN,KE1,KL1,X,CD{,H2,CM

COMMON /GEO/bg,b1,b2,S01,S02,FN1,FN2,FM1,FM2,FL1,FL2

EQUIVALENCE(Q,X(1)),(Y 1,X(2)),(Yu,X(3)),(Yd,X(4)),(Yt.X(5)),(Yend,X(6))
OPEN(FILE='SubGate.in',STATUS='OLD',UNIT=3)
OPEN(FILE='SubGate.out',STATUS="UNKNOWN',UNIT=2)

READ(3,*) BG,BI,B2,FLI,FL2,FN1,FN2,FM1,FM2,S01,5S02,G.KL1,KEI,Cd,Cm

ERR=.001

NWRITE=I
WRITE(*,300)
WRITE(2,300)
FORMAT(34X, Program/31X.’SU B G A TE/37X,/117__"1X,
'Q->' 27X, 115X\ 737X, 11
B31X,11",8X, B3IX1 rl

37X TER2X HLSX Y 1,22X,Yu' 3X,'11,2X,'Yd,8X, YT, 15X,
Yend/37X,'1'/38X\ 37X, Yg Yjr

WRITE(2,*)"’

WRITE(*,301)

FORMAT(26X, Input file is SubGate.in'/24X,'Output file specified b

y user'’/31X,CTRL-C to quit'//22X,'What is the downstream conditic

n?//30X,'1: Long channel'/30X,2: Free overfall'/30X,

'3: 2nd Reservoir')

READ(*,*) PTYPE

WRITE(*,302)

FORMAT(18X, Please give reservoir head and gate opening’)

READ(*,*)H,Yg

NORM=.FALSE.

OVER=.FALSE.

RES=FALSE.

IF(PTYPE.EQ.1) THEN 'Long downstream
NORM=TRUE. !

N=5 !5 eqns/unks
ENDIF !
IF(PTYPE.EQ.2) THEN 'Overfall
OVER=TRUE. !

N=6 16 eqns/unks
ENDIF !
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18}

IF(PTYPE.EQ.3) THEN
RES=.TRUE.

N=6

WRITE(*,303)

FORMAT(16X,'Give 2nd reservoir head above channel bottom')

READ(*,*) H2
ENDIF
IF(RES) WRITE(2,309) H,H2

FORMAT(14X, This solution is for a second reservoir downstream'/
24X,'Upstream reservoir head is',1 X, F4.2/22X,'Downstream reservoi

r head is',1X,1F4.2/)
IF(NORM) WRITE(2,310) H

FORMAT(14X,'This solution is for a long channel downstream'/

24X,'Upstream reservoir head is',1X,1F4.2/)
IF(OVER) WRITE(2,308) H

FORMAT(14X, This solution is for a free overfall downstream'/

24X,'Upstream reservoir head is',1 X,1F4.2/)
WRITE(*,304)

FORMAT(27X,'1: computer guesses'/27X,'2: user guesses')

READ (*,*) GUESS
IF(GUESS.EQ.1) THEN
XG(1)=20*H

XG(2)=.9*H

XG(3)=XG(2)

XG(4)=1.5*YG

XG(5)=1.5*XG(4)

IF(RES) XG(6)=.9*H2

[F(OVER .AND. G.GE.30) XG(6)=1.
[F(OVER .AND. G.LT.30) XG(6)=.3
GO TO 305

ENDIF

IFONORM) THEN
WRITE(*,*) "

ELSE

WRITE(*,*)"

ENDIF

READ(*,*) (XG(I),I=1,N)
DO 125 I=1,N
X(D=XG(I)

[F(G.GT.30.) THEN
C=1.486

ELSE

c=1.

ENDIF

G2=2*G

KEl=1.+KEI
KLI=1.+KLlI

CDI1=1/CD

NCT=0

DO 10 I=L.N
F(1)=FUN(I)

DO 10 J=IN
DX=.005*X(J)

Guess: Q,YI,Yu,Yd Yt

QGuess: Q, YL, Yu,Yd,Yt,Yend'

IRes. downstream
]

16 eqns/unks

!Get 2nd res head
!

Reservoir output

'Normal output

IComputer guesses
tall depths and
Ithe flow

!5 unknowns

16 unknowns

'Read guesses

{Store in tmp array
ICheck for si/es
!ES coefficient

]

1SI coefficient

!

!Convenience 2g
!Convenience loss
'Convenience loss
!Convenience coeff
!Set count to zero

'Outside function loop

'Call function
!Inside variable loop
!Increment variable

68
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306
118

110

Cc=.583+.04*Yg/X(3)

X()=X()*DX

D(1,))=(FUN(I)-F(1))DX

X(J)=X(J)-DX

CALL SOLVEQ(N,N,6,D,F,1,DD,INDX)

SUM=0.

DO 20 I=I,N

X(D=X(1)-F(D)

SUM=SUM+ABS(F(1))

NCT=NCT+1

WRITE(*,*)' NCT=/NCT,SUM

WRITE(*,*) (X(I),I=1,N)

IF(NCT.LT.30 .AND. SUM.GT. ERR) GO TO 1
SOLUTION FOUND !

Yj=Cc*Yg

CALL SPACE(11)

IF(Yg.GT.X(3)) THEN

CALL SPACE(11)

WRITE(*,*) " You have specified a gate setting higher than the
upstream water level. Flow is unaffecte

d by the gate.”

GO TO 124

ENDIF

IFOINCT.EQ.30) THEN

IF(YG.LT..06*H) THEN

WRITE(*,306)

FORMAT(28X,'Free flow conditions !!")

ELSE IF(RES) THEN

IF(H2.LT..2*H) WRITE(*,*) "The second reservoir head is too low fo
r this problem to physically exist'

IF(YG.LT..06*H) WRITE(*,306)

ENDIF

WRITE(*,307)

FORMAT(3 X, Try another guess')

DO 127 II=1,N

X(ID=XG(II)

GO TO 124

ENDIF

IF(N.EQ.5) THEN

WRITE(*,*)' Yg Cc Q YT Yu Yj Yd
Yt '

[FINWRITE.EQ.1) THEN

WRITE(2,*)' Yg Cc Q YI Yu Yj Yd
Yt '

WRITE(2,*)""

ENDIF

WRITE(*,110) Yg,Cc,Q,Y1,Yu,Yj, Yd, Yt

WRITE(2,110) Yg,Cc,Q,Y1,Yu,Yj,Yd, Yt

WRITE(*,*) "'

FORMAT(8F8.3)

ELSE

WRITE(*,*)' Yg Cc Q YI Yu Yj Yd
Yt Yend
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!
!Create Jacobian matrix
!Set back to original
!Solve all egns
1Set error to zero
'Update values
1
'New error
!Increment count
IWrite count,error
!
!Done yet?

!Contraction coeff.
tJet Depth

IClear screen

!Gate above water?
!Clear screen

tWrite results
!Write results
!
!
!



IF(NWRITE.EQ.1) THEN
WRITE(2,*)' Yg Cc Q YI Yu Y} Yd
& Yt Yend

WRITE(2,*)""
ENDIF
WRITE(*,116) Yg,Cc,Q,Y1,Yu,Yj,Yd, Yt,Yend 'Write results
WRITE(2,116) Yg,Cc,Q,Y1,Yu,Yj,Yd, Yt,Yend 'Write results

116 FORMAT(9F8.3)
ENDIF
WRITE(*,*)""
IF(Y1.LT.YU) WRITE(*,*) 'Upstream M| profile'
IFCY L.GT.YU) WRITE(*,*) 'Upstream M2 profile'
[F(NOT. NORM) THEN
IF(YT.GT.Yend) WRITE(*,*) 'Downstream M2 profile’
IF(YT.LT.Yend) WRITE(*,*) 'Downstream M1 profile'
ENDIF
WRITE(*,*)""
WRITE(*,121) NCT
WRITE(*,122) SUM

121 FORMAT(1X, Iterations=",12)

122 FORMAT(1X,'Error=",F10.8)
NWRITE=0

124 WRITE(*,*)""
WRITE(*,*)" Type 22 for new problem’
WRITE(*,*)' -or-'
WRITE(*,*)* Give new gate opening'
CALL SPACE(9) !Clear screen

11 READ(*,*) YG New gate opening
X(4)=1.5*YG !Computer guesses Yd
FREE=.FALSE. !Reinitialize free
[F(Yg.EQ.22) GO TO 114 'Begin new problem
IF(Yg.GT.0.)GOTO 2 IStart again
CALL SPACE(12)
WRITE(*,*)" Don't forget to fill out your registrati

& oncard!”

CALL SPACE(1])

101 STOP !Press any key....
END !End Main Program

FUNCTION FUN(I)
EXTERNAL DYX

LOGICAL*2 RES,NORM,0OVER

REAL X(6),W(1.13),KE1,KL1,Y(1).DY(1),XP(1),YP(1,I)

COMMON NGOOD,NBAD,KMAX,KOUNT,DXSAVE,NORM,OVER RES
COMMON /TRAS/H,G,G2,Yg,C,QN,KE1,KL1,X,CD1,H2,CM

COMMON /GEO/bg,b1,b2,S01,S02,FN1,FN2,FM1,FM2,FL1,FL2
Q2G=X(1)*X(1)/G2

Cc=.583+.04*Yg/X(3)

Yj=Cc*Yg

[FINORM) GO TO (1,2,3,4,5).11
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IF(NOT. NORM) GO TO (1,2,3,4,5,6),11
FUN=H-X(2)-Q2G/(B1*X(2)+FM1*X(2)**2.)**2.
RETURN !
FUN=X(3)-X(4)+*Q2G/((CD1*(BI1*X(3)+FM1*X(3)
)**2.))**2.-Q2G/(CD1*BG*YJ)**2.

RETURN
FUN=.5*B2*(X(4)**2.-(CM*X(5))**2.)+
3333333*FM2*(X(4)**3.-(CM*X(5))**3.)+
2*Q2G*(1.ABG*Y])-1./(B2*(CM*X(5))+FM2
*(CM*X(5))**2.))

RETURN

Y(1)=X(3)

XX=FLI

XZ=0

GOTO7

IF(NORM) THEN

A=B2*X(5)+FM2*X(5)**2.
P=B2+2*X(5)*SQRT(I.+FM2**2.)
FUN=FN2*X(1)-C*A*((A/P)**.6666666)*SQRT(SO2)
RETURN

ENDIF

IF(RES) Y(1)=X(6)

IF(OVER) Y(1)=X(6)+.1

XX=FL2

XZ=0.

TOL=.0001

Hi=.1

HMIN=.001

CALL ODESOL(Y,DY, 1. XX, XZ,TOL HI,LHMIN,LLXP,YP,W,DYX)

IF(11.EQ.4) THEN
FUN=X(2)-Y(1)

ELSE

FUN=X(5)-Y(1)

ENDIF

RETURN

IF(RES) FUN=H?2-X(6)-Q2G/(B2* X(6)+FM2* X(6)

;. *%0)%*2.

IF(OVER) FUN=G*(B2*X(6)+FM2*X(6)**2.)**3.-

¢ X(1)*X(1)*(B2+2*FM2*X(6))

RETURN
END

SUBROUTINE DYX(XX,Y,DY)
REAL Y(1),DY(1),KE1,X(6)
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!Entrance energy

{Submerged energy

ISubmerged momentum

!Upstream GVF

IStart at gate

'End at reservoir
'Begin GVF calc's
'Norm

INorm Area

!Norm Perimeter
INorm Manning's eqn.
ISkip GVF calc's

!Startat Yr

!Startat Ye

IStart at very end
'End at gate
!ODESOL parameters
{

tUpstream GVF
Match Y1
'Downstream GVF
'Match Yt

!

!

!Chanl. to res2 energy

!Critcal flow eqn

COMMON NGOOD,NBAD,KMAX,KOUNT,DXSAVE,NORM,OVER,RES
COMMON /TRAS/H,G,G2,Yg,C.QN,KEL,KL1,X,CD{,H2,CM
COMMON /GEO/bg,bl1,b2,S01,S02,FN1,FN2,FM1,FM2 FL1,FL2

Q2G=X(1)*X(1)/G 'QQ72g

b=bl !Upstream GVF
So=Sol !

FN=FNI !

FM=FM1 !
IFXX.GT.FL1)THEN 'Downstream GVF

b=b2



So=So02

FN=FN2

FM=FM2

ENDIF
QN=(FN*X(1)/C)**2.
YY=ABS(Y(1))
A=B*YY
P=B+2.*YY

T=B
FRS=Q2G*T/A**3.

SF=QN*(((P/A)**.6666667)/A)**2.

IF(FRS.GT.1) FRS=.9
DY(1)=(So-Sf)/(1.-FRS)
RETURN

END

SUBROUTINE SPACE(NS)

DO 112 IS=I,NS
112 WRITE(*,*)""

RETURN

END

!
!
!
!

1(nQ/c)™2
!Current Depth
lArea
{Perimeter

'Top Width
!'Froude #
!Manning's eqn.
ILimit Froude #

!Differential eqn.
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Subroutines SOLVEQ and ODESOL are property of Dr. Roland Jeppson, at the USU

Civil Engineering department.



