
MCEN5125 – Optimal Design of Engineering Systems
Instructor: Assistant Professor G. Subbarayan

PROJECT #2:
Algorithms for Optimization of Constrained Engineering

Systems – 10 Bar Truss Structural Optimization

by

 Joseph P. Kubitschek
26 October 1998

ABSTRACT
The primary purpose of this project was to become familiar with typical algorithms that are used
for constrained optimization of engineering systems. For such case, the standard 10-bar truss
problem was studied in the context of minimizing the weight of the structure while maintaining
structural adequacy with respect to allowable stress and minimum cross-sectional area criteria.
The problem was solved using the exterior penalty method with IMSL routine DUMINF; the
interior penalty method with DUMINF; and a direct method, DNCONF, available from the IMSL
library. Each penalty method algorithm was compared with the direct method (assumed to be the
standard here for efficiency, reliability, and accuracy). The results indicate that both the exterior
and interior penalty methods are less efficient based on the total number of function evaluations
required for convergence to an apriori, eps=1.0E-5. Furthermore, although the interior penalty
method guarantees a feasible design, it may not always exhibit adequate convergence
characteristics and hence may represent less accuracy than the exterior penalty method.
Conversely, the exterior penalty method exhibited superior results as compared with the interior
penalty method based on reliability and accuracy. However, this was at the expense of
convergence to an infeasible design, a difficulty that requires additional considerations in order
for the results to be useful.

INTRODUCTION
The purpose of this project was to develop an improved understanding of various algorithms used
for optimization of constrained engineering systems. In this case, the standard 10-bar truss
problem was investigated. The problem was solved using the exterior penalty method, the
interior penalty method, and a direct method available from the IMSL library. Each penalty
method algorithm was compared with the direct method from the standpoints of accuracy,
efficiency, and reliability.

Background
The 10-bar truss configuration, given as figure 6.4.1 (Haftka and Gurdal1), represents a problem
conducive to basic constrained optimization. Driver code for the exterior and interior penalty
methods, using DUMINF, and the direct method, using DNCONF, was developed for this project
consistent with that of figure 6.4.1. That is, the same nodal and elemental numbering scheme was
used along with all other data specified. However, the code was written in a general form such
that any 2-D truss may be analyzed with similar constraints on minimum cross-sectional area and
allowable stress. The user simply needs to provide the input file specifying truss geometry,
connectivity, loading, minimum cross-sectional area for each member, allowable stress for each
member, and the modulus of elasticity for each member. Should additional constraints need to be
satisfied, the user must modify the function subroutines (fcne.f, fcni.f, and fcnd.f) to account for
those constraints. The analysis code was written by Assistant Professor Ganesh Subbarayan,
Department of Mechanical Engineering, University of Colorado at Boulder (truss2d.f, apldbc.f,
arinlz.f, aslstf.f, clstrs.f, clvol.f, facstf.f, slvdsp.f) and the optimization code (DUMINF and
DNCONF) was obtained from the IMSL library for unconstrained minimization using finite
difference gradient. The final component of the analysis code, clstif.f, was developed for this
project to compute the stiffness matrix for each element as required for use with truss2d.f.

Solution Techniques
The first task in completing this project was to develop the code for computing the stiffness
matrix for each element to be used with the existing analysis code truss2d.f. This was achieved
by deriving the stiffness matrix for a generalized truss member using the principle of minimum
potential energy. The results yield a 4x4 symmetric matrix that was subsequently implemented in
the subroutine clstif.f. A simple two-bar plane-truss, given as example 5.7.2 (Haftka and
Gurdal1), was coded and analyzed using truss2d.f. This routine, tbar.f, is included as appendix A-
1. The results verify the correctness of the stiffness matrix code, clstif.f. Having successfully
coded the stiffness matrix, the next step was to construct the input data file, project2.dat. The
analysis code was again tested with the complete input data file and demonstrated the correct
format. The input data file itself contains all the necessary information for analysis of the 10-bar
truss problem and includes information regarding truss geometry (i.e. the number of nodes and
elements), spatial location of each node, member connectivity (i.e. how each of the element are
connected via the nodes), boundary conditions (i.e. whether nodes are free of fixed), loading (i.e.
how and where loads are applied to the truss), modulus of elasticity, and initial cross-sectional
areas of each element. Following successful completion of this test, the driver routines for each
optimization method were coded with the following considerations:

Exterior Penalty Method:
The exterior penalty method was implemented using the available IMSL routine DUMINF.
DUMINF has the primary advantage that the finite difference gradient is automatically computed
in the absence of an analytic or exact gradient. This reduces, considerably, the work required of
the user. However, this routine was developed for unconstrained optimization or minimization
problems. Thus, the 10-bar truss problem must be cast as an unconstrained problem (which is in

fact the concept behind penalty methods). The 10-bar truss problem in standard optimization
form is

Minimize: w(a) = ρV = ρail

Subject to: gi ≥ 0.0.

Where,
ai = matrix containing cross-sectional areas of each element,
ρ = density of material used (0.1 lbs/in3 in this case),
gi = normalized constraints (g1 = 1.0 - σ/σall and g2 = ai/amin - 1.0 for stress and area constraints in
this case),
l = the length of each member (l = 360in. and is constant in this case).

Thus, the problem becomes one of minimizing the volume (which is simply a linear function of
cross-sectional area) and may be written in unconstrained form as

Minimize: φ(a,r) = f(ai) + rΣ<-gi>
2.

Where,
φ(a,r) = unconstrained function of area,
f(ai) = scaled volume.
r = penalty parameter.

This approach imposes a penalty each time a constraint is violated and hence asymptotically
approaches the minimum value as r → ∞. However, it is important to realize that this method
operates in the infeasible region. That is, as r → ∞, the solution is approached from the infeasible
region and thus provides infeasible solutions upon convergence to a reasonable ε. The only
means of obtaining an exact solution is to truly reach ∞. But, for practical purposes, a close
approximation is achieved by successive iteration of r to some large value (e.g. 1.0x105 in this
case). Thus, the driver for DUMINF, project2_e.f, and the function subroutine, fcne.f, were
written to implement this exterior penalty method and are included in appendix A-2.

Interior Penalty Method:
Using the same original formulation, the 10-bar truss problem may be written in unconstrained
form using the interior penalty method as

Minimize: φ(a,r) = f(ai) + rΣ(1/gi).

Where
φ(a,r) = unconstrained objective function of area,
f(ai) = scaled volume.
r = penalty parameter.

In this case the value of r is successively decreased such that r → 0. That is the penalty term
becomes smaller and the solution is approached from the feasible region. Although this seems a
good approach since all solutions short of the exact solution represent feasible designs, this
approach is less than desirable for two reasons: 1.) The optimization has the potential of stepping
into the infeasible region; 2.) A feasible starting point must be selected to produce quality results.
The first problem is easily overcome by imposing a large penalty for stepping into the infeasible

region and was implemented in the function subroutine fcni.f for this project. However, the
second problem is much more difficult to handle and aside from heuristic methods can only be
tackled by trial and error, making the efficiency and reliability of this interior penalty method less
than desirable in this case. Both the driver routine and the function subroutine are included as
appendix A-3 along with the associated results. Finally, the potential for the values of the
unconstrained objective to become negative at intermediate steps can be handled by transforming
the areas passed to truss2d.f. This transformation is required since negative values of area
produce a stiffness matrix that is no longer positive definite. One such transformation that
guarantees positive values are passed to the analysis code is:

xi = ai
2.

Direct Method:
The direct method used for this project was the routine DNCONF available from the IMSL
library. This routine solves a general non-linear programming problem using successive
quadratic programming. Although this method is so called direct it requires the user to develop
both the driver routine and the function subroutine that includes the constraints. The problem was
formulated in the same manner as for the exterior and interior penalty methods and the analysis
code was implemented in the function subroutine fcnd.f (as was required for both the exterior and
interior penalty method function-subroutines). The function subroutines in each case comprise
the interface between the analysis code and the optimization code (i.e. the function subroutines
call truss2d.f) as well as implementation of the constraints. The results using DNCONF
demonstrated it to be superior and hence this algorithm represents the standard for comparison of
the exterior and interior penalty methods. Both the driver routine and function subroutine for
DNCONF is included as appendix A-4.

RESULTS AND DISCUSSION

The results of this project provide a means for comparison of each algorithm from the standpoints
of efficiency, reliability, and accuracy with the appropriate considerations. Those features are the
focus of the following discussion. Tables 1-3 represent the results of each optimization
algorithm.

Table 1. – Exterior penalty method (w/DUMINF) results.
10-bar Truss Optimization Results (Exterior):
Number of function evaluations = 5238
Number of iterations = 5
Volume (in^3) = 14889.49
Weight (lbs) = 1488.95
Node Displacements:

Node u(in) v(in)
1 .60 -2.40
2 -.60 -2.70
3 .30 -.90
4 -.30 -.90
5 .00 .00
6 .00 .00

Areas and Stresses:
Element area(in^2) stress(psi)

1 7.99 25000.16
2 .01 25000.04

3 8.01 -25000.24
4 3.99 -25000.06
5 .01 .45
6 .01 25000.04
7 5.67 25000.29
8 5.64 -25000.11
9 3.76 37500.33
10 .01 -25000.09

Table 2. – Interior penalty method (w/DUMINF) results.
10-bar Truss Optimization Results (Interior):
Number of function evaluations = 2273
Number of iterations = 11
Volume (in^3) = 14717.33
Weight (lbs) = 1471.73
Node Displacements:

Node u(in) v(in)
1 .12 -.60
2 -.14 -.63
3 .09 -.26
4 -.09 -.26
5 .00 .00
6 .00 .00

Areas and Stresses:
element area(in^2) stress(psi)

1 5.19 7098.48
2 1.84 2500.72
3 5.42 -7098.02
4 4.57 -4374.36
5 1.42 .00
6 1.84 2500.72
7 4.65 7089.47
8 4.27 -7089.23
9 4.46 6509.43
10 1.39 -6195.89

Table 3. – Direct method (DNCONF) results.
10-bar Truss Optimization Results (DNCONF):
Number of function evaluations = 166
Volume (in^3) = 14976.00
Weight (lbs) = 1497.60
Node Displacements:

node u(in) v(in)
1 .60 -2.40
2 -.60 -2.70
3 .30 -.90
4 -.30 -.90
5 .00 .00
6 .00 .00

Areas and Stresses:
element area(in^2) stress(psi)

1 7.90 25000.00

2 .10 25000.00
3 8.10 -25000.00
4 3.90 -25000.00
5 .10 .00
6 .10 25000.00
7 5.80 25000.00
8 5.52 -25000.00
9 3.68 37500.00
10 .10 -25000.00

Efficiency
The primary difficulties in efficiently implementing both penalty methods consist of the selection
of an adequate starting point and the successive change of the penalty parameter, r, until
convergence is achieved. The first difficulty may be handled either by heuristic methods or
simply by trial and error. Trial and error was used in this project. For both methods, the starting
point was to set all initial cross-sectional areas at values of 5.0 in2. The second difficulty was
handled by choosing a good updated starting value at the beginning of each iteration (i.e. for each
successive value of the penalty parameter). This was achieved by incorporating the approach
developed by Fiacco and McCormick6. Realizing that the optimal solution is approached
asymptotically with both methods, the solutions from previous iterations may be used to predict
the optimum for the next iteration and hence skip unnecessary function and gradient evaluations.
The asymptotic form of the optimum given by Haftka and Gurdal1 is

x*(r) = a + b/r as r→ 0.

Thus, having the optimum for the previous two values of r, one can estimate a and b and predict
x*(r) for the next iteration as

a = [cx*(r k-1) – x*(r k)]/(c - 1.0)

b = [x*(r k-1) – a] rk-1

c = rk-1/rk.

where, r is the penalty parameter and k is the iteration designation. A similar form for the interior
penalty method is given as

a = [c1/2 x*(r k-1) – x*(r k)]/(c1/2 - 1.0)

b = [x*(r k-1) – a] (rk-1)1/2

c = rk/ rk-1.

Again, the primary advantage of implementing this method is improved efficiency. Furthermore,
this approach eliminates the need to determine a suitable starting value and multiplication factor
for the penalty parameter by trial and error (a significant benefit since this requires considerable
effort). Both of these approaches were implemented for this project with improved efficiency
results. Thus the initial r-value for the exterior penalty method was set at 1.0 with a
multiplication factor of 10.0 following each iteration. Alternatively, the initial r-value for the
interior penalty method was set at 1000 with a multiplication factor of 0.1 following each

iteration. Comparison of the results for each algorithm indicates that the direct method,
DNCONF produces the best efficiency followed by the interior penalty method and then the
exterior penalty method. The basis for comparison of efficiency is the number of function
evaluations required for convergence to a solution. Table 4 provides the efficiency ranking and
required number of function evaluations for each algorithm.

Table 4. – Efficiency ranking and number of function evaluations.
Algorithm No. of function evaluations No. of iterations
DNCONF 166 ****

Interior Penalty w/DUMINF 2273 11
Exterior Penalty w/DUMINF 5238 5

It should be noted that the above penalty method results represent markedly improved results over
those obtained without implementation of the asymptotic form for prediction of subsequent
optimums at each iteration.

Reliability
Reliability can be described as the ability of an algorithm to converge regardless of the
computational cost. Various convergence criteria exist for implementation of the exterior and
interior penalty methods. The first is an extension of the asymptotic approach to prediction of
successive starting values at the beginning of each optimization iteration and is given by Haftka
and Gurdal1 as

ε ≥  x* - a.

Where, ε is the apriori specified convergence parameter, x* is the optimum of the present
iteration, and a is the previously described prediction parameter that makes use of the previous
two optimal values at the previous two values of the penalty parameter, r. A second convergence
criterion is also given by Haftka and Gurdal1 as

ε ≥ (φ - f)/f .

Where, φ is the unconstrained objective function and f is the constrained objective function.
These values are evaluated following each iteration and the relative error is compared with the
convergence parameter ε. The final convergence criterion is based on the change in the
constrained objective function from iteration to iteration. This may be written mathematically as

ε ≥ [f*(r k) – f*(r k-1)]/f*(rk).

Any of these criteria may be used. However, the first criterion requires implementation of the
asymptotic form for prediction of successive optimal values at successive values of the penalty
parameter. The convergence criteria implemented for this project was the change criterion with a
value of ε = 0.0001.

Although the interior penalty method algorithm resulted in fewer function evaluations than the
exterior penalty method algorithm, this result is somewhat misleading since the interior penalty
method algorithm did not converge. This being the primary criteria for comparison of reliability
since a reliable algorithm should converge regardless of the number of function evaluations.
Thus, in general, comparison of efficiency should always include consideration of reliability. In
other words, although an algorithm may appear to represent greater efficiency by virtue of the

number of function evaluations, it may be totally useless if it does not converge to a reasonable
approximation of the optimum. Therefore, sound judgement in evaluating an algorithm from the
standpoint of efficiency is required because of the apparent trade-off between efficiency and
reliability in cases such as this.

Additional termination criteria included minimum and maximum values of r for interior and
exterior penalty methods respectively and a maximum number of iterations assuming
convergence could not be achieved. Finally, it should be noted that DUMINF has certain internal
convergence criteria based on the intrinsically computed finite difference gradient used to
determine the optimum values of the objective for each successive iteration.

Accuracy
The final comparison feature of this project was accuracy. Accuracy is a tricky topic in algorithm
comparison since it depends strongly in convergence characteristics. However, this characteristic
does provide some information regarding algorithm quality in the case of the 10-bar truss
problem. DNCONF was used as the standard for comparison and illustrates the exterior penalty
method algorithm to have superior accuracy in comparison with the interior penalty method latter
algorithm did not converge. Again, sound judgement must be used since the exterior penalty
method solution represents an infeasible design. However, it is certainly closer to the true
optimum than the results of the interior penalty method and would likely represent a feasible
solution with the application of adequate safety factors. Table 5 represents the relative accuracy
results for each algorithm as determined from

Relative Error = (V*DNCONF – V*penalty method)/V* DNCONF.

Table 5. – Relative error of each penalty method algorithm.
Algorithm V* Relative Error
DNCONF 14,976.00

Exterior Penalty w/DUMINF 14,889.49 -0.0058
Interior Penalty w/DUMINF 14717.33 -0.0173

The relative inaccuracy of the interior penalty method algorithm in this case can easily be seen.
Although the exterior penalty method represents an infeasible design it is relatively accurate to
well within 1.0% of the optimum obtained using DNCONF. In contrast, the interior penalty
method has a relative error of almost 2.0%.

CONCLUSIONS

• The direct method, DNCONF represents the most efficient routine by virtue of the number of
function evaluations required for convergence as demonstrated by the 10-bar truss
optimization results.

• In the absence of the user knowing the exact or analytical gradient, the IMSL routine
DUMINF is preferred over DUMING because it represents a good optimization routine that
requires less effort for implementation since the finite difference gradient is automatically
computed by the routine.

• The relative efficiency of each algorithm may be evaluated using the number of function
evaluations required to converge to a solution. In this respect, the direct method DNCONF is
the most efficient followed by the interior penalty method and finally the exterior penalty
method.

• Implementation of the asymptotic prediction approach to selection of successive starting
values for successive iterations provided improved efficiency in both cases of the exterior and
interior penalty methods and considerably reduced the effort required to determine adequate
starting and successive r-values for each method.

• Although the interior penalty method appears to represent a more efficient algorithm and
provides feasible designs at all stopping points, convergence may not always be achievable
and hence reliability and accuracy are less than desirable in cases such as this. Conversely,
the exterior penalty method appears to have superior reliability. However, this is at the
expense of having an infeasible solution upon convergence.

• For the purposes of evaluating the quality of optimization algorithms (i.e. which algorithm is
best for the problem at hand), the user must use sound engineering judgement in comparison
of algorithms from the standpoint of efficiency, reliability, and accuracy. Furthermore, the
results, although accurate, may not always produce a feasible design and hence requires
additional consideration to obtain useful results. In the case of the exterior penalty method,
selection of the appropriate safety factors is a possible means of utilizing the results.

REFERENCES

1. Haftka, R.T., and Z. Gurdal, Elements of Structural Optimization, 3rd Ed., Kluwer Academic
Publishers, 1992.

2. Chapra, S.C., and R.P. Canale, Introduction to Computing for Engineers, McGraw-Hill Book
Co., 1986.

3. Press, Teukolsky, Vetterling, and Flannery, Numerical Recipes, Cambridge University Press,
1992.

4. Koffman, E.B., and Friedman, F.L., Problem Solving and Structures Programming in
FORTRAN 77, 3rd edition, Addison-Wesley Publishing Co., Inc., 1987.

5. Loukides, M., UNIX for FORTRAN Programmers, O’Reily and Associates, Inc., 1990.

6. Fiacco, V., and McCormick,G.P., Non-Linear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley, 1968.

APPENDIX A – FORTRAN CODE

1.) 2-Bar Truss Test Problem: Verifies correctness of stiffness matrix routine, clstif.f, and performance
of finite element analysis code, truss2d.f. Vertical load P = -100 lbs, element areas Ael = 0.25 in2.

 program tbar
 parameter (maxnnod=200,maxnel=100)
 integer nnod,nel,ldstif
 integer conn(2,maxnel),bc(2,maxnnod)
 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 e(maxnel),a(maxnel),sig(maxnel),vol
C
 data nnod,nel /3,2/
 data a(1),a(2),e(1),e(2) /0.25,0.25,30.0e6,30.0e6/
 data f(1,1),f(2,1),f(1,2),f(2,2),f(1,3),f(2,3) /0.0,0.0,0.0,
 $-100.0,0.0,0.0/
 data x(1,1),x(2,1),x(1,2),x(2,2),x(1,3),x(2,3) /0.0,0.0,1.0,
 $1.0,2.0,0.0/
 data bc(1,1),bc(2,1),bc(1,2),bc(2,2),bc(1,3),bc(2,3) /1,1,0,0,1,
 $1/
 data conn(1,1),conn(2,1),conn(1,2),conn(2,2) /1,2,2,3/
C
 CALL truss2d(nnod,nel,e,a,conn,x,bc,f,u,sig,vol)
C
 open(unit=45,file='tbar.out',status='unknown')
 write(45,*)'Results of FE code for 2-bar truss:'
 write(45,*)'Node displacements:'
 write(45,*)' X Y'
 do 55 i=1,nnod
 write(45,50)u(1,I),u(2,I)
50 format(5x,f10.8,5x,f10.8)
55 continue
 write(45,*)'Element areas and stresses:'
 write(45,*)' area sigma'
 do 65 i=1,nel
 write(45,60)a(i),sig(i)
60 format(5x,f10.2,5x,f10.2)
65 continue
 write(45,*)'Total volume:'
 write(45,70)vol
70 format(5x,f10.2)
C
 end

 subroutine clstif(nnod,nel,iel,e,a,conn,x,k)
C
 real*8 delx,dely,length,e(nel),a(nel),x(2,nnod),stif,k(4,4)
 integer n1,n2,nnod,nel,iel,conn(2,nel)
C
 n1=conn(1,iel)
 n2=conn(2,iel)
C Compute length of element
 delx=x(1,n2)-x(1,n1)
 dely=x(2,n2)-x(2,n1)
 length=sqrt(delx**2+dely**2)

C Compute stiffness matrix to be returned
 stif=a(iel)*e(iel)/length
 k(1,1)=stif*(delx/length)**2
 k(1,2)=stif*(delx/length)*(dely/length)
 k(1,3)=-stif*(delx/length)**2
 k(1,4)=-stif*(delx/length)*(dely/length)
 k(2,2)=stif*(dely/length)**2
 k(2,3)=-stif*(delx/length)*(dely/length)
 k(2,4)=-stif*(dely/length)**2
 k(3,3)=stif*(delx/length)**2
 k(3,4)=stif*(delx/length)*(dely/length)
 k(4,4)=stif*(dely/length)**2
 k(2,1)=k(1,2)
 k(3,1)=k(1,3)
 k(3,2)=k(2,3)
 k(4,1)=k(1,4)
 k(4,2)=k(2,4)
 k(4,3)=k(3,4)
C
 end

**

Output:
Case 1 – Vertical load = -100 lbs, element areas = 0.25 in2:
Results of FE code for 2-bar truss:
Node displacements:
 X Y
 .00000000 .00000000
 .00000000 -.00001886
 .00000000 .00000000
Element areas and stresses:
 area sigma
 .25 -282.84
 .25 -282.84
Total volume:
 .71

2.) 10-Bar Truss Problem (EXTERIOR Penalty method): Optimization of 10-bar truss problem using
exterior penalty method and IMSL routine DUMING. The driver code project2_e.f and the
subroutines fcne.f and grade.f were written for this optimization code.

Input data file: fn = project2.dat
6 10
720.0 360.0 0.0 0.0 0 0
720.0 0.0 0.0 -100000.0 0 0
360.0 360.0 0.0 0.0 0 0
360.0 0.0 0.0 -100000.0 0 0
0.0 360.0 0.0 0.0 1 1
0.0 0.0 0.0 0.0 1 1
5.0 30000000.0 5 3 25000.0 0.1
5.0 30000000.0 3 1 25000.0 0.1
5.0 30000000.0 6 4 25000.0 0.1
5.0 30000000.0 4 2 25000.0 0.1
5.0 30000000.0 3 4 25000.0 0.1

5.0 30000000.0 2 1 25000.0 0.1
5.0 30000000.0 5 4 25000.0 0.1
5.0 30000000.0 6 3 25000.0 0.1
5.0 30000000.0 3 2 75000.0 0.1
5.0 30000000.0 4 1 25000.0 0.1

 program project2_e
C
 parameter(maxnnod=20000,maxnel=20000,eps=1.0e-4)
 real*8 rho
 integer fcount,nnod,nel,conn(2,maxnnod),bc(2,maxnnod)
 integer iparam(7),count
 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 xx(maxnel),yy(maxnel)
 real*8 e(maxnel),ainit(maxnel),a(maxnel),opta(maxnel),
 $amin(maxnel),ascale(maxnel)
 real*8 sig(maxnel),sigall(maxnel)
 real*8 c,fact,vol,optv,pvol,weight,fscale,rmax,error
 real*8 rparam(7)
 external fcne,truss2d,apldbc,arinlz,aslstf,clstrs,clstif,clvol,
 $facstf,slvdsp,DU4INF,DUMINF
 common rho,fcount
C
 open(unit=1,file='project2.dat',status='unknown')
C
 read(1,*)nnod,nel
 do 5 i=1,nnod
 read(1,*)x(1,i),x(2,i),f(1,i),f(2,i),bc(1,i),bc(2,i)
5 continue
C
 do 10 i=1,nel
 read(1,*)ainit(i),e(i),conn(1,i),conn(2,i),sigall(i),amin(i)
10 continue
 close(1)
C
 do 15 i=1,nel
 ascale(i)=5.0
15 continue
C
 rmax=1.0e6
 error=1.0
 count=0
 fcount=0
 fscale=1.0
 rho=1.0
 fact=10.0
C
 do while((rho.lt.rmax).and.(error.gt.eps).and.(count.lt.100))
 count=count+1
 write(*,*)count
C
 CALL DU4INF(iparam,rparam)
 iparam(3)=10*iparam(3)
 CALL DUMINF(fcne,nel,ainit,ascale,fscale,iparam,rparam,opta,optv)
C
 c=1.0/fact

 do 16 i=1,nel
 xx(i)=(c*ainit(i)-opta(i))/(c-1.0)
 yy(i)=(ainit(i)-xx(i))*rho
16 continue
C
 do 17 i=1,nel
 opta(i)=opta(i)**2
17 continue
C
 pvol=vol
 CALL truss2d(nnod,nel,e,opta,conn,x,bc,f,u,sig,vol)
C
 error=DABS((vol-pvol)/vol)
 rho=rho*fact
 do 18 i=1,nel
 ainit(i)=xx(i)+yy(i)/rho
18 continue
C
 do 19 i=1,nel
 ainit(i)=opta(i)
19 continue
 end do
C
 weight=vol*0.1
C
 open(unit=45,file='project2_e.out',status='unknown')
 write(45,*)'10-bar Truss Optimization Results (Exterior):'
 write(45,'(" Number of function evaluations = ", i6)')fcount
 write(45,'(" Number of iterations = ", i6)')count
 write(45,*)'Node Displacements:'
 write(45,*)' node u(in) v(in)'
 do 30 i=1,nnod
 write(45,26)i,u(1,i),u(2,i)
26 format(5x,i3,5x,f10.2,5x,f10.2)
30 continue
 write(45,*)'Areas and Stresses:'
 write(45,*)'element area(in^2) stress(psi)'
 do 35 i=1,nel
 write(45,31)i,opta(i),sig(i)
31 format(5x,i3,5x,f10.2,5x,f10.2)
35 continue
 write(45,'(" Volume(in^3) = ",f10.2)')vol
 write(45,'(" Error = ",f10.9)')error
 write(45,'(" Weight(lbs) = ",f10.2)')weight
 end

 subroutine fcne(nel,anew,func)
C
 parameter(maxnnod=20000,maxnel=20000)
 real*8 rho
 integer fcount,nnod,nel,inel,conn(2,maxnnod),bc(2,maxnnod)
 integer iparam(7),count
 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 e(maxnel),ainit(maxnel),a(maxnel),opta(maxnel),
 $amin(maxnel),anew(maxnel),ascale(maxnel)

 real*8 sig(maxnel),sigall(maxnel)
 real*8 vol,c,ga,gs,func
 external truss2d,apldbc,arinlz,aslstf,clstrs,clstif,clvol,
 $facstf,slvdsp
 common rho,fcount
C
 fcount=fcount+1
 c=0.0
 write(*,*)fcount
 write(*,*)rho
C
 open(unit=1,file='project2.dat',status='unknown')
 read(1,*)nnod,inel
 do 5 i=1,nnod
 read(1,*)x(1,i),x(2,i),f(1,i),f(2,i),bc(1,i),bc(2,i)
5 continue
C
 do 10 i=1,inel
 read(1,*)ainit(i),e(i),conn(1,i),conn(2,i),sigall(i),amin(i)
10 continue
 close(1)
C
 do 15 i=1,nel
 a(i)=anew(i)**2
15 continue
C
 CALL truss2d(nnod,nel,e,a,conn,x,bc,f,u,sig,vol)
C
 do 20 i=1,nel
 ga=(anew(i)/amin(i))-1.0
 gs=1.0-DABS(sig(i)/sigall(i))
 if (ga.gt.0.0) then
 ga=0.0
 else
 ga=rho*(ga)**2
 end if
 if (gs.gt.0.0) then
 gs=0.0
 else
 gs=rho*(gs)**2
 end if
 c=c+ga+gs
20 continue
 func=c+(vol/18000)
 write(*,*)func
 return
 end

makefile:
OBJ = project2_e.o fcne.o arinlz.o clstrs.o aslstf.o clvol.o truss2d.o apldbc.o
clstif.o facstf.o slvdsp.o $(LINK_FNL_STATIC)

truss2d: $(OBJ)
 f77 -o pr2e $(OBJ)

clean: $(OBJ)

 rm -f $(OBJ)

**

OUTPUT: fn = project2_e.out

10-bar Truss Optimization Results (Exterior):
 Number of function evaluations = 5238
 Number of iterations = 5
 Node Displacements:
 node u(in) v(in)
 1 .60 -2.40
 2 -.60 -2.70
 3 .30 -.90
 4 -.30 -.90
 5 .00 .00
 6 .00 .00
 Areas and Stresses:
 element area(in^2) stress(psi)
 1 7.99 25000.16
 2 .01 25000.04
 3 8.01 -25000.24
 4 3.99 -25000.06
 5 .01 .45
 6 .01 25000.04
 7 5.67 25000.29
 8 5.64 -25000.11
 9 3.76 37500.33
 10 .01 -25000.09
 Volume(in^3) = 14889.49
 Weight(lbs) = 1488.95

3.) 10-Bar Truss Problem (INTERIOR penalty method): Optimization of 10-bar truss problem using
interior penalty method and IMSL routine DUMING. The driver code project2_i.f and the subroutines
fcni.f and gradi.f were written for this optimization code.

Input data file: fn = project2.dat
6 10
720.0 360.0 0.0 0.0 0 0
720.0 0.0 0.0 -100000.0 0 0
360.0 360.0 0.0 0.0 0 0
360.0 0.0 0.0 -100000.0 0 0
0.0 360.0 0.0 0.0 1 1
0.0 0.0 0.0 0.0 1 1
5.0 30000000.0 5 3 25000.0 0.1
5.0 30000000.0 3 1 25000.0 0.1
5.0 30000000.0 6 4 25000.0 0.1
5.0 30000000.0 4 2 25000.0 0.1
5.0 30000000.0 3 4 25000.0 0.1
5.0 30000000.0 2 1 25000.0 0.1
5.0 30000000.0 5 4 25000.0 0.1
5.0 30000000.0 6 3 25000.0 0.1
5.0 30000000.0 4 1 25000.0 0.1

 program project2_i
C
 parameter(maxnnod=20000,maxnel=20000,eps=1.0e-5)
 real*8 rho
 integer fcount,nnod,nel,conn(2,maxnnod),bc(2,maxnnod)
 integer iparam(7),count
 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 xx(maxnel),yy(maxnel)
 real*8 e(maxnel),ainit(maxnel),a(maxnel),opta(maxnel),
 $amin(maxnel),ascale(maxnel)
 real*8 sig(maxnel),sigall(maxnel)
 real*8 c,fact,pvol,vol,optv,weight,fscale,rmin,norm,error
 real*8 rparam(7)
 external fcni,truss2d,apldbc,arinlz,aslstf,clstrs,clstif,clvol,
 $facstf,slvdsp,DU4INF,DUMINF
 common rho,fcount
C
 open(unit=1,file='project2.dat',status='unknown')
C
 read(1,*)nnod,nel
 do 5 i=1,nnod
 read(1,*)x(1,i),x(2,i),f(1,i),f(2,i),bc(1,i),bc(2,i)
5 continue
C
 do 10 i=1,nel
 read(1,*)ainit(i),e(i),conn(1,i),conn(2,i),sigall(i),amin(i)
10 continue
 close(1)
C
 do 15 i=1,nel
 ascale(i)=5.0
15 continue
C
 rmin=1.0e-6
 error=1.0
 norm=0.0
 count=0
 fcount=0
 fscale=1.0
 rho=1000
 fact=0.1
C
 do while((rho.gt.rmin).and.(error.gt.eps).and.(count.lt.100))
 count=count+1
 write(*,*)count
C
 CALL DU4INF(iparam,rparam)
 iparam(3)=10*iparam(3)
 CALL DUMINF(fcni,nel,ainit,ascale,fscale,iparam,rparam,opta,optv)
C
 c=DSQRT(fact)
 do 16 i=1,nel
 xx(i)=(c*ainit(i)-opta(i))/(c-1.0)
 yy(i)=(ainit(i)-xx(i))/DSQRT(rho)
16 continue

C do 17 i=1,nel
 norm=norm+(opta(i)-xx(i))**2
17 continue
C
 do 18 i=1,nel
 opta(i)=opta(i)**2
18 continue
C
 CALL truss2d(nnod,nel,e,opta,conn,x,bc,f,u,sig,vol)
C
 rho=rho*fact
 do 19 i=1,nel
 ainit(i)=xx(i)+yy(i)*DSQRT(rho)
19 continue
 error=DSQRT(norm)
C
 end do
C
 weight=vol*0.1
C
 open(unit=45,file='project2_i.out',status='unknown')
 write(45,*)'10-bar Truss Optimization Results (Exterior):'
 write(45,'(" Number of function evaluations = ", i6)')fcount
 write(45,'(" Number of iterations = ", i6)')count
 write(45,*)'Node Displacements:'
 write(45,*)' node u(in) v(in)'
 do 30 i=1,nnod
 write(45,26)i,u(1,i),u(2,i)
26 format(5x,i3,5x,f10.2,5x,f10.2)
30 continue
 write(45,*)'Areas and Stresses:'
 write(45,*)'element area(in^2) stress(psi)'
 do 35 i=1,nel
 write(45,31)i,opta(i),sig(i)
31 format(5x,i3,5x,f10.2,5x,f10.2)
35 continue
 write(45,'(" Volume(in^3) = ",f10.2)')vol
 write(45,'(" Error = ",f10.9)')error
 write(45,'(" Weight(lbs) = ",f10.2)')weight
 end

 subroutine fcni(nel,anew,func)
C
 parameter(maxnnod=20000,maxnel=20000)
 real*8 rho
 integer fcount,nnod,nel,inel,conn(2,maxnnod),bc(2,maxnnod)
 integer iparam(7),count
 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 e(maxnel),ainit(maxnel),a(maxnel),opta(maxnel),
 $amin(maxnel),anew(maxnel),ascale(maxnel)
 real*8 sig(maxnel),sigall(maxnel)
 real*8 vol,c,ga,gs,lpa,lps,func
 external truss2d,apldbc,arinlz,aslstf,clstrs,clstif,clvol,
 $facstf,slvdsp
 common rho,fcount

C
 fcount=fcount+1
 c=0.0
 write(*,*)fcount
 write(*,*)rho
C
 open(unit=1,file='project2.dat',status='unknown')
 read(1,*)nnod,inel
 do 5 i=1,nnod
 read(1,*)x(1,i),x(2,i),f(1,i),f(2,i),bc(1,i),bc(2,i)
5 continue
C
 do 10 i=1,inel
 read(1,*)ainit(i),e(i),conn(1,i),conn(2,i),sigall(i),amin(i)
10 continue
 close(1)
C
 do 15 i=1,nel
 a(i)=anew(i)**2
15 continue
C
 CALL truss2d(nnod,nel,e,a,conn,x,bc,f,u,sig,vol)
C
 do 20 i=1,nel
 ga=(anew(i)/amin(i))-1.0
 gs=1.0-DABS(sig(i)/sigall(i))
C
 if (anew(i).lt.amin(i)) then
 lpa=1.0e10*(ga)
 end if
C
 if (sig(i).gt.sigall(i)) then
 lps=1.0e10*(gs)
 end if
C
 c=c+(1.0/ga)+(1.0/gs)+lpa+lps
20 continue
C
 func=c+(vol/18000)
 write(*,*)func
 return
 end

makefile:
OBJ = project2_i.o fcni.o arinlz.o clstrs.o aslstf.o clvol.o truss2d.o apldbc.o
clstif.o facstf.o slvdsp.o $(LINK_FNL_STATIC)

truss2d: $(OBJ)
 f77 -o pr2i $(OBJ)

clean: $(OBJ)
 rm -f $(OBJ)

**

OUTPUT: fn = project2_i.out

10-bar Truss Optimization Results (Interior):
 Number of function evaluations = 2273
 Number of iterations = 11
 Node Displacements:
 node u(in) v(in)
 1 .12 -.60
 2 -.14 -.63
 3 .09 -.26
 4 -.09 -.26
 5 .00 .00
 6 .00 .00
 Areas and Stresses:
 element area(in^2) stress(psi)
 1 5.19 7098.48
 2 1.84 2500.72
 3 5.42 -7098.02
 4 4.57 -4374.36
 5 1.42 .00
 6 1.84 2500.72
 7 4.65 7089.47
 8 4.27 -7089.23
 9 4.46 6509.43
 10 1.39 -6195.89
 Volume(in^3) = 14717.33
 Weight(lbs) = 1471.73

4.) 10-Bar Truss Problem (DIRECT method): Optimization of 10-bar truss problem using available
IMSL routine DNCONF. The driver code project2_d.f and the subroutine fcnd.f were written for this
optimization code.

Input data file: fn = project2.dat
6 10
720.0 360.0 0.0 0.0 0 0
720.0 0.0 0.0 -100000.0 0 0
360.0 360.0 0.0 0.0 0 0
360.0 0.0 0.0 -100000.0 0 0
0.0 360.0 0.0 0.0 1 1
0.0 0.0 0.0 0.0 1 1
5.0 30000000.0 5 3 25000.0 0.1
5.0 30000000.0 3 1 25000.0 0.1
5.0 30000000.0 6 4 25000.0 0.1
5.0 30000000.0 4 2 25000.0 0.1
5.0 30000000.0 3 4 25000.0 0.1
5.0 30000000.0 2 1 25000.0 0.1
5.0 30000000.0 5 4 25000.0 0.1
5.0 30000000.0 6 3 25000.0 0.1
5.0 30000000.0 3 2 75000.0 0.1
5.0 30000000.0 4 1 25000.0 0.1

 program project2_d
C
 parameter(maxnnod=2000,maxnel=2000)
 integer nfcn,nnod,nel,conn(2,maxnnod),bc(2,maxnnod),ibtype,
 $iprint,maxit,me,m

 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 e(maxnel),a(maxnel),sig(maxnel),sigall(maxnel)
 real*8 ainit(maxnel),amax(maxnel),amin(maxnel),ascale(maxnel)
 real*8 vol,weight
 common nfcn
 external fcnd,truss2d,clstif,arinlz,aslstf,apldbc,facstf,slvdsp,
 $clstrs,clvol,DNCONF
C
 open(unit=35,file='project2.dat',status='old')
C
 read(35,*)nnod,nel
 do 5 i=1,nnod
 read(35,*)x(1,i),x(2,i),f(1,i),f(2,i),bc(1,i),bc(2,i)
5 continue
C
 do 10, i=1,nel
 read(35,*)ainit(i),e(i),conn(1,i),conn(2,i),sigall(i),amin(i)
10 continue
 close(35)
C
 nfcn=0
 m=nel
 me=0
 ibtype=0
 iprint=1
 maxit=1000
C
 do 15 i=1,nel
 amax(i)=100.0
 ascale(i)=5.0
15 continue
C
 CALL DNCONF(fcnd,m,me,nel,ainit,ibtype,amin,amax,ascale,iprint,
 $maxit,a,vol)
C
 CALL truss2d(nnod,nel,e,a,conn,x,bc,f,u,sig,vol)
C
 weight=vol*0.1
C
 open(unit=45,file='project2_d.out',status='unknown')
 write(45,*)'10-bar Truss Optimization Results (DNCONF):'
 write(45,'(" Number of function evaluations = ", i6)')nfcn
 write(45,*)'Node Displacements:'
 write(45,*)' node u(in) v(in)'
 do 25 i=1,nnod
 write(45,20)i,u(1,i),u(2,i)
20 format(5x,i3,5x,f10.2,5x,f10.2)
25 continue
 write(45,*)'Areas and Stresses:'
 write(45,*)' element area(in^2) stress(psi)'
 do 35 i=1,nel
 write(45,30)i,a(i),sig(i)
30 format(5x,i3,5x,f10.2,5x,f10.2)
35 continue
 write(45,'(" Volume(in^3) = ",f10.2)')vol
 write(45,'(" Weight(lbs) = ",f10.2)')weight

 end

 subroutine fcnd(m,me,nel,a,active,vol,g)
C
 parameter(maxnnod=2000,maxnel=2000)
 integer m,me,nnod,nel,inel,conn(2,maxnnod),bc(2,maxnnod)
 real*8 x(2,maxnnod),f(2,maxnnod),u(2,maxnnod)
 real*8 e(maxnel),ainit(maxnel),amin(maxnel),sig(maxnel),
 $sigall(maxnel)
 real*8 a(*),g(*),vol
 common nfcn
 external truss2d,clstif,arinlz,aslstf,apldbc,facstf,slvdsp,
 $clstrs,clvol
C
 logical active(*)
C
 nfcn=nfcn+1
C
 open(unit=35,file='project2.dat',status='old')
C
 read(35,*)nnod,inel
 do 5 i=1,nnod
 read(35,*)x(1,i),x(2,i),f(1,i),f(2,i),bc(1,i),bc(2,i)
5 continue
 do 10, i=1,inel
 read(35,*)ainit(i),e(i),conn(1,i),conn(2,i),sigall(i),amin(i)
10 continue
 close(35)
C
 CALL truss2d(nnod,nel,e,a,conn,x,bc,f,u,sig,vol)
C
 do 15 i=1,m
 if (active(i)) then
 g(i)=1.0-DABS(sig(i)/sigall(i))
 end if
15 continue
 return
 end

makefile:
OBJ = project2_d.o fcnd.o arinlz.o clstrs.o aslstf.o clvol.o truss2d.o apldbc.o
clstif.o facstf.o slvdsp.o $(LINK_FNL_STATIC)

truss2d: $(OBJ)
 f77 -o pr2d $(OBJ)

clean: $(OBJ)
 rm -f $(OBJ)

**

OUTPUT: fn = project2_d.out

10-bar Truss Optimization Results (DNCONF):
Number of function evaluations = 166

Node Displacements:
 node u(in) v(in)
 1 .60 -2.40
 2 -.60 -2.70
 3 .30 -.90
 4 -.30 -.90
 5 .00 .00
 6 .00 .00
Areas and Stresses:
 element area(in^2) stress(psi)
 1 7.90 25000.00
 2 .10 25000.00
 3 8.10 -25000.00
 4 3.90 -25000.00
 5 .10 .00
 6 .10 25000.00
 7 5.80 25000.00
 8 5.52 -25000.00
 9 3.68 37500.00
 10 .14 -25000.00
Volume(in^3) = 14976.00
Weight(lbs) = 1497.60

APPENDIX B – 2D TRUSS ANALYSIS CODE (Developed by Asst. Prof. G. Subbarayan,
Dept. of Mechanical Engineering, University of Colorado at Boulder)

 subroutine truss2d(nnod,nel,e,a,conn,x,bc,f,u,sig,vol)
 implicit real*8(a-h,o-z)

 parameter (ldstif=20)

 real*8 x(2,nnod),f(2,nnod),u(2,nnod)
 real*8 estif(4,4),stif(ldstif,ldstif)
 real*8 w(ldstif)
 real*8 e(nel),a(nel),sig(nel),vol
 integer conn(2,nel),bc(2,nnod)

c ... initialize stiffness and displacement arrays ...
 call arinlz(ldstif*ldstif,stif(1,1))
 call arinlz(2*nnod,u(1,1))

 do 100 iel=1,nel

c ... compute the element stiffness matrix
c ... you need to write this routine

 call clstif(nnod,nel,iel,e,a,conn,x,estif)

c ... assemble element stiffness matrix into global matrix

 call aslstf(nnod,nel,iel,conn,estif,ldstif,stif)

100 continue

C Apply displacement BCs

 call apldbc(nnod,bc,ldstif,stif)

C Factorize the stiffness matrix

 ierr = 0.
 call facstf(nnod,ldstif,stif,ierr)

 if (ierr.ne.0) then
 write(*,*) 'WARNING'
 write(*,*) 'Stiffness matrix not positive definite'
 write(*,*) 'Terminating analysis'
 endif

C Solve for displacements

 call slvdsp(nnod,ldstif,stif,w,u(1,1),f(1,1))

 call clstrs(nnod,nel,e,conn,x,u,sig)

 call clvol(nnod,nel,a,conn,x,vol)

 return
 end

 subroutine apldbc(nnod,bc,ldstif,stif)

 implicit real*8 (a-h,o-z)

 real*8 stif(ldstif,2*nnod)
 integer bc(2,nnod)
 real*8 bigfac

C===
C This routine applies displacement BCs to the nodes.

C Ganesh Subbarayan 10/9/96
C===

 bigfac = 1.d20
 do 30 inod=1,nnod
 do 20 j=1,2
 if (bc(j,inod).ne.0) then
 k = 2*(inod-1)+j
 stif(k,k) = stif(k,k) + bigfac
 endif
 20 continue
30 continue

 RETURN
 END

 subroutine arinlz(isize,array)

C Passed variables

 real*8 array(isize)

C===
C This routine initializes any array.

C Variables:
C array array to be initialized of size isize.

C Ganesh Subbarayan 01/29/89
C===

 do 10 i=1,isize
 array(i) = 0.D0
 10 continue

 return
 end

 subroutine aslstf(nnod,nel,iel,conn,estif,ldstif,stif)

 implicit real*8(a-h,o-z)

 integer conn(2,nel)
 real*8 estif(4,4),stif(ldstif,2*nnod)

C===
C This routine assembles the element stiffness matrix.

C Variables:
C stif Global stiffness matrix

C Ganesh Subbarayan 10/9/96
C===

 inod = conn(1,iel)
 jnod = conn(2,iel)

 i = 2*(inod-1)+1
 j = 2*(jnod-1)+1

 if (j.gt.i) then
 k = i
 l = j
 else
 k = j
 l = i
 endif

 stif(k,k) = stif(k,k) + estif(1,1)
 stif(k+1,k) = stif(k+1,k) + estif(2,1)
 stif(l,k) = stif(l,k) + estif(3,1)
 stif(l+1,k) = stif(l+1,k) + estif(4,1)
 stif(k+1,k+1) = stif(k+1,k+1) + estif(2,2)
 stif(l,k+1) = stif(l,k+1) + estif(3,2)
 stif(l+1,k+1) = stif(l+1,k+1) + estif(4,2)
 stif(l,l) = stif(l,l) + estif(3,3)
 stif(l+1,l) = stif(l+1,l) + estif(4,3)
 stif(l+1,l+1) = stif(l+1,l+1) + estif(4,4)

 return
 end

 subroutine clstrs(nnod,nel,e,conn,x,u,sig)

 implicit real*8 (a-h,o-z)

 real*8 e(nel),x(2,nnod),u(2,nnod),sig(nel)
 integer conn(2,nel)

 real*8 c,s,lenx,leny,len

 do iel=1,nel
 inod = conn(1,iel)
 jnod = conn(2,iel)

 lenx = x(1,jnod)-x(1,inod)
 leny = x(2,jnod)-x(2,inod)
 len = dsqrt(lenx**2+leny**2)

 c = lenx/len
 s = leny/len

 sig(iel) = e(iel)*(c*(u(1,jnod)-u(1,inod))+
 & s*(u(2,jnod)-u(2,inod)))/len

 end do

 return
 end

 subroutine clvol(nnod,nel,a,conn,x,vol)

 implicit real*8 (a-h,o-z)

 real*8 a(nel),x(2,nnod),vol
 integer conn(2,nel)

 real*8 lenx,leny,len

 vol = 0.d0
 do iel=1,nel
 inod = conn(1,iel)
 jnod = conn(2,iel)

 lenx = x(1,jnod)-x(1,inod)
 leny = x(2,jnod)-x(2,inod)
 len = dsqrt(lenx**2+leny**2)

 vol = vol + a(iel)*len

 end do

 return
 end

 subroutine facstf(nnod,ldstif,stif,ierr)

 implicit real*8 (a-h,o-z)

 real*8 stif(ldstif,2*nnod),eps

c ==
c This routine replaces the lower triangular portion
c of the stiffness matrix with its cholesky factor
c
c Algorithm based on Golub and Van Loan 5.2-1
c
c Ganesh Subbarayan 10/9/96

c ==

 eps = 1.e-10

 do 40 k=1,2*nnod
 do 10 p=1,k-1
 stif(k,k) = stif(k,k) - stif(k,p)**2
10 continue

 if (stif(k,k).lt.eps) then
 ierr = k
 return
 else
 stif(k,k) = dsqrt(stif(k,k))
 endif

 do 30 i=k+1,2*nnod
 do 20 p=1,k-1
 stif(i,k) = stif(i,k) - stif(i,p)*stif(k,p)
20 continue
 stif(i,k) = stif(i,k)/stif(k,k)
30 continue
40 continue

 return
 end

 subroutine slvdsp(nnod,ldstif,stif,w,u,f)

 implicit real*8 (a-h,o-z)

 real*8 stif(ldstif,2*nnod),w(2*nnod),u(2*nnod),f(2*nnod)

C Forward substituion

 do 20 i=1,2*nnod
 w(i) = f(i)
 do 10 j=1,i-1
 w(i) = w(i) - stif(i,j)*w(j)
10 continue
 w(i) = w(i)/stif(i,i)
20 continue

C Backward substitution

 do 40 i=2*nnod,1,-1
 u(i) = w(i)
 do 30 j=i+1,2*nnod
 u(i) = u(i) - stif(j,i)*u(j)
30 continue
 u(i) = u(i)/stif(i,i)
40 continue

 return
 end

