
ASEN5317 - Computational Fluid Dynamics
Instructor: Professor L. Kantha

Homework #5:
Numerical Solution Techniques for Parabolic Partial Differential

Equations: Viscous Diffusion and the Starting Couette Flow
Problem

by

 Joseph P. Kubitschek
8 November 1998

ABSTRACT
The primary purpose of this work was to become familiar with numerical techniques, namely
finite difference schemes, available for solving parabolic partial differential equations (PDEs)
such as the governing equation for viscous diffusion. An application of such viscous diffusion is
the transient starting Couette flow problem. This problem is investigated here and the various
finite difference schemes are applied to solve this problem for various cases of the Currant
number. These schemes include the FTCS, Crank-Nicholson, and DuFort-Frankel (explicit and
implicit) finite difference schemes. For the FTCS scheme, stability is examined and indicated the
numerical scheme to be conditionally stable. The results indicate that the FTCS scheme is
conditionally stable while the Crank-Nicholson and DuFort-Frankel schemes are unconditionally
stable. This realization allows for selection of the best scheme for implementation in solving this
problem.

INTRODUCTION

Background
The starting Couette Flow problem is classic example of viscous diffusion. The governing
equation for such problem was derived using boundary layer theory to reduce the full Navier-
Stokes equations to the single parabolic PDE,

∂u/∂t = ν(∂2u/∂2y),

with the necessary initial and boundary conditions,

t = 0: u(0) = 0, u(0.5m) = 0;
t > 0: u(0) = 0, u(0.5m) = U = 1.0m/s.

This problem may be described physically as transient viscous-driven flow between two plates of
infinite extent and separated by a distance of 0.5m. Initially both plates are at rest. After time,
t=0, the upper plate is set in motion in the positive x-direction with a velocity of 1.0m/s. Due to
the viscosity of the fluid filling the space between the plates, successive lamina of fluid are set in
motion as time elapses. Eventually, the system reaches a “quasi-steady state”, as the velocity
profile becomes more or less constant in time. The governing equation lends nicely to the use of
finite difference techniques to solve the problem in the transient domain.

Solution Techniques
Part 1: FTCS Finite Difference Scheme
The FTCS (Forward Time Centered Space) explicit finite difference scheme for the diffusion
equation may be written as

uj
n+1 = uj

n + R(uj+1
n – 2uj

n + uj-1
n).

Stability may be examined using the Von Neumman stability analysis. This analysis was
completed and is included as appendix B. The results indicate that the FTSC explicit scheme is
conditionally stable. That is the scheme is stable provided R ≤ ½.

Part 2: Crank-Nicholson Finite Difference Scheme
The Crank-Nicholson scheme is an implicit and unconditionally stable scheme that may be
written as

Ruj-1
n+1 – 2(1 + R)uj

n+1 + Ruj+1
n+1 = -(Ruj-1

n + 2(1 - R)uj
n + Ruj+1

n).

In this case the coefficients on the LHS are known and the entire RHS is known at each time step.
Thus, the scheme may be written in matrix form as a tri-diagonal system of equations that can be
subsequently solved at each time step using Numerical Recipes1, TRIDAG.

Part 3: DuFort-Frankel (Explicit and Implicit) Schemes
The DuFort-Frankel explicit scheme, also unconditionally stable, may be written as

uj
n+1 = [2R/(1+2R)](uj+1

n + uj-1
n) + [(1-2R)/(1+2R)] uj

n-1.

Finally, the fully implicit scheme for this problem may be written as

Ruj-1
n+1 – 2(1 + R)uj

n+1 + Ruj+1
n+1 = - uj

n.

Again, this scheme is unconditionally stable and as is easily seen can also be solved using the tri-
diagonal matrix method of Numerical Recipes1, TRIDAG.

In all of the cases above,

R = ν(∆t/∆y2).

Each of the above numerical schemes was used to solve the viscous diffusion problem for various
values of R. For the FTSC scheme, values of R = 0.25 and 0.55 were investigated; for the Crank-
Nicholson scheme values of R = 1 and 5 were investigated; and for the DuFort-Frankel explicit
and fully implicit schemes, values of R = 0.25 and 0.55, and 2.0 were investigated, respectively.
The FORTRAN code used to implement these schemes is included as appendix C.

RESULTS AND DISCUSSION
The results of each case investigated are presented in non-dimensional form as u/U verses y/D,
where u is the velocity computed for each spatial grid point and U is the upper plate velocity after
time t=0. Similarly, y is the distance between spatial grid points and D is the plate separation.
These plots represent the velocity profiles computed at 5 different time steps over the total time
required for convergence and illustrate the transient nature of the solution for each case.

Part 1: FTCS Finite Difference Scheme
The results of the stability analysis indicate that the FTCS scheme is stable provided R ≥ ½.
Thus, it was apparent that the solution for the case, R=0.55 would be meaningless. However, the
problem was coded and attempted confirming the results of the stability analysis (i.e the
numerical scheme is unstable for this value of R. However, for the case when R=0.25, the results
are presented as figure 1. This plot represents the velocity profiles for various time steps from
t=0 to the time required for convergence of the solution to a specified, ε=0.01. It is important to
realize that the scale on which the time required for the diffusion process to traverse the plate
separation is much smaller than the initial time step plotted in figure 1. In this case one would
expect the velocity to be zero beyond certain points across the separation distance until the
viscous diffusion has reached the lower plate. This can actually be seen by inspection of the raw
output data file. Thus, from the transient solution, the time characterizing the diffusion process
could be estimated and compared with various other values of R. This would likely provide
additional insight into the effect of various viscosities on the diffusion process. In any case, it is
obvious that numerical stability must be investigated to ensure a quality solution to the problem at
hand and if instability is predicted, an alternate scheme should be considered.

Part 2: Crank-Nicholson Finite Difference Scheme
Unlike the FTCS scheme, the Crank-Nicholson finite difference scheme has the primary
advantage of being unconditionally stable for all possible values of R and hence having a greater
range of application than the previous FTCS scheme. The values of R=1.0 and 5.0 were
investigated here. Figures 2 and 3 represent the results plotted as non-dimensional velocity (u/U)
verses non-dimensional height above the bottom plate (y/D). Although one would expect these
results to be very similar in shape to those obtained using FTCS scheme, this was not the case.

Part 3: DuFort-Frankel (Explicit and Implicit) Schemes
The DuFort-Frankel explicit scheme (also unconditionally stable) generates results similar to the
FTCS scheme however, unlike the FTCS scheme, various values of R may be used to solve the
diffusion equation and allows the solution to be advanced further in time to convergence. Figures
4 and 5 represent the transient results for R=0.25 and 0.55, respectively. Figure 4 is much like
figure 1 as expected since the time steps are the same. However, the use of this scheme also
allowed for numerical computation with a time step corresponding to R=0.55, a case that could
not be solved using the FTCS scheme.

Finally, the fully implicit scheme was used to solve this problem with R=2.0. Figure 6 represents
the results presented in the same manner as previously described. One would expect the results to
look similar to the previous cases. However, the results look much different as the solution
converges much more quickly as the scheme does no advance to steady state. The cause for this
is uncertain but likely has something to do with accuracy of the scheme. Unlike the explicit
scheme which has accuracy of O(∆t2), the accuracy is reduced to O(∆t). The effect is degraded
accuracy of the solution as can be seen by the results.

CONCLUSIONS

• Based on the results of the Von Neumann stability analysis, the FTCS scheme is
conditionally stable. That is numerical stability can only be achieved for R ≤ ½.. In contrast,
the Crank-Nicholson and DuFort-Frankel schemes provide unconditional stability and hence
allow for solutions corresponding with various values of R.

• The primary advantages of unconditional stability are improved efficiency and accuracy as
larger time steps may be used to converge to a solution in fewer time iterations and hence
reduce the truncation error associated with the time domain.

• The results of this investigation demonstrate the importance of choosing the appropriate
scheme for the problem at hand. In addition, these results provide a nice survey of those
techniques available for solving parabolic PDEs such as the diffusion equation and the
advantages/disadvantages associated with each.

• One aspect of Numerical Computation that was learned here (definitely the hard way) was
that one should never, and I stress never, use double precision in a driver code for a
Numerical Recipes subroutine that does not use double precision. Unfortunately, I spent
many unproductive hours attempting to debug a code which was otherwise sound, a mistake I
will never again make!

• REFERENCES

1. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in
Fortran 77, 2nd Edition, Volume 1, Cambridge University Press, 1992.

2. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in
Fortran 77 – Examples Book, Cambridge University Press, 1992.

3. Chapra, S.C., and Canale, R.C., Introduction to Computing for Engineers, McGraw-Hill
Book Co., 1986.

4. Schlichting, H., Boundary Layer Theory, 7th Edition, McGraw-Hill, 1979.

5. Bejan, A., Heat Transfer, John Wiley & Sons, 1993.

6. Anderson, J.D., Computational Fluid Dynamics, McGraw-Hill, Inc., 1995.

APPENDIX A – FIGURES

Figure 1. - FTCS explicit scheme. Plot of solution progress (u/U verses y/D) at various time
steps to convergence representing the transient velocity profiles at various times for R=0.25.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y/D

u/
U

t = 0.0

t = 5,500 sec.

t = 11,050 sec.

t = 16,600 sec.

t = 22,150 sec.

t = 27,700 sec.

Transient Couette Flow: FTCS Scheme - R = 0.25
(u/U v. y/D)

Figure 2. - Crank-Nicholson implicit scheme. Plot of solution progress (u/U verses y/D) at
various time steps to convergence representing the transient velocity profiles at various times for
R=1.0.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/D

u/
U

t = 0.0

t = 9,000 sec.

t = 18,000 sec.

t = 27,000 sec.

t = 36,000 sec.

t = 45,000 sec.

Transient Couette Flow: Crank-Nicholson Scheme - R = 1.0
(u/U v. y/D)

Figure 3. - Crank-Nicholson implicit scheme. Plot of solution progress (u/U verses y/D) at
various time steps to convergence representing the transient velocity profiles at various times for
R=5.0. Solution obtained using TRIDAG at each successive time step.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/D

u/
U

t = 0.0

t = 13,000 sec.

t = 26,000 sec.

t = 40,000 sec.

t = 53,000 sec.

t = 67,000 sec.

Transient Couette Flow: Crank-Nicholson Scheme - R = 5.0
(u/U v. y/D)

Figure 4. - DuFort-Frankel explicit scheme. Plot of solution progress (u/U verses y/D) at various
time steps to convergence representing the transient velocity profiles at various times for R=0.25.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/D

u/
U

t = 0.0

t = 6,400 sec.

t = 12,800 sec.

t = 19,250 sec.

t = 25,650 sec.

t = 32,100 sec.

Transient Couette Flow: DuFort-Frankel Scheme - R = 0.25
(u/U v. y/D)

Figure 5. - DuFort-Frankel explicit scheme. Plot of solution progress (u/U verses y/D) at various
time steps to convergence representing the transient velocity profiles at various times for R=0.55.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/D

u/
U

t = 0.0

t = 8,360 sec.

t = 16,720 sec.

t = 25,190 sec.

t = 33,550 sec.

t = 42,020 sec.

Transient Couette Flow: DuFort-Frankel Scheme - R = 0.55
(u/U v. y/D)

Figure 6. - DuFort-Frankel fully implicit scheme. Plot of solution progress (u/U verses y/D) at
various time steps to convergence representing the transient velocity profiles at various times for
R=2.0. . Solution obtained using TRIDAG at each successive time step.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/D

u/
U

t = 0.0

t = 16,00 sec.

t = 2,000 sec.

t = 2,400 sec.

t = 2,800 sec.

t = 3,200 sec.

Transient Couette Flow: Fully Implicit Scheme - R = 2.0
(u/U v. y/D)

APPENDIX B – STABILITY ANALYSIS

The FTCS finite difference scheme for the viscous diffusion equation is written as

uj
n+1 - uj

n = R(uj+1
n – 2uj

n + uj-1
n); R = ν(∆t/∆y2).

Let uj
n = ξneikj∆y ; k=1,2,…..

Then the condition for stability is  ξ ≤ 1. Where ξ is called the amplification factor. Next
substitution of ξ into the finite difference scheme yields,

(ξn+1 - ξn) eikj∆y = Rξn(eik∆y –2 + e -ik∆y) eikj∆y.

Next, dividing by ξn eikj∆y gives,

ξ = 1 + R[2cos(k∆y) – 2] = 1 + 2R[cos(k∆y) – 1] = 1 - 4Rsin2(k∆y/2).

Thus, for stability

 ξ ≤ 1 ⇒  1 - 4Rsin2(k∆y/2) ≤ 1

∴∴∴∴ R ≤ 1/2, for all values of k, to ensure numerical stability.

APPENDIX C – FORTRAN CODE

Problem 1a.) FTCS (forward time centered space) scheme to solve starting Couette flow problem for R =
0.25. The driver code, hw5_1a.f implements the FTCS scheme.

 program hw5_1a
C
C Homework#5 - Problem#1: Starting Couette Flow
C Program computes the numerical solution to the classic
C Transient Couette Flow Problem using algorithm developed by Chow
C implementing the FTCS scheme, R=0.25.
C The following initial and bounadry conditions are applied:
C t=0: u(y=0)=0.0
C t>0: u(y=0)=0.0; u(y=0.5m)=1.0m/s
C kinematic viscosity = 2.0x10-6 m^2/s
C J. Kubitschek
C ASEN5317
C 6 November 1998
C
 parameter(maxn=30,eps=1.0e-3)
 integer m,mm,count
 real*8 u_old(maxn),u_new(maxn),y(maxn)
 real*8 t,tau,h,r,tmax,u_init,nu,sum,error
C
 data h,m,u_init,nu,r,tmax /0.02,26,1.0,2.0e-6,0.25,2.5e5/
C
 open(unit=1,file='hw5_1a.out',status='unknown')
 tau=r*h**2/nu
 mm=m-1
 error=1.0
C
 count=0
 t=0.0
 y(1)=0.0
C
 do 2 i=2,m
 y(i)=y(i-1)+h
2 continue
C
 do 3 i=1,mm
 u_old(i)=0.0
3 continue
C
 u_old(m)=1.0
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(u_old(j),j=1,m)
 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 do 4 i=2,mm
 u_new(i)=u_old(i)+r*(u_old(i-1)-2.0*u_old(i)+u_old(i+1))
4 continue
C
 do 5 i=2,mm

 sum=sum+(u_new(i)-u_old(i))**2
 u_old(i)=u_new(i)
5 continue
 write(1,10)t,(u_old(j),j=1,m)
 error=DSQRT(sum)
 write(*,*)count,error
 end do
C
10 format(2x,f10.2,5x,26f8.4)
 write(1,'(" Number of steps for convergence = ",i4)')count
 write(1,'(" Relative error = ",f5.4)')error
 end

Problem 1b.) FTCS (forward time centered space) scheme to solve starting Couette flow problem for R =
0.55. The driver code, hw5_1b.f implements the FTCS scheme.

 program hw5_1b
C
C Homework#5 - Problem#1: Starting Couette Flow
C Program computes the numerical solution to the classic
C Transient Couette Flow Problem using algorithm developed by Chow
C implementing the FTCS scheme.
C The following initial and boundary conditions are applied:
C t=0: u(y=0)=0.0
C t>0: u(y=0)=0.0; u(y=0.5m)=1.0m/s
C kinematic viscosity = 2.0x10-6 m^2/s
C J. Kubitschek
C ASEN5317
C 6 November 1998
C
 parameter(maxn=30,eps=1.0e-3)
 integer m,mm,count
 real*8 u_old(maxn),u_new(maxn),y(maxn)
 real*8 t,tau,h,r,tmax,u_init,nu,sum,error
C
 data h,m,u_init,nu,r,tmax /0.02,26,1.0,2.0e-6,0.55,2.5e5/
C
 open(unit=1,file='hw5_1b.out',status='unknown')
 tau=r*h**2/nu
 mm=m-1
 error=1.0
C
 count=0
 t=0.0
 y(1)=0.0
C
 do 2 i=2,m
 y(i)=y(i-1)+h
2 continue
C
 do 3 i=1,mm
 u_old(i)=0.0
3 continue
C
 u_old(m)=1.0

C
 write(1,*)'Velocity Results:'
 write(1,10)t,(u_old(j),j=1,m)
 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 do 4 i=2,mm
 u_new(i)=u_old(i)+r*(u_old(i-1)-2.0*u_old(i)+u_old(i+1))
4 continue
C
 do 5 i=2,mm
 sum=sum+(u_new(i)-u_old(i))**2
 u_old(i)=u_new(i)
5 continue
 write(1,10)t,(u_old(j),j=1,m)
 error=DSQRT(sum)
 write(*,*)count,error
 end do
C
10 format(2x,f10.2,5x,26f8.4)
 write(1,'(" Number of steps for convergence = ",i4)')count
 write(1,'(" Relative error = ",f5.4)')error
 end

Problem 2a.) Crank-Nicholson scheme to solve starting Couette flow problem for R = 1.0. The driver
code, hw5_2a.f implements this scheme and solves using TRIDAG.

 program hw5_2a
C
 parameter(nmax=100,eps=1.0e-3)
 real uold(nmax),y(nmax),rhs(nmax),a(nmax),b(nmax),c(nmax),
 $u(nmax)
 real t,tau,h,R,tmax,u_init,nu,sum,error
 integer m,count
C
 data h,m,u_init,nu,R,tmax / 0.02,26,1.0,2.0e-6,1.0,2.5e5 /
C
 open(unit=2,file='hw5_2a.out',status='unknown')
 tau=R*h**2/nu
 error=1.0
C
 count=0
 t=0.0
 y(1)=0.0
C
 do 5 i=2,m
 y(i)=y(i-1)+h
5 continue
C
 do 10 i=1,m
 uold(i)=0.0
10 continue
C
 write(2,*)'Velocity Results:'
 write(2,35)t,(uold(j),j=1,m)

 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 uold(1)=0.0
 uold(m)=1.0
 do 15 i=2,m-1
 rhs(i-1)=-(R*uold(i-1)+2.0*(1.0-R)*uold(i)+R*uold(i+1))
 a(i-1)=R
 c(i-1)=R
 b(i-1)=-2.0*(1.0+R)
15 continue
 rhs(m-2)=-(R*uold(m-2)+2.0*(1.0-R)*uold(m-1)+R*uold(m))-
 $R*uold(m)
C
 CALL tridag(a,b,c,rhs,u,m-2)
C
 do 20 i=1,m-2
 sum=sum+(u(i)-uold(i+1))**2
 uold(i+1)=u(i)
20 continue
C
 write(2,35)t,(uold(j),j=1,m)
 error=SQRT(sum)
 write(*,*)count,error
 end do
C
35 format(2x,f10.2,2x,26f8.4)
 write(2,'(" Number of steps for convergence = ",i4)')count
 write(2,'(" Relative error = ",f5.4)')error
 stop
 end

 subroutine tridag(a,b,c,r,u,n)
 parameter (nmax=100)
 dimension gam(nmax),a(n),b(n),c(n),r(n),u(n)
 if(b(1).eq.0.)pause
 bet=b(1)
 u(1)=r(1)/bet
 do 11 j=2,n
 gam(j)=c(j-1)/bet
 bet=b(j)-a(j)*gam(j)
 if(bet.eq.0.)pause
 u(j)=(r(j)-a(j)*u(j-1))/bet
11 continue
 do 12 j=n-1,1,-1
 u(j)=u(j)-gam(j+1)*u(j+1)
12 continue
 return
 end

Problem 2b.) Crank-Nicholson scheme to solve starting Couette flow problem for R = 5.0. The driver
code, hw5_2b.f implements this scheme and solves using TRIDAG.

 program hw5_2b
C
 parameter(nmax=100,eps=1.0e-3)
 real uold(nmax),y(nmax),rhs(nmax),a(nmax),b(nmax),c(nmax),
 $u(nmax)
 real t,tau,h,R,tmax,u_init,nu,sum,error
 integer m,count
C
 data h,m,u_init,nu,R,tmax / 0.02,26,1.0,2.0e-6,5.0,2.5e5 /
C
 open(unit=2,file='hw5_2b.out',status='unknown')
 tau=R*h**2/nu
 error=1.0
C
 count=0
 t=0.0
 y(1)=0.0
C
 do 5 i=2,m
 y(i)=y(i-1)+h
5 continue
C
 do 10 i=1,m
 uold(i)=0.0
10 continue
C
 write(2,*)'Velocity Results:'
 write(2,35)t,(uold(j),j=1,m)
 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 uold(1)=0.0
 uold(m)=1.0
 do 15 i=2,m-1
 rhs(i-1)=-(R*uold(i-1)+2.0*(1.0-R)*uold(i)+R*uold(i+1))
 a(i-1)=R
 c(i-1)=R
 b(i-1)=-2.0*(1.0+R)
15 continue
 rhs(m-2)=-(R*uold(m-2)+2.0*(1.0-R)*uold(m-1)+R*uold(m))-
 $R*uold(m)
C
 CALL tridag(a,b,c,rhs,u,m-2)
C
 do 20 i=1,m-2
 sum=sum+(u(i)-uold(i+1))**2
 uold(i+1)=u(i)
20 continue
C
 write(2,35)t,(uold(j),j=1,m)
 error=SQRT(sum)
 write(*,*)count,error
 end do
C
35 format(2x,f10.2,2x,26f8.4)

 write(2,'(" Number of steps for convergence = ",i4)')count
 write(2,'(" Relative error = ",f5.4)')error
 stop
 end

 subroutine tridag(a,b,c,r,u,n)
 parameter (nmax=100)
 dimension gam(nmax),a(n),b(n),c(n),r(n),u(n)
 if(b(1).eq.0.)pause
 bet=b(1)
 u(1)=r(1)/bet
 do 11 j=2,n
 gam(j)=c(j-1)/bet
 bet=b(j)-a(j)*gam(j)
 if(bet.eq.0.)pause
 u(j)=(r(j)-a(j)*u(j-1))/bet
11 continue
 do 12 j=n-1,1,-1
 u(j)=u(j)-gam(j+1)*u(j+1)
12 continue
 return
 end

Problem 3a.) DuFort-Frankel explicit scheme to solve starting Couette flow problem for R = 0.25. The
driver code, hw5_3a.f implements this scheme.

 program hw5_3a
C
C Homework#5 - Problem#3: Starting Couette Flow
C Program computes the numerical solution to the classic
C Transient Couette Flow Problem using the explicit
C DuFort-Frankel Scheme, R=0.25.
C The following initial and boundary conditions are applied:
C t=0: u(y=0)=0.0
C t>0: u(y=0)=0.0; u(y=0.5m)=1.0m/s
C kinematic viscosity = 2.0x10-6 m^2/s
C J. Kubitschek
C ASEN5317
C 6 November 1998
C
 parameter(maxn=30,eps=1.0e-3)
 integer k,m,mm,count
 real*8 u_old(1001,maxn),u_new(1001,maxn),y(maxn)
 real*8 t,tau,h,r,tmax,u_init,nu,sum,error
C
 data h,m,u_init,nu,r,tmax /0.02,26,1.0,2.0e-6,0.25,2.5e5/
C
 open(unit=1,file='hw5_3a.out',status='unknown')
 tau=r*h**2/nu
 mm=m-1
 error=1.0
C
 count=0
 k=1

 t=0.0
 y(1)=0.0
C
 do 2 i=2,m
 y(i)=y(i-1)+h
2 continue
C
 do 3 i=1,mm
 u_old(k,i)=0.0
3 continue
C
 u_old(k,m)=1.0
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(u_old(k,j),j=1,m)
 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 u_old(k,1)=0.0
 u_old(k,m)=1.0
 do 4 i=2,mm
 if (k.lt.2) then
 u_new(k,i)=(2.0*r/(1.0+2.0*r))*(u_old(k,i+1)+u_old(k,i-1))
 else
 u_new(k,i)=(2.0*r/(1.0+2.0*r))*(u_old(k,i+1)+u_old(k,i-1))+
 $((1.0-2.0*r)/(1.0+2.0*r))*u_old(k-1,i)
 end if
4 continue
C
 do 5 i=2,mm
 sum=sum+(u_new(k,i)-u_old(k,i))**2
 u_old(k+1,i)=u_new(k,i)
5 continue
C
 write(1,10)t,(u_old(k,j),j=1,m)
 error=DSQRT(sum)
 write(*,*)count,error
 k=k+1
 end do
C
10 format(2x,f10.2,2x,26f8.4)
 write(1,'(" Number of steps for convergence = ",i4)')count
 write(1,'(" Relative error = ",f5.4)')error
 end

Problem 3b.) DuFort-Frankel explicit scheme to solve starting Couette flow problem for R = 0.55. The
driver code, hw5_3b.f implements this scheme.

 program hw5_3b
C
C Homework#5 - Problem#3: Starting Couette Flow
C Program computes the numerical solution to the classic
C Transient Couette Flow Problem using the explicit
C DuFort-Frankel Scheme, R=0.55.

C The following initial and boundary conditions are applied:
C t=0: u(y=0)=0.0
C t>0: u(y=0)=0.0; u(y=0.5m)=1.0m/s
C kinematic viscosity = 2.0x10-6 m^2/s
C J. Kubitschek
C ASEN5317
C 6 November 1998
C
 parameter(maxn=30,eps=1.0e-3)
 integer k,m,mm,count
 real*8 u_old(1001,maxn),u_new(1001,maxn),y(maxn)
 real*8 t,tau,h,r,tmax,u_init,nu,sum,error
C
 data h,m,u_init,nu,r,tmax /0.02,26,1.0,2.0e-6,0.55,2.5e5/
C
 open(unit=1,file='hw5_3b.out',status='unknown')
 tau=r*h**2/nu
 mm=m-1
 error=1.0
C
 count=0
 k=1
 t=0.0
 y(1)=0.0
C
 do 2 i=2,m
 y(i)=y(i-1)+h
2 continue
C
 do 3 i=1,mm
 u_old(k,i)=0.0
3 continue
C
 u_old(k,m)=1.0
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(u_old(k,j),j=1,m)
 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 u_old(k,1)=0.0
 u_old(k,m)=1.0
 do 4 i=2,mm
 if (k.lt.2) then
 u_new(k,i)=(2.0*r/(1.0+2.0*r))*(u_old(k,i+1)+u_old(k,i-1))
 else
 u_new(k,i)=(2.0*r/(1.0+2.0*r))*(u_old(k,i+1)+u_old(k,i-1))+
 $((1.0-2.0*r)/(1.0+2.0*r))*u_old(k-1,i)
 end if
4 continue
C
 do 5 i=2,mm
 sum=sum+(u_new(k,i)-u_old(k,i))**2
 u_old(k+1,i)=u_new(k,i)
5 continue

C
 write(1,10)t,(u_old(k,j),j=1,m)
 error=DSQRT(sum)
 write(*,*)count,error
 k=k+1
 end do
C
10 format(2x,f10.2,2x,26f8.4)
 write(1,'(" Number of steps for convergence = ",i4)')count
 write(1,'(" Relative error = ",f5.4)')error
 end

Problem 3c.) DuFort-Frankel fully implicit scheme to solve starting Couette flow problem for R = 2.0.
The driver code, hw5_3c.f implements this scheme and solves using TRIDAG.

 program hw5_3c
C
 parameter(nmax=100,eps=1.0e-3)
 real uold(nmax),y(nmax),rhs(nmax),a(nmax),b(nmax),c(nmax),
 $u(nmax)
 real t,tau,h,R,tmax,u_init,nu,sum,error
 integer m,count
C
 data h,m,u_init,nu,R,tmax / 0.02,26,1.0,2.0e-6,2.0,2.5e5 /
C
 open(unit=2,file='hw5_3c.out',status='unknown')
 tau=R*h**2/nu
 error=1.0
C
 count=0
 t=0.0
 y(1)=0.0
C
 do 5 i=2,m
 y(i)=y(i-1)+h
5 continue
C
 do 10 i=1,m
 uold(i)=0.0
10 continue
C
 write(2,*)'Velocity Results:'
 write(2,35)t,(uold(j),j=1,m)
 do while ((error.gt.eps).and.(count.lt.1000))
 count=count+1
 sum=0.0
 t=t+tau
 uold(1)=0.0
 uold(m)=1.0
 do 15 i=2,m-1
 rhs(i-1)=-uold(i)
 a(i-1)=R
 c(i-1)=R
 b(i-1)=-2.0*(1.0+R)
15 continue

 rhs(m-2)=-uold(m-1)-R*uold(m)
C
 CALL tridag(a,b,c,rhs,u,m-2)
C
 do 20 i=1,m-2
 sum=sum+(u(i)-uold(i+1))**2
 uold(i+1)=u(i)
20 continue
C
 write(2,35)t,(uold(j),j=1,m)
 error=SQRT(sum)
 write(*,*)count,error
 end do
C
35 format(2x,f10.2,2x,26f8.4)
 write(2,'(" Number of steps for convergence = ",i4)')count
 write(2,'(" Relative error = ",f5.4)')error
 stop
 end

 subroutine tridag(a,b,c,r,u,n)
 parameter (nmax=100)
 dimension gam(nmax),a(n),b(n),c(n),r(n),u(n)
 if(b(1).eq.0.)pause
 bet=b(1)
 u(1)=r(1)/bet
 do 11 j=2,n
 gam(j)=c(j-1)/bet
 bet=b(j)-a(j)*gam(j)
 if(bet.eq.0.)pause
 u(j)=(r(j)-a(j)*u(j-1))/bet
11 continue
 do 12 j=n-1,1,-1
 u(j)=u(j)-gam(j+1)*u(j+1)
12 continue
 return
 end

